Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants
Abstract
:1. Introduction
- 1.
- A straightforward and universal algorithm is proposed to optimize EEG channels for improved universality across participants.
- 2.
- The raw data are used to verify the effectiveness of the proposed algorithm in both individuals and populations.
- 3.
- This method is helpful in significantly reducing redundant channels, solving the problem of channel selection diversity, and contributing to the development of low-cost BCI.
2. Materials and Methods
2.1. Datasets
2.1.1. Main Dataset
2.1.2. Supplemental Dataset
2.2. Proposed SLR-Based EEG Channel Optimization Algorithm
2.2.1. Channel Optimization
Algorithm 1 Individual analysis |
input: individual weight vector of participants output: the ranked channels of participants separately
|
Algorithm 2 Group analysis |
input: weight vector of participant group output: the ranked channels of the participant group
|
2.2.2. Evaluation of Channel Optimization
2.2.3. Verification of CCS-Based Channel Selection Method
Algorithm 3 The analysis of CCS in the participant group |
input: object EEG data of the participants output: the ranked channels of the participant group
|
3. Results
4. Discussion
4.1. Comparison of the SLR-Based EEG Channel Optimization Algorithm and CCS in the Group Analysis
4.2. Performance of the Proposed Algorithm in Supplemental Datasets
4.3. Optimization Performance in the Individuals and the Participant Group
4.4. Impact of Different Counting Intervals on the Proposed Algorithm in Group Analysis
4.5. Spatial Distribution of the Weight Count Values and Related Neurophysiological Significance
4.6. Robustness of Proposed Algorithm
4.7. Latest Technologies for EEG Channel Selection and Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shih, J.J.; Krusienski, D.J.; Wolpaw, J.R. Brain-Computer Interfaces in Medicine. Mayo Clin. Proc. 2012, 87, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef] [PubMed]
- Min, B.K.; Marzelli, M.J.; Yoo, S.S. Neuroimaging-based approaches in the brain–computer interface. Trends Biotechnol. 2010, 28, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.V.; Wong, Y.T. Neurobionics and the brain–computer interface: Current applications and future horizons. Med. J. Aust. 2017, 206, 363–368. [Google Scholar] [CrossRef]
- Zander, T.O.; Kothe, C.; Welke, S.; Rötting, M. Utilizing secondary input from passive brain–computer interfaces for enhancing human-machine interaction. In Proceedings of the Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience: 5th International Conference, FAC 2009, San Diego, CA, USA, 19–24 July 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 759–771. [Google Scholar]
- Farwell, L.A.; Richardson, D.C.; Richardson, G.M.; Furedy, J.J. Brain fingerprinting classification concealed information test detects US Navy military medical information with P300. Front. Neurosci. 2014, 8, 410. [Google Scholar] [CrossRef]
- Brunner, C.; Birbaumer, N.; Blankertz, B.; Guger, C.; Kübler, A.; Mattia, D.; Millán, J.d.R.; Miralles, F.; Nijholt, A.; Opisso, E.; et al. BNCI Horizon 2020: Towards a roadmap for the BCI community. Brain-Comput. Interfaces 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Hong, X.; Lu, Z.K.; Teh, I.; Nasrallah, F.A.; Teo, W.P.; Ang, K.K.; Phua, K.S.; Guan, C.; Chew, E.; Chuang, K.H. Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: A preliminary study. Sci. Rep. 2017, 7, 9222. [Google Scholar] [CrossRef]
- Johnson, N.N.; Carey, J.; Edelman, B.J.; Doud, A.; Grande, A.; Lakshminarayan, K.; He, B. Combined rTMS and virtual reality brain–computer interface training for motor recovery after stroke. J. Neural Eng. 2018, 15, 016009. [Google Scholar] [CrossRef]
- Huang, H.; Xie, Q.; Pan, J.; He, Y.; Wen, Z.; Yu, R.; Li, Y. An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Trans. Affect. Comput. 2019, 12, 832–842. [Google Scholar] [CrossRef]
