The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Fitlight Technology Used in the Physical Training and Testing Process
2.4. Experimental Study Program
2.5. Measures
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pino-Ortega, J.; Rojas-Valverde, D.; Gómez-Carmona, C.D.; Rico-González, M. Training Design, Performance Analysis, and Talent Identification—A Systematic Review about the Most Relevant Variables through the Principal Component Analysis in Soccer, Basketball, and Rugby. Int. J. Environ. Res. Public Health 2021, 18, 2642. [Google Scholar] [CrossRef] [PubMed]
- Peña, J.; Moreno-Doutres, D.; Coma, J.; Buscà, B. Anthropometric and fitness profile of high-level basketball, handball and volleyball players. Rev. Andal. Med. Del Deport. 2018, 11, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Popowczak, M.; Domaradzki, J.; Rokita, A.; Zwierko, M.; Zwierko, T. Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 5322. [Google Scholar] [CrossRef] [PubMed]
- Klatt, S.; Smeeton, N.J. Processing visual information in elite junior soccer players: Effects of chronological age and training experience on visual perception, attention, and decision making. Eur. J. Sports Sci. 2022, 22, 600–609. [Google Scholar] [CrossRef]
- Tapper, A.; Gonzalez, D.; Roy, E.; Niechwiej-Szwedo, E. Executive function deficits in team sport athletes with a history of concussion revealed by a visual-auditory dual task paradigm. J. Sports Sci. 2017, 35, 231–240. [Google Scholar] [CrossRef]
- Vinken, P.M.; Kröger, D.; Fehse, U.; Schmitz, G.; Brock, H.; Effenberg, A.O. Auditory coding of human movement kinematics. Multisens. Res. 2013, 26, 533–552. [Google Scholar] [CrossRef] [Green Version]
- Popowczak, M.; Cichy, I.; Rokita, A.; Domaradzki, J. The Relationship Between Reactie Agility and Change of Direction Speed in Professional Female Basketball and Handball Players. Front. Psychol. 2021, 12, 708771. [Google Scholar] [CrossRef]
- Huang, S.; Van Syoc, B.; Yang, R.; Kuehn, T.; Smith, D.; Zhu, Q. Using visual and/or kinesthetic information to stabilize intrinsic bimanual coordination patterns is a function of movement frequency. Psychol. Res. 2021, 85, 865–878. [Google Scholar] [CrossRef]
- Juravle, G.; Binsted, G.; Spence, C. Tactile suppression in goal-directed movement. Psychon. Bull. Rev. 2017, 24, 1060–1076. [Google Scholar] [CrossRef] [Green Version]
- Vastano, R.; Inuggi, A.; Vargas, C.D.; Baud-Bovy, G.; Jacono, M.; Pozzo, T. Tactile perception during action observation. Exp. Brain Res. 2016, 234, 2585–2594. [Google Scholar] [CrossRef]
- Kaluga, E.; Straburzynska-Lupa, A.; Rostkowska, E. Hand-eye coordination, movement reaction time and hand tactile sensitivity depending on the practiced sports discipline. J. Sport Med. Phys. Fit. 2020, 60, 17–25. [Google Scholar] [CrossRef]
- Presta, V.; Vitale, C.; Ambrosini, L.; Gobbi, G. Stereopsis in Sports: Visual Skills and Visuomotor Integration Models in Professional and Non-Professional Athletes. Int. J. Environ. Res. Public Health 2021, 18, 11281. [Google Scholar] [CrossRef] [PubMed]
- Lidor, R.; Argov, E.; Daniel, S. An exploratory study of perceptual-motor abilities of women: Novice and skilled players of team handball. Percept. Mot. Ski. 1998, 86, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Przednowek, K.; Śliż, M.; Lenik, J.; Dziadek, B.; Cieszkowski, S.; Lenik, P.; Kopeć, D.; Wardak, K.; Przednowek, K.H. Psychomotor Abilities of Professional Handball Players. Int. J. Environ. Res. Public Health 2019, 16, 1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, J.; Jiménez, R.; Cárdenas, D.; Redondo, B.; García, J.A. Visual function, performance, and processing of basketball players vs. sedentary individuals. J. Sport Health Sci. 2020, 9, 587–594. [Google Scholar] [CrossRef]
