Dental Fiber-Post Systems: An In-Depth Review of Their Evolution, Current Practice and Future Directions
Abstract
:1. Introduction
2. History of Dental Fiber Posts
3. Longevity and Failure of Dental Fiber Posts
4. Composition of a Fiber Post
5. Biomechanical Considerations for FRC Posts
5.1. Stress Distribution
5.2. Influence of Ferrule on Fracture Resistance
5.3. Long or Short Post
5.4. Post Space and Cement Thickness
5.5. Thick or Thin Post
6. Current Advancements and Future Trends
Bonding Considerations of FRC to Root Canal
7. Resin-Based Luting Cements
8. One-Stage Procedure: Post-and-Core System
Future Trends
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glazer, B. Restoration of endodontically treated teeth with carbon fibre posts-a prospective study. J. Can. Dent. Assoc. 2000, 66, 613–618. [Google Scholar]
- Duret, B. New concept of coronoradicular reconstruction: The Composipost (1). Chir. Dent. Fr. 1990, 60, 131–141. [Google Scholar]
- Soares, C.J.; Santana, F.R.; Pereira, J.C.; Araujo, T.S.; Menezes, M.S. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts. J. Prosthet. Dent. 2008, 99, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Novais, V.R.; Quagliatto, P.S.; Della Bona, A.; Correr-Sobrinho, L.; Soares, C.J. Flexural modulus, flexural strength, and stiffness of fiber-reinforced posts. Indian J. Dent. Res. 2009, 20, 277. [Google Scholar]
- Bacchi, A.; Caldas, R.A.; Schmidt, D.; Detoni, M.; Souza, M.A.; Cecchin, D.; Farina, A.P. Fracture strength and stress distribution in premolars restored with cast post-and-cores or glass-fiber posts considering the influence of ferule. BioMed Res. Int. 2019, 2019, 2196519. [Google Scholar] [CrossRef]
- Martins, M.D.; Junqueira, R.B.; de Carvalho, R.F.; Lacerda, M.F.L.S.; Fae, D.S.; Lemos, C.A.A. Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. J. Dent. 2021, 112, 103750. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, M.; Astbäck, J.; Pamenius, M.; Arvidson, K. A retrospective study of 236 patients with teeth restored by carbon fiber-reinforced epoxy resin posts. J. Prosthet. Dent. 1998, 80, 151–157. [Google Scholar] [CrossRef]
- Ferrari, M.; Vichi, A.; Mannocci, F.; Mason, P.N. Retrospective study of the clinical performance of fiber posts. Am. J. Dent. 2000, 13, 9B–13B. [Google Scholar]
- Mannocci, F.; Bertelli, E.; Sherriff, M.; Watson, T.F.; Ford, T.P. Three-year clinical comparison of survival of endodontically treated teeth restored with either full cast coverage or with direct composite restoration. J. Prosthet. Dent. 2002, 88, 297–301. [Google Scholar] [CrossRef] [PubMed]
- King, P.; Setchell, D.; Rees, J. Clinical evaluation of a carbon fibre reinforced carbon endodontic post. J. Oral Rehabil. 2003, 30, 785–789. [Google Scholar] [CrossRef]
- Hedlund, S.-O.; Johansson, N.G.; Sjögren, G. Retention of prefabricated and individually cast root canal posts in vitro. Br. Dent. J. 2003, 195, 155–158. [Google Scholar] [CrossRef]
- Naumann, M.; Reich, S.; Nothdurft, F.P.; Beuer, F.; Schirrmeister, J.F.; Dietrich, T. Survival of glass fiber post restorations over 5 years. Am. J. Dent. 2008, 21, 267–272. [Google Scholar]
- Schmitter, M.; Doz, P.; Rammelsberg, P.; Gabbert, O.; Ohlmann, B. Influence of clinical baseline findings on the survival of 2 post systems: A randomized clinical trial. Int. J. Prosthodont. 2007, 20. [Google Scholar]
- Ferrari, M.; Cagidiaco, M.C.; Goracci, C.; Vichi, A.; Mason, P.N.; Radovic, I.; Tay, F. Long-term retrospective study of the clinical performance of fiber posts. Am. J. Dent. 2007, 20, 287. [Google Scholar]
