Objective Evaluation of Active Interactions between the Operator and Display Screen Equipment Using an Innovative Acquisition System
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foreman, J.; Salim, A.T.; Praveen, A.; Fonseka, D.; Ting, D.S.W.; Guang He, M.; Bourne, R.R.A.; Crowston, J.; Wong, T.Y.; Dirani, M. Association between digital smart device use and myopia: A systematic review and meta-analysis. Lancet Digit. Health 2021, 3, e806–e818. [Google Scholar] [CrossRef] [PubMed]
- Cail, F.; Aptel, M. Incidence of Stress and Psychosocial Factors on Musculoskeletal Disorders in CAD and Data Entry. Int. J. Occup. Saf. Ergon. 2005, 11, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tian, S.; Zou, D.; Zhang, H.; Pan, C.W. Screen time and health issues in Chinese school-aged children and adolescents: A systematic review and meta-analysis. BMC Public. Health 2022, 22, 810. [Google Scholar] [CrossRef] [PubMed]
- Kamøy, B.; Magno, M.; Nøland, S.T.; Moe, M.C.; Petrovski, G.; Vehof, J.; Utheim, T.P. Video display terminal use and dry eye: Preventive measures and future perspectives. Acta Ophthalmol. 2022, 100, 723–739. [Google Scholar] [CrossRef]
- Artime Ríos, E.M.; Sánchez Lasheras, F.; Suarez Sánchez, A.; Iglesias-Rodríguez, F.J.; Seguí Crespo, M.D.M. Prediction of Computer Vision Syndrome in Health Personnel by Means of Genetic Algorithms and Binary Regression Trees. Sensors 2019, 19, 2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; McGuinness, M.B.; Anderson, A.J.; Downie, L.E. Interventions for the Management of Computer Vision Syndrome: A Systematic Review and Meta-analysis. Ophthalmology 2022, 129, 1192–1215. [Google Scholar] [CrossRef] [PubMed]
- Waersted, M.; Hanvold, T.N.; Veiersted, K.B. Computer work and musculoskeletal disorders of the neck and upper extremity: A systematic review. BMC Musculoskelet. Disord. 2010, 11, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-Serrano, J.; García-Durán, S.; Ávila-Martín, G.; Fernández-Pérez, C.; Jiménez-Tamurejo, P.; Marín-Guerrero, A.C. Relationship between low back pain and screen time among schoolchildren. Rev. Esp. Salud Publica 2021, 95, e202110132. [Google Scholar] [PubMed]
- Malińska, M. Musculoskeletal disorders among computer operators. Med. Pract. 2019, 70, 511–521. [Google Scholar] [CrossRef]
- Hoe, V.C.; Urquhart, D.M.; Kelsall, H.L.; Zamri, E.N.; Sim, M.R. Ergonomic interventions for preventing work-related musculoskeletal disorders of the upper limb and neck among office workers. Cochrane Database Syst. Rev. 2018, 10, CD008570. [Google Scholar] [CrossRef]
- Gerr, F.; Monteilh, C.P.; Marcus, M. Keyboard use and musculoskeletal outcomes among computer users. J. Occup. Rehabil. 2006, 16, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Mork, R.; Falkenberg, H.K.; Fostervold, K.I.; Thorud, H.M.S. Visual and psychological stress during computer work in healthy, young females-physiological responses. Int. Arch. Occup. Environ. Health 2018, 91, 811–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNI EN ISO 9241-5:200; Ergonomic Requirements for Office Work with Visual Display Terminals (VDTs)—Workstation Layout and Postural Requirements. UNI-Italian National Standards Body: Milan, Italy, 2001.
- UNI EN ISO 10075-1:2018; Ergonomic Principles Related to Mental Workload—Part 1: General Issues and Concepts, Terms and Definitions. UNI-Italian National Standards Body: Milan, Italy, 2018.
- UNI 11190:2006; Office Furniture—Tables and Desks for Video Display Terminals (VDT)—Reflectance Requirement. UNI-Italian National Standards Body: Milan, Italy, 2006.
- UNI 11165:2005; Light and Lighting—Interior Lighting—Evaluation of the Discomfort Glare Using the Glare Rating Method (UGR). UNI-Italian National Standards Body: Milan, Italy, 2005.
