Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Target Temporal Interference Magnetic Stimulation Model Characterization Setup
2.2. Finite Element Modeling
2.3. Simulation of Multi-Target Temporal Disturbance Magnetic Stimulation in a Saline Model
2.4. Simulation of Multi-Target Temporal Disturbance Magnetic Stimulation in Spherical Model
2.5. Simulation of the Relationship between Temporal Disturbance Magnetic Stimulation Focal Area and Current Ratio
3. Results
3.1. Multi-Target Temporal Interference Magnetic Stimulation in a Saline Model
3.2. Multi-Target Temporal Interference Magnetic Stimulation in Spherical Model
- (a)
- According to Equation (2), keeping the excitation source unchanged, the upper limit of is related to in any point, and the maximum value of is (when ).
- (b)
- determines the superiority of ; that is, keeping the excitation source unchanged, in any point, the lower the , the better the envelope degree of the induced electric field and the stronger the amplitude modulation intensity.
3.3. Relationship between the Focusing Region and Current Ratio of Temporal Interference Magnetic Stimulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vissani, M.; Isaias, I.U.; Mazzoni, A. Deep brain stimulation: A review of the open neural engineering challenges. J. Neural Eng. 2020, 17, 051002. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhao, X.; Li, X.; Liu, S.; Ming, D. Multi-channel transcranial temporally interfering stimulation (tTIS): Application to living mice brain. J. Neural Eng. 2020, 18, 036003. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Huai, R.; Zhang, P.; Wang, H. Research progress of noninvasive neuromodulation methods based on temporal interference. Chin. J. Med. Phys. 2023, 40, 6. [Google Scholar]
- Barker, A.; Jalinous, R.; Freeston, I. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, M.; Cao, H. Research Progress of Transcranial Magnetic Stimulation Technology. High Volt. Technol. 2016, 42, 11. [Google Scholar]
- Xia, S.; Xu, Y.; Yu, Y.; Gu, W.; Ma, C.; Yang, X. Research Progress in Transcranial Magnetic Stimulation Electric Field Analysis. Chin. J. Biomed. Eng. 2020, 39, 9. [Google Scholar]
- Gutierrez, M.I.; Poblete-Naredo, I.; Mercado-Gutierrez, J.A.; Toledo-Peral, C.; Quinzaños-Fresnedo, J.; Yanez-Suarez, O.; Gutierrez-Martinez, J. Devices and Technology in Transcranial Magnetic Stimulation: A Systematic Review. Brain Sci. 2022, 12, 1218. [Google Scholar] [CrossRef]
- Xiong, H.; Jing, Z.; Liu, J. Research progress of transcranial magnetic stimulation system. Aerosp. Med. Med. Eng. 2020, 33, 9. [Google Scholar]
- Grossman, N.; Bono, D.; Dedic, N.; Kodandaramaiah, S.B.; Rudenko, A.; Suk, H.-J.; Cassara, A.M.; Neufeld, E.; Kuster, N.; Tsai, L.-H.; et al. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 2017, 169, 1029–1041.e16. [Google Scholar] [CrossRef]
- Guo, W.; He, Y.; Zhang, W.; Sun, Y.; Wang, J.; Liu, S.; Ming, D. A novel non-invasive brain stimulation technique: “Temporally interfering electrical stimulation”. Front. Neurosci. 2023, 17, 1092539. [Google Scholar] [CrossRef]
- Cao, J.; Grover, P. STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using Spatio-Temporal Interference. IEEE Trans. Biomed. Eng. 2019, 67, 726–737. [Google Scholar] [CrossRef] [PubMed]
- Sorkhabi, M.M.; Wendt, K.; Denison, T. Temporally Interfering TMS: Focal and Dynamic Stimulation Location. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 3537–3543. [Google Scholar]