- Bitter, K.; Noetzel, J.; Stamm, O.; Vaudt, J.; Meyer-Lueckel, H.; Neumann, K.; Kielbassa, A.M. Randomized clinical trial comparing the effects of post placement on failure rate of postendodontic restorations: Preliminary results of a mean period of 32 months. J. Endod. 2009, 35, 1477–1482. [Google Scholar] [CrossRef] [PubMed]
- Schmitter, M.; Hamadi, K.; Rammelsberg, P. Survival of two post systems—Five-year results of a randomized clinical trial. Quintessence Int. J. Pract. Dent. Engl. Ed. 2011, 42, 843–850. [Google Scholar]
- Naumann, M.; Koelpin, M.; Beuer, F.; Meyer-Lueckel, H. 10-year survival evaluation for glass-fiber–supported postendodontic restoration: A prospective observational clinical study. J. Endod. 2012, 38, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, G.; Karajouli, G.; Naumann, M.; Peroz, I.; Bitter, K. Fiber post placement with core buildup materials or resin cements—An evaluation of different adhesive approaches. Acta Odontol. Scand. 2012, 70, 368–376. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; de Castilho Jacinto, R.; Boscato, N.; Cenci, M.S.; Pereira-Cenci, T. Cast metal vs. glass fibre posts: A randomized controlled trial with up to 3 years of follow up. J. Dent. 2014, 42, 582–587. [Google Scholar] [CrossRef]
- Parisi, C.; Valandro, L.F.; Ciocca, L.; Gatto, M.R.; Baldissara, P. Clinical outcomes and success rates of quartz fiber post restorations: A retrospective study. J. Prosthet. Dent. 2015, 114, 367–372. [Google Scholar] [CrossRef]
- Cloet, E.; Debels, E.; Naert, I. Controlled Clinical Trial on the Outcome of Glass Fiber Composite Cores Versus Wrought Posts and Cast Cores for the Restoration of Endodontically Treated Teeth: A 5-Year Follow-up Study. Int. J. Prosthodont. 2017, 30. [Google Scholar] [CrossRef] [PubMed]
- Bergoli, C.; Brondani, L.; Wandscher, V.; Pereira, G.; Cenci, M.; Pereira-Cenci, T.; Valandro, L. A multicenter randomized double-blind controlled clinical trial of fiber post cementation strategies. Oper. Dent. 2018, 43, 128–135. [Google Scholar] [CrossRef]
- Perdigão, J. Fiber-reinforced resin posts (fiber posts). In Restoration of Root Canal-Treated Teeth; Springer: Berlin/Heidelberg, Germany, 2016; pp. 101–136. [Google Scholar]
- Su, C.; Zong, D.; Xu, L.; Zhang, C. Dynamic mechanical properties of semi-interpenetrating polymer network-based on nitrile rubber and poly (methyl methacrylate-co-butyl acrylate). J. Appl. Polym. Sci. 2014, 131, 40217. [Google Scholar] [CrossRef]
- Purton, D.; Payne, J. Comparison of carbon fiber and stainless steel root canal posts. Quintessence Int. 1996, 27, 93–97. [Google Scholar]
- Capriotti, L.; Greco, K.; Paolone, G.; Sberna, M.T.; Cantatore, G. Removal of fiber posts during endodontic retreatments using ultrasonic tips: A comparison between two different endodontic fiber posts. G. Ital. Di Endod. 2018, 32, 47–50. [Google Scholar] [CrossRef]
- Zicari, F.; Coutinho, E.; Scotti, R.; Van Meerbeek, B.; Naert, I. Mechanical properties and micro-morphology of fiber posts. Dent. Mater. 2013, 29, e45–e52. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P. Curing of a silane coupling agent and its effect on the transverse strength of autopolymerizing polymethylmethacrylate—Glass fibre composite. J. Oral Rehabil. 1997, 24, 124–130. [Google Scholar] [CrossRef]
- Goracci, C.; Ferrari, M. Current perspectives on post systems: A literature review. Aust. Dent. J. 2011, 56, 77–83. [Google Scholar] [CrossRef]