- Italian Legslative Decree n. 81, 9 April 2008. Ordinary Supplemet to GU n-101, 30 April 2008. Italy. Available online: http://www.cip.srl/documenti/Testo%20Unico%20Salute%20e%20Sicurezza%20sul%20lavoro%20-%20D.lgs.%2081-2008.pdf (accessed on 11 May 2023).
- Baker, N.A.; Cham, R.; Cidboy, E.H.; Cook, J.; Redfern, M.S. Kinematics of the fingers and hands during computer keyboard use. Clin. Biomech. 2007, 22, 34–43. [Google Scholar] [CrossRef]
- Morelli, S.; Grigioni, M.; Ferrarin, M.; Boschetto, A.; Brocco, M.; Maccioni, G.; Giansanti, D. A monitoring tool of workers’ activity at Video Display Terminals for investigating VDT-related risk of musculoskeletal disorders. Comput. Methods Programs Biomed. 2012, 107, 294–307. [Google Scholar] [CrossRef]
- Dennerlein, J.T.; Johnson, P.W. Different computer tasks affect the exposure of the upper extremity to biomechanical risk factors. Ergonomics 2006, 49, 45–61. [Google Scholar] [CrossRef]
- Blackstone, J.M.; Karr, C.; Camp, J.; Johnson, P.W. Physical exposure differences between children and adults when using standard and small computer input devices. Ergonomics 2008, 51, 872–889. [Google Scholar] [CrossRef]
- Simoneau, G.G.; Marklin, R.W.; Berman, J.E. Effect of computer keyboard slope on wrist position and forearm electromyography of typists without musculoskeletal disorders. Phys. Ther. 2003, 83, 816–830. [Google Scholar] [CrossRef] [Green Version]
- Won, E.J.; Johnson, P.W.; Punnett, L.; Dennerlein, J.T. Upper extremity biomechanics in computer tasks differ by gender. J. Electromyogr. Kinesiol. 2009, 19, 428–436. [Google Scholar] [CrossRef]
- Faucett, J.; Rempel, D. Musculoskeletal symptoms related to video display terminal use: An analysis of objective and subjective exposure estimates. AAOHN J. 1996, 44, 33–39. [Google Scholar] [CrossRef]
- K Kaye, L.; Orben, A.; A Ellis, D.; C Hunter, S.; Houghton, S. The Conceptual and Methodological Mayhem of “Screen Time”. Int. J. Environ. Res. Public Health 2020, 17, 3661. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, R.; Chamberlain, D.; Richman, D.; Oreskovic, N.; Taveras, E. Wearable sensor and algorithm for automated measurement of screen time. In Proceedings of the 2016 IEEE Wireless Health (WH), Bethesda, MD, USA, 25–27 October 2016; pp. 1–8. [Google Scholar]
- Cornoldi, C.; Candela, M. Prove di Lettura e Scrittura MT-16-19: Batteria per la Verifica degli Apprendimenti e la Diagnosi di Dislessia e Disortografia; Erickson: Portland, OR, USA, 2022; p. 88. [Google Scholar]
- Zoccolotti, P.; Angelelli, P.; Judica, A.; Luzzatti, C. I Disturbi Evolutivi di Lettura e Scrittura. Manuale per la Valutazione; Carocci: Roma, Italy, 2005. [Google Scholar]
- Zimmermann, P.; van Zomeren, A.; Leclercq, M. Applied Neuropsychology of Attention: Theory, Diagnosis and Rehabilitation, 1st ed.; Psychology Press: London, UK, 2002. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.; Vilstrup, I.; Lassen, C.F.; Kryger, A.I.; Thomsen, J.F.; Andersen, J.H. Validity of questionnaire self-reports on computer, mouse and keyboard usage during a four-week period. Occup. Environ. Med. 2007, 64, 541–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, R.; Terranova, C.O.; Trost, S.G. Measurement of screen time among young children aged 0-6 years: A systematic review. Obes. Rev. 2021, 22, e13260. [Google Scholar] [CrossRef]
