Transcriptome Analysis and Identification of Sesquiterpene Synthases in Liverwort Jungermannia exsertifolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and RNA Purification
2.2. Extraction and Analysis of Essential Oils from Jungermannia exsertifolia
2.3. cDNA Library Construction and BGISEQ-500 Sequencing
2.4. De Novo Assembly and Functional Annotation Analysis of Unigenes
2.5. Selection and Phylogenetic Analysis of Candidate JeSTSs
2.6. Functional Characterization of JeSTSs In Vitro
2.7. Heterologous Expression of JeSTSs in Saccharomyces cerevisiae
3. Results
3.1. Chemical Composition of Essential Oils from Jungermannia exsertifolia
3.2. RNA Sequencing and Transcriptome Assembly
Sample | Total Length | Mean Length | Total Number | GC (%) | N50 a | N70 b | N90 c |
---|---|---|---|---|---|---|---|
J1 | 152,809,976 | 939 | 162,648 | 48.64 | 2004 | 982 | 320 |
J2 | 101,978,767 | 863 | 118,139 | 48.97 | 1685 | 838 | 309 |
All unigenes | 239,995,006 | 933 | 257,133 | 48.72 | 1921 | 973 | 322 |
3.3. Functional Annotation of Transcriptome
3.4. Sequence Information of Candidate JeSTSs
3.5. Functional Identification of JeSTSs In Vitro
3.6. Heterologous Expression of JeSTSs in Saccharomyces cerevisiae
4. Discussion
4.1. Biosynthetic Genes of Sesquiterpene Backbone for Jungermannia exsertifolia
4.2. Functional Identification and Heterologous Expression of JeSTSs
4.3. Evolutionary Inferences of JeSTSs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, Y.L.; Li, L.; Wang, B.; Chen, Z.; Knoop, V.; Groth-Malonek, M.; Dombrovska, O.; Lee, J.; Kent, L.; Rest, J.; et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl. Acad. Sci. USA 2006, 103, 15511–15516. [Google Scholar] [CrossRef]
- Chen, F.; Ludwiczuk, A.; Wei, G.; Chen, X.; Crandall-Stotler, B.; Bowman, J.L. Terpenoid Secondary Metabolites in Bryophytes: Chemical Diversity, Biosynthesis and Biological Functions. Crit. Rev. Plant Sci. 2018, 37, 210–231. [Google Scholar] [CrossRef]
- Asakawa, Y. Liverworts-potential source of medicinal compounds. Curr. Pharm. Des. 2008, 14, 3067–3088. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, Y.; Ludwiczuk, A. Chemical Constituents of Bryophytes: Structures and Biological Activity. J. Nat. Prod. 2018, 81, 641–660. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.X. Chemistry and Biology of Bryophytes; Beijing Science and Technology Press: Beijing, China, 2006; p. 363. ISBN 7-5304-3229-X. [Google Scholar]
- Gilabert, M.; Marcinkevicius, K.; Andujar, S.; Schiavone, M.; Arena, M.E.; Bardon, A. Sesqui- and triterpenoids from the liverwort Lepidozia chordulifera inhibitors of bacterial biofilm and elastase activity of human pathogenic bacteria. Phytomedicine 2015, 22, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Pichersky, E. More is better: The diversity of terpene metabolism in plants. Curr. Opin. Plant Biol. 2020, 55, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Starks, C.M.; Noel, J.P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 1997, 277, 1815–1820. [Google Scholar] [CrossRef]
- Christianson, D.W. Structural and Chemical Biology of Terpenoid Cyclases. Chem. Rev. 2018, 118, 11795. [Google Scholar] [CrossRef]
- Li, G.; Kollner, T.G.; Yin, Y.; Jiang, Y.; Chen, H.; Xu, Y.; Gershenzon, J.; Pichersky, E.; Chen, F. Nonseed plant Selaginella moellendorffi has both seed plant and microbial types of terpene synthases. Proc. Natl. Acad. Sci. USA 2012, 109, 14711–14715. [Google Scholar] [CrossRef]