- Zwierko, T.; Jedziniak, W.; Florkiewicz, B.; Stępiński, M.; Buryta, R.; Kostrzewa-Nowak, D.; Nowak, R.; Popowczak, M.; Woźniak, J. Oculomotor dynamics in skilled soccer players: The effects of sport expertise and strenuous physical effort. Eur. J. Sports Sci. 2019, 19, 612–620. [Google Scholar] [CrossRef]
- Rucci, M.; Poletti, M. Control and Functions of Fixational Eye Movements. Annu. Rev. Vis. Sci. 2015, 1, 499–518. [Google Scholar] [CrossRef] [Green Version]
- Jorge, J.; Diaz-Rey, A. Binocular Function Parameters in Elite Football Players. J. Binocul. Vis. Ocul. Motil. 2022, 72, 97–104. [Google Scholar]
- Srikantharajah, J.; Ellard, C. How central and peripheral vision influence focal and ambient processing during scene viewing. J. Vis. 2022, 22, 4. [Google Scholar] [CrossRef]
- Loschky, L.C.; Szaffarczyk, S.; Beugnet, C.; Young, M.E.; Boucart, M. The contributions of central and peripheral vision to scene-gist recognition with a 180° visual field. J. Vis. 2019, 19, 15. [Google Scholar] [CrossRef] [Green Version]
- Toscani, M.; Mamassian, P.; Valsecchi, M. Underconfidence in peripheral vision. J. Vis. 2021, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Witkovsky, P. Peripheral mechanisms of vision. Annu. Rev. Physiol. 1971, 33, 257–280. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.; Dobres, J.; Rosenholtz, R.; Reimer, B. More than the Useful Field: Considering peripheral vision in driving. Appl. Ergon. 2017, 65, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Roux-Sibilon, A.; Trouilloud, A.; Kauffmann, L.; Guyader, N.; Mermillod, M.; Peyrin, C. Influence of peripheral vision on object categorization in central vision. J. Vis. 2019, 19, 7. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.R.; Shekhar, K.; Yan, W.; Herrmann, D.; Sappington, A.; Bryman, G.S.; van Zyl, T.; Do, M.T.H.; Regev, A.; Sanes, J.R. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina. Cell 2019, 176, 1222–1237.e22. [Google Scholar] [CrossRef] [Green Version]
- Dakin, S.C.; Cass, J.; Greenwood, J.A.; Bex, P.J. Probabilistic, positional averaging predicts object-level crowding effects with letter-lik e stimuli. J. Vis. 2010, 10, 14. [Google Scholar] [CrossRef]
- Kalpadakis-Smith, A.V.; Tailor, V.K.; Dahlmann-Noor, A.H.; Greenwood, J.A. Crowding changes appearance systematically in peripheral, amblyopic, and developing vision. J. Vis. 2022, 22, 3. [Google Scholar] [CrossRef]
- Dräger, U.C.; Hubel, D.H. Studies of visual function and its decay in mice with hereditary retinal degeneration. J. Comp. Neurol. 1978, 180, 85–114. [Google Scholar] [CrossRef]
- Tan, N.Y.Q.; Tham, Y.C.; Koh, V.; Nguyen, D.Q.; Cheung, C.Y.; Aung, T.; Wong, T.Y.; Cheng, C.Y. The Effect of Testing Reliability on Visual Field Sensitivity in Normal Eyes: The Singapore Chinese Eye Study. Ophthalmology 2018, 125, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Vater, C.; Wolfe, B.; Rosenholtz, R. Peripheral vision in real-world tasks: A systematic review. Psychon. Bull. Rev. 2022, 29, 1531–1557. [Google Scholar] [CrossRef]