- Xin, Z.; Kuwahata, A.; Liu, S.; Sekino, M. Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation. Front. Hum. Neurosci. 2021, 15, 693207. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A.; Abrishami, S.M.; Zaeimbashi, M.; Tang, A.D.; Coughlin, B.; Rodger, J.; Sun, N.X.; Cash, S.S. Magnetic temporal interference for noninvasive and focal brain stimulation. J. Neural Eng. 2023, 20, 016002. [Google Scholar] [CrossRef]
- Greenberg, M.E.; Hermanowski, A.L.; Ziff, E.B. Effect of protein synthesis inhibitors on growth factor activation of c-fos, c-myc, and actin gene transcription. Mol. Cell. Biol. 1986, 6, 1050–1057. [Google Scholar] [PubMed]
- Goncalves, S.B.; Palha, J.M.; Fernandes, H.C.; Souto, M.R.; Pimenta, S.; Dong; Yang, Z.; Ribeiro, J.F.; Correia, J.H. LED optrode with integrated temperature sensing for optogenetics. Micromachines 2018, 9, 473. [Google Scholar] [CrossRef] [PubMed]
- Nordi, T.M.; Gounella, R.H.; Luppe, M.; Junior, J.N.S.; Fonoff, E.T.; Colombari, E.; Romero, M.A.; Carmo, J.P.P.d. Low-Noise Amplifier for Deep-Brain Stimulation (DBS). Electronics 2022, 11, 939. [Google Scholar] [CrossRef]
- Li, J.; Cao, H.; Zheng, M.; Zhao, Z. Drive and Control of Multi-Channel Transcranial Magnetic Stimulation Coil Array. J. Electrotech. Soc. 2017, 32, 8. [Google Scholar]
- Yang, S.; Xu, G.; Wang, L.; Geng, Y.; Yu, H.; Yang, Q. Circular Coil Array Model for Transcranial Magnetic Stimulation. IEEE Trans. Appl. Supercond. 2010, 20, 829–833. [Google Scholar] [CrossRef]
- Ho, S.L.; Xu, G.; Fu, W.N.; Yang, Q.; Hou, H.; Yan, W. Optimization of Array Magnetic Coil Design for Functional Magnetic Stimulation Based on Improved Genetic Algorithm. IEEE Trans. Magn. 2009, 45, 4849–4852. [Google Scholar] [CrossRef]
- Xiong, H.; Gao, Y.; Liu, J. Research on coil array design method based on transcranial magnetic stimulation. Aerosp. Med. Med. Eng. 2018, 31, 545–550. [Google Scholar]
- Xiong, H.; Qiu, B.; Liu, J. Simulation study of multi-channel transcranial magnetic stimulation cap coil unit based on MRI data. Aerosp. Med. Med. Eng. 2020, 33, 246–251. [Google Scholar]
- Liu, F.; Jin, S.; Zhao, X. Comparison of LC series resonance and LCC series parallel resonance in high-voltage pulse capacitor charging power supply. High Volt. Technol. 2012, 38, 3347–3356. [Google Scholar]
- Peterchev, A.V.; Jalinous, R.; Lisanby, S.H. A transcranial magnetic stimulator inducing near-rectangular pulses with controllable pulse width (cTMS). IEEE Trans. Biomed. Eng. 2007, 55, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Peterchev, A.V.; Murphy, D.L.; Lisanby, S.H. Repetitive transcranial magnetic stimulator with controllable pulse parameters. J. Neural Eng. 2011, 8, 036016. [Google Scholar] [CrossRef]
- Sorkhabi, M.M.; Benjaber, M.; Wendt, K.; West, T.O.; Rogers, D.J.; Denison, T. Programmable transcranial magnetic stimulation: A modulation approach for the generation of controllable magnetic stimuli. IEEE Trans. Biomed. Eng. 2020, 68, 1847–1858. [Google Scholar] [CrossRef]
- Gattinger, N.; Moßnang, G.; Gleich, B. flexTMS—A novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents. IEEE Trans. Biomed. Eng. 2012, 59, 1962–1970. [Google Scholar] [CrossRef]
- Sorkhabi, M.M.; Denison, T. A neurostimulator system for real, sham, and multi-target transcranial magnetic stimulation. J. Neural Eng. 2022, 19, 026035. [Google Scholar] [CrossRef]
- Chen, H. Research and Design of a Multi Parameter Controllable Transcranial Magnetic Stimulation Coil; Chongqing University of Posts and Telecommunications: Chongqing, China, 2019. [Google Scholar]
- Ueno, S.; Tashiro, T.; Harada, K. Localized stimulation of neural tissues in the brain by means of a paired configuration of timevarying magnetic fields. J. Appl. Phys. 1988, 64, 5862–5864. [Google Scholar] [CrossRef]