- Pais-Vieira, M.; Lebedev, M.; Kunicki, C.; Wang, J.; Nicolelis, M.A. A brain-to-brain interface for real-time sharing of sensorimotor information. Sci. Rep. 2013, 3, 1319. [Google Scholar] [CrossRef]
- Rao, R.P.; Stocco, A.; Bryan, M.; Sarma, D.; Youngquist, T.M.; Wu, J.; Prat, C.S. A direct brain-to-brain interface in humans. PLoS ONE 2014, 9, e111332. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Stocco, A.; Losey, D.M.; Abernethy, J.A.; Prat, C.S.; Rao, R.P. BrainNet: A multi-person brain-to-brain interface for direct collaboration between brains. Sci. Rep. 2019, 9, 6115. [Google Scholar] [CrossRef] [PubMed]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Bonelli, S.; Golfetti, A.; Pozzi, S.; Imbert, J.P.; Granger, G.; Benhacene, R.; et al. Adaptive automation triggered by EEG-based mental workload index: A passive brain–computer interface application in realistic air traffic control environment. Front. Hum. Neurosci. 2016, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.S.; Wang, Y.T.; Lin, C.T.; Jung, T.P. Toward drowsiness detection using non-hair-bearing EEG-based brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 400–406. [Google Scholar] [CrossRef]
- Wu, D.; Lance, B.J.; Lawhern, V.J.; Gordon, S.; Jung, T.P.; Lin, C.T. EEG-based user reaction time estimation using Riemannian geometry features. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2157–2168. [Google Scholar] [CrossRef]
- Vourvopoulos, A.; Pardo, O.M.; Lefebvre, S.; Neureither, M.; Saldana, D.; Jahng, E.; Liew, S.L. Effects of a brain–computer interface with virtual reality (VR) neurofeedback: A pilot study in chronic stroke patients. Front. Hum. Neurosci. 2019, 13, 210. [Google Scholar] [CrossRef]
- LaFleur, K.; Cassady, K.; Doud, A.; Shades, K.; Rogin, E.; He, B. Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain–computer interface. J. Neural Eng. 2013, 10, 046003. [Google Scholar] [CrossRef]
- Singh, A.K.; Wang, Y.K.; King, J.T.; Lin, C.T. Extended interaction with a BCI video game changes resting-state brain activity. IEEE Trans. Cogn. Dev. Syst. 2020, 12, 809–823. [Google Scholar] [CrossRef]
- Choi, B.; Jo, S. A low-cost EEG system-based hybrid brain–computer interface for humanoid robot navigation and recognition. PLoS ONE 2013, 8, e74583. [Google Scholar] [CrossRef]
- Spataro, R.; Chella, A.; Allison, B.; Giardina, M.; Sorbello, R.; Tramonte, S.; Guger, C.; La Bella, V. Reaching and grasping a glass of water by locked-in ALS patients through a BCI-controlled humanoid robot. Front. Hum. Neurosci. 2017, 11, 68. [Google Scholar] [CrossRef]
- Baig, M.Z.; Aslam, N.; Shum, H.P. Filtering techniques for channel selection in motor imagery EEG applications: A survey. Artif. Intell. Rev. 2020, 53, 1207–1232. [Google Scholar] [CrossRef]
- Faller, J.; Scherer, R.; Friedrich, E.V.; Costa, U.; Opisso, E.; Medina, J.; Müller-Putz, G.R. Non-motor tasks improve adaptive brain–computer interface performance in users with severe motor impairment. Front. Neurosci. 2014, 8, 320. [Google Scholar] [CrossRef]
- Lazar, C.; Taminau, J.; Meganck, S.; Steenhoff, D.; Coletta, A.; Molter, C.; de Schaetzen, V.; Duque, R.; Bersini, H.; Nowe, A. A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 1106–1119. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, P.E.; Nikulin, M.S. A guide to Chi-Squared Testing; John Wiley & Sons: Hoboken, NJ, USA, 1996; Volume 280. [Google Scholar]
- Pudil, P.; Novovičová, J.; Kittler, J. Floating search methods in feature selection. Pattern Recognit. Lett. 1994, 15, 1119–1125. [Google Scholar] [CrossRef]
- Tang, C.; Gao, T.; Li, Y.; Chen, B. EEG channel selection based on sequential backward floating search for motor imagery classification. Front. Neurosci. 2022, 16, 1045851. [Google Scholar] [CrossRef]
- Davis, L. Handbook of Genetic Algorithms; Thomson Publishing Group: Singapore, 1991. [Google Scholar]