- Vater, C.; Kredel, R.; Hossner, E.J. Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion. J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 903–913. [Google Scholar] [CrossRef]
- Ryu, D.; Abernethy, B.; Mann, D.L.; Poolton, J.M.; Gorman, A.D. The role of central and peripheral vision in expert decision making. Perception 2013, 42, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.; Abernethy, B.; Mann, D.L.; Poolton, J.M. The contributions of central and peripheral vision to expertise in basketball: How blur helps to provide a clearer picture. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Nuthmann, A. How do the regions of the visual field contribute to object search in real-world scenes? Evidence from eye movements. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.J.; Castelhano, M.S. Peripheral guidance in scenes: The interaction of scene context and object content. J Exp Psychol Hum Percept Perform. 2014, 40, 2056–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadin, D.; Nyquist, J.B.; Lusk, K.E.; Corn, A.L.; Lappin, J.S. Peripheral vision of youths with low vision: Motion perception, crowding, and visual search. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5860–5868. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Schmidt, M.; Reer, R.; Braumann, K.-M. Peripheral Vision Tests in Sports: Training Effects and Reliability of Peripheral Perception Test. Int. J. Environ. Res. Public Health 2019, 16, 5001. [Google Scholar] [CrossRef] [Green Version]
- Twa, M.D. Sports and Visual Performance. Optom. Vis. Sci. 2021, 98, 667–668. [Google Scholar] [CrossRef]
- Murgia, M.; Agostini, T.; McCullagh, P. The Role of Auditory and Visual Information in Perceiving and Performing Complex Movements. Front. Psychol. 2019, 10, 2696. [Google Scholar] [CrossRef]
- Berencsi, A.; Ishihara, M.; Imanaka, K. The functional role of central and peripheral vision in the control of posture. Hum. Mov. Sci. 2005, 24, 689–709. [Google Scholar] [CrossRef]
- Vater, C. How selective attention affects the detection of motion changes with peripheral vision in MOT. Heliyon 2019, 5, e02282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vater, C.; Klostermann, A.; Kredel, R.; Hossner, E.J. Detecting motion changes with peripheral vision: On the superiority of fixating over smooth-pursuit tracking. Vis. Res. 2020, 171, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, A.; Lu, Z.L.; Huang, C.B.; Knight, E.; Ennis, R. Transitions between central and peripheral vision create spatial/temporal distortions: A hypothesis concerning the perceived break of the curveball. PLoS ONE 2010, 5, e13296. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.A.; Rogers, R.R.; Williams, T.D.; Marshall, M.R.; Moody, J.R.; Hensarling, R.W.; Ballmann, C.G. Effects of Protective American Football Headgear on Peripheral Vision Reaction Time and Visual Target Detection in Division I NCAA Football Players. Sports 2019, 7, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albonico, A.; Malaspina, M.; Bricolo, E.; Martelli, M.; Daini, R. Temporal dissociation between the focal and orientation components of spatial attention in central and peripheral vision. Acta Psychol. 2016, 171, 85–92. [Google Scholar] [CrossRef]
- Muiños, M.; Ballesteros, S. Peripheral vision and perceptual asymmetries in young and older martial arts athletes and nonathletes. Atten. Percept. Psychophys. 2014, 76, 2465–2476. [Google Scholar] [CrossRef] [PubMed]