- Deng, Z.-D.; Lisanby, S.H.; Peterchev, A.V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013, 6, 1–13. [Google Scholar] [CrossRef]
- Guadagnin, V.; Parazzini, M.; Fiocchi, S.; Liorni, I.; Ravazzani, P. Deep Transcranial Magnetic Stimulation: Modeling of Different Coil Configurations. IEEE Trans. Biomed. Eng. 2015, 63, 1543–1550. [Google Scholar] [CrossRef]
- Deng, Z.D.; Lisanby, S.H.; Peterchev, A.V. Coil design considerations for deep transcranial magnetic stimulation. Clin. Neuro-physiol. 2014, 125, 1202–1212. [Google Scholar] [CrossRef] [PubMed]
- Krieg, T.D.; Salinas, F.S.; Narayana, S.; Fox, P.T.; Mogul, D.J. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation. J. Neural Eng. 2015, 12, 046014. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Basser, P. A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans. Biomed. Eng. 1990, 37, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Chunye, R.; Tarjan, P.P.; Popovic, D.B. A novel electric design for electromagnetic stimulation-the Slinky coil. IEEE Trans. Biomed. Eng. 1995, 42, 918–925. [Google Scholar] [CrossRef]
- Afuwape, O.F.; Oya, H.; Boes, A.D.; Jiles, D.C. Measurement and Modeling of the Effects of Transcranial Magnetic Stimulation on the Brain. IEEE Trans. Magn. 2020, 57, 1–5. [Google Scholar] [CrossRef]
- de Lara, L.I.N.; Daneshzand, M.; Mascarenas, A.; Paulson, D.; Pratt, K.; Okada, Y.; Raij, T.; Makarov, S.N.; Nummenmaa, A. A 3-axis coil design for multichannel TMS arrays. NeuroImage 2021, 224, 117355. [Google Scholar] [CrossRef]
- Zhao, C. Simulation and Coil Optimization of Intracranial Induced Electric Field Distribution and Energy Distribution under Magnetic Stimulation; Beijing Union Medical College: Beijing, China, 2011. [Google Scholar]
- Hese, P.V.; Vanrumste, B.; Boon, P.; D’Asseler, Y.; Lemahieu, I.; Walle, R. Dipole Localization Errors due to not Incorporating Compartments with Anisotropic Conductivities: Simulation Study in a Spherical Head Model. Int. J. Biolelectromagn. 2005, 7, 134–137. [Google Scholar]
- Zhu, X.; Li, Y.; Zheng, L.; Shao, B.; Liu, X.; Li, C.; Huang, Z.-G.; Liu, T.; Wang, J. Multi-Point Temporal Interference Stimulation by Using Each Electrode to Carry Different Frequency Currents. IEEE Access 2019, 7, 168839–168848. [Google Scholar] [CrossRef]
- Andreuccetti, D.; Fossi, R.; Petrucci, C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz; IFAC-CNR: Florence, Italy, 1997; Based on Data Published by C. Gabriel et al. in 1996. Available online: http://niremf.ifac.cnr.it/tissprop/ (accessed on 15 January 2023).
- Chen, Z. Transcranial Magnetic Stimulation Simulation Analysis Based on Real Cranial Structure Modeling; Peking Union Medical College, Chinese Academy of Medical Sciences: Tianjin, China, 2017. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Yan, L.; Yang, X.; Geng, D.; Xu, G.; Wang, A. Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System. Bioengineering 2023, 10, 568. https://doi.org/10.3390/bioengineering10050568
Wang T, Yan L, Yang X, Geng D, Xu G, Wang A. Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System. Bioengineering. 2023; 10(5):568. https://doi.org/10.3390/bioengineering10050568
Chicago/Turabian StyleWang, Tingyu, Lele Yan, Xinsheng Yang, Duyan Geng, Guizhi Xu, and Alan Wang. 2023. "Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System" Bioengineering 10, no. 5: 568. https://doi.org/10.3390/bioengineering10050568
APA StyleWang, T., Yan, L., Yang, X., Geng, D., Xu, G., & Wang, A. (2023). Optimal Design of Array Coils for Multi-Target Adjustable Electromagnetic Brain Stimulation System. Bioengineering, 10(5), 568. https://doi.org/10.3390/bioengineering10050568