- Jia, Q.; Li, G.; Kollner, T.G.; Fu, J.; Chen, X.; Xiong, W.; Crandall-Stotler, B.J.; Bowman, J.L.; Weston, D.J.; Zhang, Y.; et al. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Proc. Natl. Acad. Sci. USA 2016, 113, 12328–12333. [Google Scholar] [CrossRef]
- Scher, J.M.; Schinkovitz, A.; Zapp, J.; Wang, Y.; Franzblau, S.G.; Becker, H.; Lankin, D.C.; Pauli, G.F. Structure and anti-TB activity of trachylobanes from the liverwort Jungermannia exsertifolia ssp. cordifolia. J. Nat. Prod. 2010, 73, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Olivera, E.; Otero, S.; Tomas, R.; Martinez-Abaigar, J. Seasonal variations in UV-absorbing compounds and physiological characteristics in the aquatic liverwort Jungermannia exsertifolia subsp. cordifolia over a 3-year period. Physiol. Plant 2009, 136, 73–85. [Google Scholar] [CrossRef]
- Kumar, S.; Kempinski, C.; Zhuang, X.; Norris, A.; Mafu, S.; Zi, J.; Bell, S.A.; Nybo, S.E.; Kinison, S.E.; Jiang, Z.; et al. Molecular Diversity of Terpene Synthases in the Liverwort Marchantia polymorpha. Plant Cell 2016, 28, 2632–2650. [Google Scholar] [CrossRef] [PubMed]
- Moniodis, J.; Jones, C.G.; Barbour, E.L.; Plummer, J.A.; Ghisalberti, E.L.; Bohlmann, J. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum). Phytochemistry 2015, 113, 79–86. [Google Scholar] [CrossRef] [PubMed]
- He, S.M.; Wang, X.; Yang, S.C.; Dong, Y.; Zhao, Q.M.; Yang, J.L.; Cong, K.; Zhang, J.J.; Zhang, G.H.; Wang, Y.; et al. De novo Transcriptome Characterization of Rhodomyrtus tomentosa Leaves and Identification of Genes Involved in α/β-Pinene and β-Caryophyllene Biosynthesis. Front. Plant Sci. 2018, 9, 1231. [Google Scholar] [CrossRef]
- Gross, S.M.; Martin, J.A.; Simpson, J.; Abraham-Juarez, M.J.; Wang, Z.; Visel, A. De novo transcriptome assembly of drought tolerant CAM plants, Agave deserti and Agave tequilana. BMC Genom. 2013, 14, 563. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.T.; Lee, Y.R.; Liu, P.L.; Cheng, Y.T.; Shiu, T.F.; Tsao, N.W.; Wang, S.Y.; Chu, F.H. Phylogenetically distant group of terpene synthases participates in cadinene and cedrane-type sesquiterpenes accumulation in Taiwania cryptomerioides. Plant Sci. 2019, 289, 110277. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Tang, Y.; Xiong, S.; Long, J.; Liu, Z.; Tian, N. Comparative transcriptomic analysis of key genes involved in flavonoid biosynthetic pathway and identification of a flavonol synthase from Artemisia annua L. Plant Biol. 2017, 19, 618–629. [Google Scholar] [CrossRef]
- Ma, L.; Yi, D.; Gong, W.; Gong, P.; Wang, Z. De novo transcriptome characterisation of two auxin-related genes associated with plant growth habit in Astragalus adsurgens Pall. Plant Biol. 2020, 22, 3–12. [Google Scholar] [CrossRef]
- Fan, H.; Wei, G.; Chen, X.; Guo, H.; Crandall-Stotler, B.; Koellner, T.G.; Chen, F. Sesquiterpene biosynthesis in a leafy liverwort Radula lindenbergiana Gottsche ex C. Hartm. Phytochemistry 2021, 190, 112847. [Google Scholar] [CrossRef]