- Rienhoff, R.; Baker, J.; Fischer, L.; Strauss, B.; Schorer, J. Field of vision influences sensory-motor control of skilled and less-skilled dart players. J. Sports Sci. Med. 2012, 11, 542–550. [Google Scholar]
- Heinen, T.M.; Vinken, P. Monocular and binocular vision in the performance of a complex skill. J. Sports Sci. Med. 2011, 10, 520–527. [Google Scholar]
- Panchuk, D.; Maloney, M. A Perception-Action Assessment of the Functionality of Peripheral Vision in Expert and Novice Australian Footballers. J. Sport Exerc. Psychol. 2022, 44, 327–334. [Google Scholar] [CrossRef]
- Meyer, J.; Fasold, F.; Schul, K.; Sonnenschein, M.; Klatt, S. The Defender’s Vision-Gaze Behavior of One-on-One Defenders in Basketball. J. Sport Exerc. Psychol. 2022, 44, 127–137. [Google Scholar] [CrossRef]
- Nascimento, H.; Alvarez-Peregrina, C.; Martinez-Perez, C.; Sánchez-Tena, M.Á. Vision in Futsal Players: Coordination and Reaction Time. Int. J. Environ. Res. Public Health 2021, 18, 9069. [Google Scholar] [CrossRef]
- Patel, D.R.; Pratt, H.D.; Greydanus, D.E. Adolescent growth, development, and psychosocial aspects of sports participation: An overview. State of the art reviews. Adolesc. Med. 1998, 9, 425–440. [Google Scholar] [PubMed]
- Bleidorn, W.; Arslan, R.C.; Denissen, J.J.; Rentfrow, P.J.; Gebauer, J.E.; Potter, J.; Gosling, S.D. Age and gender differences in self-esteem-A cross-cultural window. J. Pers. Soc. Psychol. 2016, 111, 396–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, P.; Iwanski, A. Emotion regulation from early adolescence to emerging adulthood and middle adulthood: Age differences, gender differences, and emotion-specific developmental variations. Int. J. Behav. Dev. 2014, 38, 182–194. [Google Scholar] [CrossRef]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sport Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.; Tiggemann, M. Gender differences in adolescent sport participation, teasing, self-objectification and body image concerns. J. Adolesc. 2011, 34, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; Patel, D.R.; Darmawan, D. Participation in sports in relation to adolescent growth and development. Transl. Pediatr. 2017, 6, 50–159. [Google Scholar] [CrossRef] [Green Version]
- Pearson, D.T.; Naughton, G.A.; Torode, M. Predictability of physiological testing and the role of maturation in talent identification for adolescent team sports. J. Sci. Med. Sport 2006, 9, 277–287. [Google Scholar] [CrossRef]
- Bernell Vision Disc. Available online: https://www.bernell.com/product/BCVDISC/Field-Tests (accessed on 12 February 2022).
- Fitlight System. Available online: https://www.fitlighttraining.com/products/fitlight-system (accessed on 12 February 2022).
- Theofilou, G.; Ladakis, I.; Mavroidi, C.; Kilintzis, V.; Mirachtsis, T.; Chouvarda, I.; Kouidi, E. The Effects of a Visual Stimuli Training Program on Reaction Time, Cognitive Function, and Fitness in Young Soccer Players. Sensors 2022, 22, 6680. [Google Scholar] [CrossRef]
- Badau, D.; Badau, A. Optimizing Reaction Time in Relation to Manual and Foot Laterality in Children Using the Fitlight Technological Systems. Sensors 2022, 22, 8785. [Google Scholar] [CrossRef]