- Dietschi, D.; Duc, O.; Krejci, I.; Sadan, A. Biomechanical considerations for the restoration of endodontically treated teeth: A systematic review of the literature-Part 1. Composition and micro-and macrostructure alterations. Quintessence Int. 2007, 38, 733–743. [Google Scholar]
- Schwartz, R.S.; Robbins, J.W. Post placement and restoration of endodontically treated teeth: A literature review. J. Endod. 2004, 30, 289–301. [Google Scholar] [CrossRef]
- Sulaiman, E.; Alarami, N.; Wong, Y.I.; Lee, W.H.; Al-Haddad, A. The effect of fiber post location on fracture resistance of endodontically treated maxillary premolars. Dent. Med. Probl. 2018, 55, 275–279. [Google Scholar] [CrossRef]
- Ausiello, P.; Franciosa, P.; Martorelli, M.; Watts, D.C. Mechanical behavior of post-restored upper canine teeth: A 3D FE analysis. Dent. Mater. 2011, 27, 1285–1294. [Google Scholar] [CrossRef]
- Torbjörner, A.; Fransson, B. A literature review on the prosthetic treatment of structurally compromised teeth. Int. J. Prosthodont. 2004, 17, 369–376. [Google Scholar]
- Zhu, Z.; Dong, X.-Y.; He, S.; Pan, X.; Tang, L. Effect of Post Placement on the Restoration of Endodontically Treated Teeth: A Systematic Review. Int. J. Prosthodont. 2015, 28, 475–483. [Google Scholar] [CrossRef]
- Hayashi, M.; Ebisu, S. Key factors in achieving firm adhesion in post–core restorations. Jpn. Dent. Sci. Rev. 2008, 44, 22–28. [Google Scholar] [CrossRef]
- Rasimick, B.J.; Wan, J.; Musikant, B.L.; Deutsch, A.S. A review of failure modes in teeth restored with adhesively luted endodontic dowels. J. Prosthodont.: Implant Esthet. Reconstr. Dent. 2010, 19, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Al-Omiri, M.K.; Mahmoud, A.A.; Rayyan, M.R.; Abu-Hammad, O. Fracture resistance of teeth restored with post-retained restorations: An overview. J. Endod. 2010, 36, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Giovani, A.R.; Vansan, L.P.; de Sousa Neto, M.D.; Paulino, S.M. In vitro fracture resistance of glass-fiber and cast metal posts with different lengths. J. Prosthet. Dent. 2009, 101, 183–188. [Google Scholar] [CrossRef]
- Sorensen, J.A.; Engelman, M.J. Ferrule design and fracture resistance of endodontically treated teeth. J. Prosthet. Dent. 1990, 63, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Juloski, J.; Radovic, I.; Goracci, C.; Vulicevic, Z.R.; Ferrari, M. Ferrule effect: A literature review. J. Endod. 2012, 38, 11–19. [Google Scholar] [CrossRef]
- Isidor, F.; Brøndum, K.; Ravnholt, G. The influence of post length and crown ferrule length on the resistance to cyclic loading of bovine teeth with prefabricated titanium posts. Int. J. Prosthodont. 1999, 12, 78–82. [Google Scholar]
- Ma, P.S.; Nicholls, J.I.; Junge, T.; Phillips, K.M. Load fatigue of teeth with different ferrule lengths, restored with fiber posts, composite resin cores, and all-ceramic crowns. J. Prosthet. Dent. 2009, 102, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Libman, W.J.; Nicholls, J.I. Load fatigue of teeth restored with cast posts and cores and complete crowns. Int. J. Prosthodont. 1995, 8, 155–161. [Google Scholar] [PubMed]
- Mancebo, J.C.; Jimenez-Castellanos, E.; Canadas, D. Effect of tooth type and ferrule on the survival of pulpless teeth restored with fiber posts: A 3-year clinical study. Am. J. Dent. 2010, 23, 351–356. [Google Scholar]