- Liu, H.; Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 2005, 17, 491–502. [Google Scholar]
- Chapelle, O.; Keerthi, S.S. Multi-Class Feature Selection with Support Vector Machines; American Statistical Association: Alexandria, VA, USA, 2008; Volume 58. [Google Scholar]
- Romero, E.; Sopena, J.M. Performing feature selection with multilayer perceptrons. IEEE Trans. Neural Netw. 2008, 19, 431–441. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Gao, X. Common spatial pattern method for channel selelction in motor imagery based brain–computer interface. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 5392–5395. [Google Scholar]
- He, L.; Yu, Z.; Gu, Z.; Li, Y. Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals. In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 2353–2356. [Google Scholar]
- He, L.; Hu, Y.; Li, Y.; Li, D. Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG. Neurocomputing 2013, 121, 423–433. [Google Scholar] [CrossRef]
- Jin, J.; Miao, Y.; Daly, I.; Zuo, C.; Hu, D.; Cichocki, A. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw. 2019, 118, 262–270. [Google Scholar] [CrossRef]
- Roy, S.; Rathee, D.; McCreadie, K.; Prasad, G. Channel Selection Improves MEG-based Brain-Computer Interface. In Proceedings of the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco, CA, USA, 20–23 March 2019. [Google Scholar]
- Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Pawan; Dhiman, R. Electroencephalogram channel selection based on pearson correlation coefficient for motor imagery–brain–computer interface. Meas. Sens. 2023, 25, 100616. [Google Scholar] [CrossRef]
- Affes, A.; Mdhaffar, A.; Triki, C.; Jmaiel, M.; Freisleben, B. Personalized attention-based EEG channel selection for epileptic seizure prediction. Expert Syst. Appl. 2022, 206, 117733. [Google Scholar] [CrossRef]
- Yamashita, O.; Sato, M.a.; Yoshioka, T.; Tong, F.; Kamitani, Y. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns. NeuroImage 2008, 42, 1414–1429. [Google Scholar] [CrossRef]
- Ganesh, G.; Nakamura, K.; Saetia, S.; Tobar, A.M.; Yoshida, E.; Ando, H.; Yoshimura, N.; Koike, Y. Utilizing sensory prediction errors for movement intention decoding: A new methodology. Sci. Adv. 2018, 4, eaaq0183. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.W.; Miao, R.; Deng, Z.Y.; Lu, Y.Y.; Liang, Y.; Huang, L. Sparse Logistic Regression With L 1/2 Penalty for Emotion Recognition in Electroencephalography Classification. Front. Neuroinform. 2020, 14, 29. [Google Scholar] [CrossRef]
- Shi, Y.; Ganesh, G.; Ando, H.; Koike, Y.; Yoshida, E.; Yoshimura, N. Galvanic Vestibular Stimulation-Based Prediction Error Decoding and Channel Optimization. Int. J. Neural Syst. 2021, 31, 2150034. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, B.; Shi, Y.; Yoshimura, N.; Koike, Y. Correntropy-based logistic regression with automatic relevance determination for robust sparse brain activity decoding. IEEE Trans. Biomed. 2023, 1–14. [Google Scholar] [CrossRef]
- Miyawaki, Y.; Uchida, H.; Yamashita, O.; Sato, M.a.; Morito, Y.; Tanabe, H.C.; Sadato, N.; Kamitani, Y. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 2008, 60, 915–929. [Google Scholar] [CrossRef]
- Ryali, S.; Supekar, K.; Abrams, D.A.; Menon, V. Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 2010, 51, 752–764. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, L.; Song, S.; Wen, X.; Zhao, X.; Long, Z. Euler elastica regularized logistic regression for whole-brain decoding of fMRI data. IEEE Trans. Biomed. Eng. 2017, 65, 1639–1653. [Google Scholar] [CrossRef]