- Li, W.; Xu, R.; Yan, X.; Liang, D.; Zhang, L.; Qin, X.; Caiyin, Q.; Zhao, G.; Xiao, W.; Hu, Z.; et al. De novo leaf and root transcriptome analysis to explore biosynthetic pathway of Celangulin V in Celastrus angulatus maxim. BMC Genom. 2019, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Moran, Y.; Levin, J.Z.; Thompson, D.A.; Ido, A.; Xian, A.; Lin, F.; Raktima, R.; Qiandong, Z. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Pertea, G.; Huang, X.; Liang, F.; Antonescu, V.; Sultana, R.; Karamycheva, S.; Lee, Y.; White, J.; Cheung, F.; Parvizi, B.; et al. TIGR Gene Indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics 2003, 19, 651–652. [Google Scholar] [CrossRef]
- Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talon, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Attia, M.; Kim, S.-U.; Ro, D.-K. Molecular cloning and characterization of (+)-epi-α-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis. Arch. Biochem. Biophys. 2012, 527, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.X.; Yao, M.D.; Wang, Y.; Xiao, W.H.; Yuan, Y.J. Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Dihydroartemisinic Acid Production. Front. Bioeng. Biotechnol. 2020, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Takemura, M.; Maoka, T.; Misawa, N. Carotenoid analysis of a liverwort Marchantia polymorpha and functional identification of its lycopene β- and ε-cyclase genes. Plant Cell Physiol. 2014, 55, 194–200. [Google Scholar] [CrossRef]
- Ramirez, M.; Kamiya, N.; Popich, S.; Asakawa, Y.; Bardon, A. Insecticidal constituents from the argentine liverwort Plagiochila bursata. Chem. Biodivers. 2010, 7, 1855–1861. [Google Scholar] [CrossRef]
- Otoguro, K.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tukashima, A.; Kiyohara, H.; Hashimoto, T.; Asakawa, Y.; Omura, S.; Yamada, H. In vitro antitrypanosomal activity of plant terpenes against Trypanosoma brucei. Phytochemistry 2011, 72, 2024–2030. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, Y.; Zhang, X.; Shi, M.; Wang, B.; Wang, D.; Huang, L.; Zhang, X. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metab. Eng. 2013, 20, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.; Kamiya, N.; Popich, S.; Asakawa, Y.; Bardon, A. Constituents of the Argentine Liverwort Plagiochila diversifolia and Their Insecticidal Activities. Chem. Biodivers. 2017, 14, e1700229. [Google Scholar] [CrossRef] [PubMed]
- Christianson, D.W. Chemistry. Roots of biosynthetic diversity. Science 2007, 316, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011, 66, 212–229. [Google Scholar] [CrossRef]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef]
- Lauterbach, L.; Dickschat, J.S. Sesquiterpene synthases for bungoene, pentalenene and epi-isozizaene from Streptomyces bungoensis. Org. Biomol. Chem. 2020, 18, 4547–4550. [Google Scholar] [CrossRef]
- Rinkel, J.; Koellner, T.G.; Chen, F.; Dickschat, J.S. Characterisation of three terpene synthases for β-barbatene, β-araneosene and nephthenol from social amoebae. Chem. Commun. 2019, 55, 13255–13258. [Google Scholar] [CrossRef]
- Lee, S.; Chappell, J. Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol. 2008, 147, 1017–1033. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhou, J.; Ge, J.; Li, W.; Liang, D.; Singh, W.; Black, G.; Nie, S.; Liu, J.; Sun, M.; et al. Computer-Informed Engineering: A New Class I Sesquiterpene Synthase JeSTS4 for the Synthesis of an Unusual C10-(S)-Bicyclogermacrene. ACS Catal. 2022, 12, 4037–4045. [Google Scholar] [CrossRef]