- Li, X.; Holiday, S.; Cribbet, M.; Bharadwaj, A.; White, S.; Sazonov, E.; Gan, Y. Non-Invasive Screen Exposure Time Assessment Using Wearable Sensor and Object Detection. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; Volume 2022, pp. 4917–4920. [Google Scholar] [CrossRef]
- Walker-Bone, K.; Palmer, K.T.; Reading, I.; Coggon, D.; Cooper, C. Prevalence and impact of musculoskeletal disorders of the upper limb in the general population. Arthritis Rheum. 2004, 51, 642–651. [Google Scholar] [CrossRef]
- McAuliffe, J.A. Tendon disorders of the hand and wrist. J. Hand Surg. Am. 2010, 35, 846–853. [Google Scholar] [CrossRef]
- Zirek, E.; Mustafaoglu, R.; Yasaci, Z.; Griffiths, M.D. A systematic review of musculoskeletal complaints, symptoms, and pathologies related to mobile phone usage. Musculoskelet. Sci. Pract. 2020, 49, 102196. [Google Scholar] [CrossRef]
- Urwin, M.; Symmons, D.; Allison, T.; Brammah, T.; Busby, H.; Roxby, M.; Simmons, A.; Williams, G. Estimating the burden of musculoskeletal disorders in the community: The comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann. Rheum. Dis. 1998, 57, 649–655. [Google Scholar] [CrossRef]
- Burbank, K.M.; Stevenson, J.H.; Czarnecki, G.R.; Dorfman, J. Chronic shoulder pain: Part II. Treatment. Am. Fam. Physician 2008, 77, 493–497. [Google Scholar]
- Safiri, S.; Kolahi, A.A.; Hoy, D.; Buchbinder, R.; Mansournia, M.A.; Bettampadi, D.; Ashrafi-Asgarabad, A.; Almasi-Hashiani, A.; Smith, E.; Sepidarkish, M.; et al. Global, regional, and national burden of neck pain in the general population, 1990–2017: Systematic analysis of the Global Burden of Disease Study 2017. BMJ 2020, 368, m791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, A.; Yung, N.; Auinger, P.; Venuto, C.; Glidden, A.; Macklin, E.; Omberg, L.; Schwarzschild, M.A.; Dorsey, E.R. A Smartphone Application as an Exploratory Endpoint in a Phase 3 Parkinson’s Disease Clinical Trial: A Pilot Study. Digit. Biomark. 2022, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chico Garcia, J.; Monreal, E.; Sainz de la Maza Cantero, S.; Rodriguez-Jorge, F.; Sainz-Amo, R.; Villar, L.; Masjuan, J.; Costa-Frossard França, L. Tapping speed in smartphone is useful for detection of progressive multiple sclerosis. Mult. Scler. J. 2022, 28, 61. [Google Scholar]
- Lam, K.H.; Twose, J.; Lissenberg-Witte, B.; Licitra, G.; Meijer, K.; Uitdehaag, B.; De Groot, V.; Killestein, J. The Use of Smartphone Keystroke Dynamics to Passively Monitor Upper Limb and Cognitive Function in Multiple Sclerosis: Longitudinal Analysis. J. Med. Internet Res. 2022, 24, e37614. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.H.; Leow, A.; Ross, M.K.; DeLuca, J.; Chiaravalloti, N.; Costa, S.L.; Genova, H.M.; Weber, E.; Hussain, F.; Demos, A.P. Associations between smartphone keystroke dynamics and cognition in MS. Digit. Health 2022, 8, 20552076221143234. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.K.; Demos, A.P.; Zulueta, J.; Piscitello, A.; Langenecker, S.A.; McInnis, M.; Ajilore, O.; Nelson, P.C.; Ryan, K.A.; Leow, A. Naturalistic smartphone keyboard typing reflects processing speed and executive function. Brain Behav. 2021, 11, e2363. [Google Scholar] [CrossRef] [PubMed]
Neuropsychological Test | Median | Min–Max | Out of Range Values (%) |