- Prelević, M.; Dopsaj, M.; Stančin, S. Timing in Lower Limb Complex Movement Tests for DanceSport Athletes: Relation between FitLight Trainer and IMU Measurements. Sensors 2023, 23, 1456. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.T.; Pereira, L.A.; Alcaraz, P.E.; Comyns, T.M.; Azevedo, P.H.S.M.; Loturco, I. Change-of-Direction Ability, Linear Sprint Speed, and Sprint Momentum in Elite Female Athletes: Differences Between Three Different Team Sports. J. Strength Cond. Res. 2022, 36, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Badau, D.; Badau, A.; Ene-Voiculescu, C.; Larion, A.; Ene-Voiculescu, V.; Mihaila, I.; Fleancu, J.L.; Tudor, V.; Tifrea, C.; Cotovanu, A.S.; et al. The Impact of Implementing an Exergame Program on the Level of Reaction Time Optimization in Handball, Volleyball, and Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 5598. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, M.; Croix, M.S.; Svoboda, Z.; Elfmark, M.; Sikora, O.; Stastny, P. Gender and Age Related Differences in Leg Stiffness and Reactive Strength in Adolescent Team Sports Players. J. Hum. Kinet. 2020, 74, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.K.; Alhumaid, M.M.; Hamad, B.E. The Effect of Using Reactive Agility Exercises with the FITLIGHT Training System on the Speed of Visual Reaction Time and Dribbling Skill of Basketball Players. Sports 2022, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, F.; Campanella, M.; Bertollo, M.; Albuquerque, M.R.; Bonavolontà, V.; Perroni, F.; Baldari, C.; Guidetti, L.; Curzi, D. Acute Effects of Fitlight Training on Cognitive-Motor Processes in Young Basketball Players. Int. J. Environ. Res. Public Health 2023, 20, 817. [Google Scholar] [CrossRef]
- Cao, L.; Händel, B. Walking enhances peripheral visual processing in humans. PLoS Biol. 2019, 17, e3000511. [Google Scholar] [CrossRef] [Green Version]
- Klostermann, A.; Vater, C.; Kredel, R.; Hossner, E.J. Perception and Action in Sports. On the Functionality of Foveal and Peripheral Vision. Front. Sport Act. Living 2020, 1, 66. [Google Scholar] [CrossRef] [Green Version]
- Mańkowska, M.; Poliszczuk, T.; Poliszczuk, D.; Johne, M. Visual Perception and Its Effect on Reaction Time and Time-Movement Anticipation In Elite Female Basketball Players. Pol. J. Sport Tour. 2015, 22, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Schwab, S.; Memmert, D. The impact of a sports vision training program in youth field hockey players. J. Sports Sci. Med. 2012, 11, 624–631. [Google Scholar]
- Kunita, K.; Fujiwara, K. Influence of sports experience on distribution of pro-saccade reaction time under gap condition. Physiol. Anthropol. 2022, 41, 4. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Reer, R.; Braumann, K.M. On-Field Perceptual-Cognitive Training Improves Peripheral Reaction in Soccer: A Controlled Trial. Front. Psychol. 2020, 11, 1948. [Google Scholar] [CrossRef] [PubMed]
- Horníková, H.; Skala, F.; Zemková, E. Sport-specific differences in key performance factors among handball, basketball and table tennis players. Int. J. Comput. Sci. Sport 2023, 22, 31–41. [Google Scholar] [CrossRef]
- Šimonek, J.; Horička, P.; Hianik, J. The differences in acceleration, maximal speed and agility between soccer, basketball, volleyball and handball players. J. Hum. Sport Exerc. 2017, 12, 73–82. [Google Scholar] [CrossRef] [Green Version]
Test | Sports | Gender (no.) | XIt ± SD | XFt ± SD | ∆XFt-It | 95% CI Upper; Lower | t | p | d |
---|---|---|---|---|---|---|---|---|---|
Reaction time test with unilateral right visual stimulus (30 s) | Handball | M (76) | 17.971 ± 5.104 | 22.366 ± 6.409 | 4.394 | 4.672; 4.115 | 31.462 | 0.001 | 0.758 |