- Al-Hazaimeh, N.; Gutteridge, D. An in vitro study into the effect of the ferrule preparation on the fracture resistance of crowned teeth incorporating prefabricated post and composite core restorations. Int. Endod. J. 2001, 34, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Saupe, W.A.; Gluskin, A.H.; Radke, R.A., Jr. A comparative study of fracture resistance between morphologic dowel and cores and a resin-reinforced dowel system in the intraradicular restoration of structurally compromised roots. Quintessence Int. 1996, 27, 483–491. [Google Scholar] [PubMed]
- Jotkowitz, A.; Samet, N. Rethinking ferrule–a new approach to an old dilemma. Br. Dent. J. 2010, 209, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Pilo, R.; Cardash, H.S.; Levin, E.; Assif, D. Effect of core stiffness on the in vitro fracture of crowned, endodontically treated teeth. J. Prosthet. Dent. 2002, 88, 302–306. [Google Scholar] [CrossRef]
- Tjan, A.H.; Whang, S.B. Resistance to root fracture of dowel channels with various thicknesses of buccal dentin walls. J. Prosthet. Dent. 1985, 53, 496–500. [Google Scholar] [CrossRef]
- Arunpraditkul, S.; Saengsanon, S.; Pakviwat, W. Fracture resistance of endodontically treated teeth: Three walls versus four walls of remaining coronal tooth structure. J. Prosthodont. Implant Esthet. Reconstr. Dent. 2009, 18, 49–53. [Google Scholar] [CrossRef]
- Naumann, M.; Preuss, A.; Rosentritt, M. Effect of incomplete crown ferrules on load capacity of endodontically treated maxillary incisors restored with fiber posts, composite buildups, and all-ceramic crowns: An in vitro evaluation after chewing simulation. Acta Odontol. Scand. 2006, 64, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Ozel, E.; Dikbas, I.; Tanalp, J.; Koksal, T.; Ersoy, M. Evaluation of the effect of different ferrule designs on the fracture resistance of endodontically treated maxillary central incisors incorporating fiber posts, composite cores and crown restorations. J. Contemp. Dent. Pract. 2007, 8, 62–69. [Google Scholar] [CrossRef]
- Tan, P.L.; Aquilino, S.A.; Gratton, D.G.; Stanford, C.M.; Tan, S.C.; Johnson, W.T.; Dawson, D. In vitro fracture resistance of endodontically treated central incisors with varying ferrule heights and configurations. J. Prosthet. Dent. 2005, 93, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Al-Wahadni, A.; Gutteridge, D. An in vitro investigation into the effects of retained coronal dentine on the strength of a tooth restored with a cemented post and partial core restoration. Int. Endod. J. 2002, 35, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.C.; Dumbrigue, H.B.; Al-Bayat, M.I.; Griggs, J.A.; Wakefield, C.W. Influence of remaining coronal tooth structure location on the fracture resistance of restored endodontically treated anterior teeth. J. Prosthet. Dent. 2006, 95, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Borer, R.F.; Briffo, L.A.; Haddix, J.F. Effect of dowel length on the retention of 2 different prefabricated posts. Quintessence Int. 2007, 38, 164–168. [Google Scholar]
- Zicari, F.; Van Meerbeek, B.; Scotti, R.; Naert, I. Effect of fibre post length and adhesive strategy on fracture resistance of endodontically treated teeth after fatigue loading. J. Dent. 2012, 40, 312–321. [Google Scholar] [CrossRef]
- Büttel, L.; Krastl, G.; Lorch, H.; Naumann, M.; Zitzmann, N.; Weiger, R. Influence of post fit and post length on fracture resistance. Int. Endod. J. 2009, 42, 47–53. [Google Scholar] [CrossRef]