---|---|---|---|
MoCa. Score | 27 | 23–30 | 1/40 (2.5%) |
TEA for selective auditory attention, reaction time, s | 654 | 446–806 | 8/40 (20%) |
TEA for visual attention, reaction time, s | 786 | 659–1009 | 0/40 |
TEA, error of commission, n° | 1 | 0–14 | 4/40 (10%) |
TEA, Error of omission, n° | 1 | 0–8 | 4/40(10%) |
Word reading test duration, s | 59 | 44–109 | 4/40 (10%) |
Word reading test, error of commission, n° | 1 | 0–3 | 0/40 |
Nonword reading test, s | 53 | 36–97 | 4/40 (10%) |
Nonword reading test, errors of commission, n° | 1 | 0–6 | 1/40 (2.5%) |
Tasks/Parameters | Median (IQR) | Min–Max |
---|---|---|
READ | ||
Session duration, s, sy | 163 (156–176) | 142–217 |
Oral reading aloud, s, ex | 147 (142–154) | 134–206 |
Screen fixation, s, sy | 159 (151–174) | 110–215 |
COPY | ||
Session duration, s, sy | 1518 (1302.5–1930) | 821–6212 |
Screen fixation (1), s, sy | 1261 (868–1633) | 108–4413 |
Mouse activity (2), s, sy | 286 (164–431) | 61–2367 |
Keyboard activity (3), s, sy | 998 (916–1110) | 684–1754 |
(1) OR (2)OR (3), s, sy | 1539 (1246–1837) | 819–4868 |
(1) & (2) OR (1) & (3), s, sy | 1044 (512.2–1287) | 2–2722 |
(1) & (2) & (3), s, sy | 15.5 (7–31) | 0–70 |
Copying, errors (incorrectly copied words), no, ex | 9 (5–20) | 2–50 |
COPY Task, Activity Times, s | Session Duration | Screen Fixation (1) | Mouse Activity (2) | Keyboard Activity (3) | (1) OR (2) OR (3) | (1) & (2) & (3) |
---|---|---|---|---|---|---|
Screen fixation (1) | 0.52 *** | |||||
Mouse activity (2) | 0.93 *** | 0.46 * | ||||
Keyboard activity (3) | 0.90 *** | 0.48 * | 0.70 *** | |||
(1) OR (2) OR (3) | 0.97 *** | 0.70 *** | 0.90 *** | 0.87 *** | ||
(1) & (2) & (3) | 0.50 *** | 0.67 *** | 0.58 *** | 0.39 * | 0.60 *** | |
(1) & (2) OR (1) & (3) | 0.37 * | 0.97 *** | 0.36 * | 0.34 * | 00.57 *** | 0.67 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Palma, G.; Sala, E.; Rubino, S.; Dalola, S.; Ferrari, M.; Marioli, D.; Apostoli, P.; Tomasi, C.; Righetti, F.; Mattioli, F.; et al. Objective Evaluation of Active Interactions between the Operator and Display Screen Equipment Using an Innovative Acquisition System. Bioengineering 2023, 10, 686. https://doi.org/10.3390/bioengineering10060686
De Palma G, Sala E, Rubino S, Dalola S, Ferrari M, Marioli D, Apostoli P, Tomasi C, Righetti F, Mattioli F, et al. Objective Evaluation of Active Interactions between the Operator and Display Screen Equipment Using an Innovative Acquisition System. Bioengineering. 2023; 10(6):686. https://doi.org/10.3390/bioengineering10060686
Chicago/Turabian StyleDe Palma, Giuseppe, Emma Sala, Sofia Rubino, Simone Dalola, Marco Ferrari, Daniele Marioli, Pietro Apostoli, Cesare Tomasi, Francesca Righetti, Flavia Mattioli, and et al. 2023. "Objective Evaluation of Active Interactions between the Operator and Display Screen Equipment Using an Innovative Acquisition System" Bioengineering 10, no. 6: 686. https://doi.org/10.3390/bioengineering10060686
APA StyleDe Palma, G., Sala, E., Rubino, S., Dalola, S., Ferrari, M., Marioli, D., Apostoli, P., Tomasi, C., Righetti, F., Mattioli, F., & Ferrari, V. (2023). Objective Evaluation of Active Interactions between the Operator and Display Screen Equipment Using an Innovative Acquisition System. Bioengineering, 10(6), 686. https://doi.org/10.3390/bioengineering10060686