F (70) | 18.024 ± 6.412 | 22.628 ± 4.684 | 4.604 | 4.975; 4.431 | 32.281 | 0.001 | 0.819 | ||
General (146) | 17.996 ± 6.147 | 22.491 ± 4.631 | 4.495 | 4.981; 4.037 | 31.739 | 0.001 | 0.825 | ||
Basketball | M (72) | 16.716 ± 6.050 | 21.089 ± 5.241 | 4.373 | 4.693; 4.053 | 27.276 | 0.001 | 0.770 | |
F (68) | 16.892 ± 5.753 | 21.342 ± 6.732 | 4.450 | 4.821; 4.197 | 26.953 | 0.001 | 0.844 | ||
General (140) | 16.801 ± 5.849 | 21.211 ± 5.063 | 4.410 | 4.931; 3.873 | 25.956 | 0.001 | 0.806 | ||
Volleyball | M (64) | 16.555 ± 6.168 | 20.269 ± 7.244 | 3.714 | 4.041; 3.386 | 22.670 | 0.001 | 0.551 | |
F (62) | 16.703 ± 6.325 | 20.487 ± 5.916 | 3.784 | 4.268; 3.516 | 24.418 | 0.001 | 0.617 | ||
General (126) | 16.627 ± 6.201 | 20.376 ± 6.719 | 3.749 | 4.184; 3.158 | 23.018 | 0.001 | 0.579 |
Test | Sports | Gender (no.) | XIt ± SD | XFt ± SD | ∆XFt-It | 95% CI Upper; Lower | t | p | d |
---|---|---|---|---|---|---|---|---|---|
Reaction time test with unilateral left visual stimulus (30 s) | Handball | M (76) | 16.887 ± 4.161 | 20.436 ± 6.436 | 3.549 | 3.850; 3.247 | 23.479 | 0.001 | 0.654 |
F (70) | 16.947 ± 4.161 | 20.816 ± 5.723 | 4.069 | 4.327; 3.611 | 24.836 | 0.001 | 0.773 | ||
General (146) | 16.915 ± 4.581 | 20.618 ± 6.142 | 3.703 | 4.011; 3.461 | 23.215 | 0.001 | 0.683 | ||
Basketball | M (72) | 16.268 ± 6.950 | 19.776 ± 5.551 | 3.507 | 3.890; 3.124 | 18.283 | 0.001 | 0.557 | |
F (68) | 16.441 ± 6.372 | 20.297 ± 6.814 | 3.856 | 4.289; 3.318 | 19.913 | 0.001 | 0.584 | ||
General (140) | 16.352 ± 5.623 | 20.029 ± 6.368 | 3.677 | 4.461; 3,515 | 19,284 | 0.001 | 0.612 | ||
Volleyball | M (64) | 16.301 ± 7.005 | 19.238 ± 7.226 | 2.936 | 3.300; 2.572 | 16.112 | 0.001 | 0.412 | |
F (62) | 16.426 ± 6.471 | 19.629 ± 5.512 | 3.203 | 3.464; 2.781 | 17.582 | 0.001 | 0.532 | ||
General (126) | 16.362 ± 6.382 | 19.430 ± 5.435 | 3.068 | 3.748; 2.589 | 17,385 | 0.001 | 0.517 |
Test | Sports | Gender (no.) | XIt ± SD | XFt ± SD | ∆XFt-It | 95% CI Upper; Lower | t | p | d |
---|---|---|---|---|---|---|---|---|---|
Reaction time test with bilateral visual stimuli (30 s) | Handball | M (76) | 17.281 ± 6.145 | 20.887 ± 4.577 | 3.605 | 3.931; 3.279 | 22.045 | 0.001 | 0.665 |
F (70) | 18.014 ± 6.324 | 21.989 ± 5.376 | 3.975 | 4.412; 3.546 | 24.154 | 0.001 | 0.677 | ||
General (146) | 17.632 ± 5.369 | 21.415 ± 5.582 | 3.783 | 4.327; 3.267 | 22.894 | 0.001 | 0.690 | ||
Basketball | M (72) | 16.373 ± 5.058 | 20.300 ± 5.634 | 3.827 | 4.001; 3.252 | 19.330 | 0.001 | 0.714 | |
F (68) | 17.065 ± 5.822 | 21.121 ± 4.921 | 4.056 | 4.662; 3.417 | 18.382 | 0.001 | 0.752 | ||
General (140) | 16.709 ± 5.146 | 20.698 ± 5.572 | 3.989 | 4.759; 3.214 | 18,582 | 0.001 | 0.743 | ||
Volleyball | M (64) | 15.952 ± 6.946 | 19.079 ± 5.201 | 3.126 | 3.504; 2.749 | 16.577 | 0.001 | 0.509 | |
F (62) | 16.287 ± 6.428 | 19.539 ± 4.921 | 3.252 | 3.793; 2.817 | 17.921 | 0.001 | 0.568 | ||
General (126) | 16.116 ± 6.318 | 19.305 ± 5.047 | 3.189 | 3.647; 2.575 | 17.271 | 0.001 | 0.557 |
Test | Sports | Gender (no.) | XIt ± SD | XFt ± SD | ∆XFt-It | 95% CI Upper; Lower | t | p | d |
---|---|---|---|---|---|---|---|---|---|
Reaction time test with 6 Fitlights (1 min) | Handball | M (76) | 33.891 ± 7.276 | 38.914 ± 5.813 | 5.023 | 5.683; 4.612 | 44.314 | 0.001 | 0.762 |
F (70) | 34.571 ± 6.102 | 40.267 ± 6.879 | 5.696 | 6.121; 5.16 | 42.157 | 0.001 | 0.876 | ||
General (146) | 34.217 ± 5.877 | 39.562 ± 6.325 | 5.345 | 6.245; 5.045 | 41.744 | 0.001 | 0.875 | ||