- Trevizan, L.N.F.; Nascimento, K.F.D.; Santos, J.A.; Kassuya, C.A.L.; Cardoso, C.A.L.; Vieira, M.D.C.; Moreira, F.M.F.; Croda, J.; Formagio, A.S.N. Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J. Ethnopharmacol. 2016, 192, 510–515. [Google Scholar] [CrossRef]
- Shukal, S.; Chen, X.; Zhang, C. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metab. Eng. 2019, 55, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; de Oliveira, R.N.; Mengarda, A.C.; Roquini, D.B.; Allegretti, S.M.; Salvadori, M.C.; Teixeira, F.S.; de Sousa, D.P.; Pinto, P.L.S.; da Silva Filho, A.A.; et al. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis. Int. J. Antimicrob. Agents 2017, 50, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Caruthers, J.M.; Kang, I.; Rynkiewicz, M.J.; Cane, D.E.; Christianson, D.W. Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. J. Biol. Chem. 2000, 275, 25533–25539. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Fu, J.; Kollner, T.G.; Chen, X.; Jia, Q.; Guo, H.; Qian, P.; Guo, H.; Wu, G.; Chen, F. Biochemical characterization of microbial type terpene synthases in two closely related species of hornworts, Anthoceros punctatus and Anthoceros agrestis. Phytochemistry 2018, 149, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Keeling, P.J.; Palmer, J.D. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 2008, 9, 605–618. [Google Scholar] [CrossRef]
NO | Constituent | Retention Time (min) | RI a | Area (%) |
---|---|---|---|---|
1 | β-Funebrene | 14.09 | 1418 | 10.3 |
2 | Caryophyllene | 14.23 | 1422 | 0.4 |
3 | Aromadendrene | 14.69 | 1465 | 23.5 |
4 | Valencene | 14.95 | 1491 | 2.4 |
5 | β-Himachalene | 15.11 | 1500 | 0.6 |
6 | Nerolidol | 15.51 | 1546 | 19.1 |
7 | Viridiflorol | 15.88 | 1587 | 21.3 |
8 | Cubenol | 16.51 | 1643 | 0.1 |
9 | Lanceol | 17.61 | 1760 | 11.6 |
Others (not identified) | - | - | 10.7 |
Values | Total | NT | NR | KEGG | SwissProt | KOG | GO | InterPro | Intersection | Overall a |
---|---|---|---|---|---|---|---|---|---|---|
Number | 257,133 | 21,012 | 114,656 | 88,847 | 79,655 | 102,176 | 78,862 | 102,466 | 9671 | 142,802 |
Percentage | 100% | 8.17% | 44.59% | 34.55% | 30.98% | 39.74% | 30.67% | 39.85% | 3.76% | 55.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Li, Y.; Li, W.; Liang, D.; Nie, S.; Chen, R.; Qiao, J.; Wen, M.; Caiyin, Q. Transcriptome Analysis and Identification of Sesquiterpene Synthases in Liverwort Jungermannia exsertifolia. Bioengineering 2023, 10, 569. https://doi.org/10.3390/bioengineering10050569
Yan X, Li Y, Li W, Liang D, Nie S, Chen R, Qiao J, Wen M, Caiyin Q. Transcriptome Analysis and Identification of Sesquiterpene Synthases in Liverwort Jungermannia exsertifolia. Bioengineering. 2023; 10(5):569. https://doi.org/10.3390/bioengineering10050569
Chicago/Turabian StyleYan, Xiaoguang, Yukun Li, Weiguo Li, Dongmei Liang, Shengxin Nie, Ruiqi Chen, Jianjun Qiao, Mingzhang Wen, and Qinggele Caiyin. 2023. "Transcriptome Analysis and Identification of Sesquiterpene Synthases in Liverwort Jungermannia exsertifolia" Bioengineering 10, no. 5: 569. https://doi.org/10.3390/bioengineering10050569
APA StyleYan, X., Li, Y., Li, W., Liang, D., Nie, S., Chen, R., Qiao, J., Wen, M., & Caiyin, Q. (2023). Transcriptome Analysis and Identification of Sesquiterpene Synthases in Liverwort Jungermannia exsertifolia. Bioengineering, 10(5), 569. https://doi.org/10.3390/bioengineering10050569