- Morioka, H.; Kanemura, A.; Morimoto, S.; Yoshioka, T.; Oba, S.; Kawanabe, M.; Ishii, S. Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information. Neuroimage 2014, 90, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, N.; Nishimoto, A.; Belkacem, A.N.; Shin, D.; Kambara, H.; Hanakawa, T.; Koike, Y. Decoding of covert vowel articulation using electroencephalography cortical currents. Front. Neurosci. 2016, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, J.; Ye, J. Large-scale sparse logistic regression. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; pp. 547–556. [Google Scholar]
- Al-jabery, K.K.; Obafemi-Ajayi, T.; Olbricht, G.R.; Wunsch, I.I. DC 9-Data analysis and machine learning tools in MATLAB and Python. In Computational Learning Approaches to Data Analytics in Biomedical Applications; Al-jabery, K.K., Obafemi-Ajayi, T., Olbricht, G.R., Wunsch, D.C., II, Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 231–290. [Google Scholar] [CrossRef]
- Palidis, D.J.; Cashaback, J.G.; Gribble, P.L. Neural signatures of reward and sensory error feedback processing in motor learning. J. Neurophysiol. 2019, 121, 1561–1574. [Google Scholar] [CrossRef]
- Rullmann, M.; Preusser, S.; Pleger, B. Prefrontal and posterior parietal contributions to the perceptual awareness of touch. Sci. Rep. 2019, 9, 16981. [Google Scholar] [CrossRef]
- Clark, I.; Biscay, R.; Echeverría, M.; Virués, T. Multiresolution decomposition of non-stationary EEG signals: A preliminary study. Comput. Biol. Med. 1995, 25, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Mahamune, R.; Laskar, S.H. An automatic channel selection method based on the standard deviation of wavelet coefficients for motor imagery based brain–computer interfacing. Int. J. Imaging Syst. Technol. 2023, 33, 714–728. [Google Scholar] [CrossRef]
- Lin, X.; Chen, J.; Ma, W.; Tang, W.; Wang, Y. EEG emotion recognition using improved graph neural network with channel selection. Comput. Methods Programs Biomed. 2023, 231, 107380. [Google Scholar] [CrossRef]
- Niu, B.; Liang, G.; Tao, B.; Fu, C.; Geng, S.; Wang, Y.; Xue, B. Channel Selection for EEG Emotion Recognition via an Enhanced Firefly Algorithm with Brightness-Distance Attraction. In Proceedings of the International Conference on Machine Learning for Cyber Security, Guangzhou, China, 2–4 December 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 182–196. [Google Scholar]
Left/right MI task | Full | Top 50% | Top 25% |
---|---|---|---|
Group analysis | 86.63 (±4.93), 10 | 86.91 (±5.27), 12 | 87.00 (±5.22), 16 |
Commonly optimized channels among individuals | 86.09 (±5.21), 10 | 86.50 (±5.17), 10 | 86.39 (±5.35), 10 |
Front/back MI task | Full | Top 50% | Top 25% |
Group analysis | 81.91 (±4.28), 3 | 81.87 (±4.12), 3 | 82.59 (±4.11), 3 |
Commonly optimized channels among individuals | 81.42 (±4.26), 3 | 81.14 (±4.97), 3 | 81.12 (±5.07), 3 |
Algorithm Name | Experiment Category | No. Participants | No. Original Channels | No. Retained Channels | Ratio of Removed Channels | Universality Discussion |
---|---|---|---|---|---|---|
PCC-WPD | MI | 2 | 59 | 14 | 76.27% | No |
stdWC | MI | 9 | 22 | 17.22 | 21.72% | No |
CSGNN | Emotion | 32 | 32 | 25–26 | 20% | No |
EFA | Emotion | 32 | 32 | 22 | 31.25% | No |
SLRCO | MI | 10 | 64 | 3/10 | 84.38%/95.31% | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Li, Y.; Koike, Y. Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants. Bioengineering 2023, 10, 664. https://doi.org/10.3390/bioengineering10060664
Shi Y, Li Y, Koike Y. Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants. Bioengineering. 2023; 10(6):664. https://doi.org/10.3390/bioengineering10060664
Chicago/Turabian StyleShi, Yuxi, Yuanhao Li, and Yasuharu Koike. 2023. "Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants" Bioengineering 10, no. 6: 664. https://doi.org/10.3390/bioengineering10060664
APA StyleShi, Y., Li, Y., & Koike, Y. (2023). Sparse Logistic Regression-Based EEG Channel Optimization Algorithm for Improved Universality across Participants. Bioengineering, 10(6), 664. https://doi.org/10.3390/bioengineering10060664