Basketball | M (72) | 34.142 ± 8.714 | 40.256 ± 6.242 | 6.114 | 6.581; 5.478 | 42.285 | 0.001 | 0.806 | |
F (68) | 35.892 ± 8.143 | 42.214 ± 6.598 | 6.317 | 6.614; 5.772 | 47.155 | 0.001 | 0.853 | ||
General (140) | 34.992 ± 8.049 | 41.207 ± 6.355 | 6.215 | 6.589; 5.538 | 45.215 | 0.001 | 0.857 | ||
Volleyball | M (64) | 33.173 ± 8.085 | 37.594 ± 6.815 | 4.421 | 4.916; 4.027 | 37.276 | 0.001 | 0.591 | |
F (62) | 33.835 ± 8.253 | 38.585 ± 6.576 | 4.750 | 5.163; 4.217 | 40.263 | 0.001 | 0.636 | ||
General (126) | 33.498 ± 6.116 | 38.081 ± 5.325 | 4.583 | 5.205; 4.109 | 38.138 | 0.001 | 0.538 |
Tests | Gender | Test Session | SS | df | MS | F | p |
---|---|---|---|---|---|---|---|
Reaction time test with unilateral right visual stimulus (30 s) | M | It | 68.678 | 2 | 34.339 | 7.529 | 0.001 |
Ft | 156.460 | 2 | 78.230 | 15.097 | 0.001 | ||
F | It | 39.542 | 2 | 31.347 | 8.271 | 0.017 | |
Ft | 42.145 | 2 | 21.167 | 5.981 | 0.032 | ||
General | It | 139.348 | 2 | 69.674 | 15.699 | 0.001 | |
Ft | 289.673 | 2 | 144.836 | 27.997 | 0.001 | ||
Reaction time test with unilateral left visual stimulus (30 s) | M | It | 37.997 | 2 | 28.999 | 6.170 | 0.017 |
Ft | 40.842 | 2 | 20.421 | 3.515 | 0.032 | ||
F | It | 16.553 | 2 | 7.147 | 5.276 | 0.021 | |
Ft | 34.812 | 2 | 19.363 | 3.512 | 0.008 | ||
General | It | 36.645 | 2 | 18.323 | 4.424 | 0.013 | |
Ft | 95.418 | 2 | 47.709 | 8.204 | 0.001 | ||
Reaction time test with bilateral visual stimuli (30 s) | M | It | 45.651 | 2 | 22.825 | 3.891 | 0.022 |
Ft | 68.678 | 2 | 34.339 | 7.529 | 0.001 | ||
F | It | 64.784 | 2 | 32.392 | 7.818 | 0.001 | |
Ft | 110.767 | 2 | 55.384 | 9.134 | 0.001 | ||
General | It | 129.849 | 2 | 64.925 | 15.797 | 0.001 | |
Ft | 218.390 | 2 | 109.195 | 18.132 | 0.001 | ||
Reaction time test with 6 Fitlights (1 min) | M | It | 124.713 | 2 | 41.315 | 9.362 | 0.001 |
Ft | 167.426 | 2 | 68.251 | 8.1454 | 0.001 | ||
F | It | 131.518 | 2 | 44.368 | 7.745 | 0.004 | |
Ft | 129.526 | 2 | 52.386 | 9.694 | 0.001 | ||
General | It | 214.376 | 2 | 98.573 | 15.214 | 0.001 | |
Ft | 291.622 | 2 | 126.362 | 17.829 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badau, D.; Stoica, A.M.; Litoi, M.F.; Badau, A.; Duta, D.; Hantau, C.G.; Sabau, A.M.; Oancea, B.M.; Ciocan, C.V.; Fleancu, J.L.; et al. The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players. Bioengineering 2023, 10, 697. https://doi.org/10.3390/bioengineering10060697
Badau D, Stoica AM, Litoi MF, Badau A, Duta D, Hantau CG, Sabau AM, Oancea BM, Ciocan CV, Fleancu JL, et al. The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players. Bioengineering. 2023; 10(6):697. https://doi.org/10.3390/bioengineering10060697
Chicago/Turabian StyleBadau, Dana, Alina Mihaela Stoica, Marin Florin Litoi, Adela Badau, Daniel Duta, Cezar Gheorghe Hantau, Anca Maria Sabau, Bogdan Marian Oancea, Catalin Vasile Ciocan, Julien Leonard Fleancu, and et al. 2023. "The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players" Bioengineering 10, no. 6: 697. https://doi.org/10.3390/bioengineering10060697
APA StyleBadau, D., Stoica, A. M., Litoi, M. F., Badau, A., Duta, D., Hantau, C. G., Sabau, A. M., Oancea, B. M., Ciocan, C. V., Fleancu, J. L., & Gozu, B. (2023). The Impact of Peripheral Vision on Manual Reaction Time Using Fitlight Technology for Handball, Basketball and Volleyball Players. Bioengineering, 10(6), 697. https://doi.org/10.3390/bioengineering10060697