- De Deus, Q. Frequency, location, and direction of the lateral, secondary, and accessory canals. J. Endod. 1975, 1, 361–366. [Google Scholar] [CrossRef]
- Özkurt, Z.; Kayahan, M.B.; Sunay, H.; Kazazoğlu, E.; Bayırlı, G. The effect of the gap between the post restoration and the remaining root canal filling on the periradicular status in a Turkish subpopulation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 110, 131–135. [Google Scholar] [CrossRef]
- Schmage, P.; Özcan, M.; McMullan-Vogel, C.; Nergiz, I. The fit of tapered posts in root canals luted with zinc phosphate cement: A histological study. Dent. Mater. 2005, 21, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Morgano, S.M. Restoration of pulpless teeth: Application of traditional principles in present and future contexts. J. Prosthet. Dent. 1996, 75, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, C.A.; Ferrari, M. Resin cement thickness in oval-shaped canals: Oval vs. circular fiber posts in combination with different tips/drills for post space preparation. Am. J. Dent. 2009, 22, 290–294. [Google Scholar]
- Rodríguez-Cervantes, P.; Sancho-Bru, J.; Barjau-Escribano, A.; Forner-Navarro, L.; Pérez-González, A.; Sánchez-Marín, F. Influence of prefabricated post dimensions on restored maxillary central incisors. J. Oral Rehabil. 2007, 34, 141–152. [Google Scholar] [CrossRef]
- Watzke, R.; Frankenberger, R.; Naumann, M. Different scanning electron microscopic evaluation methods of cement interface homogeneity of adhesively luted glass fiber posts. Acta Odontol. Scand. 2011, 69, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Pashley, D.H. Strategies to stabilise dentine-bonded interfaces through remineralising operative approaches–State of The Art. Int. J. Adhes. Adhes. 2016, 69, 39–57. [Google Scholar] [CrossRef]
- Carvalho, R.M.d.; Pereira, J.C.; Yoshiyama, M.; Pashley, D.H. A review of polymerization contraction: The influence of stress development versus stress relief. Oper. Dent. 1996, 21, 17–24. [Google Scholar]
- Kumagai, R.Y.; Hirata, R.; Pereira, P.N.R.; Reis, A.F. Moist vs over-dried etched dentin: FE-SEM/TEM and bond strength evaluation of resin-dentin interfaces produced by universal adhesives. J. Esthet. Restor. Dent. 2020, 32, 325–332. [Google Scholar] [CrossRef]
- Perdigão, J. Current perspectives on dental adhesion: (1) Dentin adhesion–not there yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; De Munck, J.; Yoshida, Y.; Inoue, S.; Vargas, M.; Vijay, P. Buonocore memorial lecture. Adhesion to enamel and dentin: Current status and. Oper. Dent. 2003, 28, 215–235. [Google Scholar]
- Pashley, D.H.; Tay, F.R.; Breschi, L.; Tjäderhane, L.; Carvalho, R.M.; Carrilho, M.; Tezvergil-Mutluay, A. State of the art etch-and-rinse adhesives. Dent. Mater. 2011, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J.; Reis, A.; Loguercio, A.D. Dentin adhesion and MMPs: A comprehensive review. J. Esthet. Restor. Dent. 2013, 25, 219–241. [Google Scholar] [CrossRef] [PubMed]
- Helfer, A.R.; Melnick, S.; Schilder, H. Determination of the moisture content of vital and pulpless teeth. Oral Surg. Oral Med. Oral Pathol. 1972, 34, 661–670. [Google Scholar] [CrossRef]
- Driscoll, C.; Dowker, P.; Anderson, P.; Wilson, R.; Gulabivala, K. Effects of sodium hypochlorite solution on root dentine composition. J. Mater. Sci. Mater. Med. 2002, 13, 219. [Google Scholar] [CrossRef] [PubMed]
- Reddington, L.; Knowles, J.; Nazhat, S.; Young, A.; Gulabivala, K.; Ng, Y. An in vitro evaluation of the visco-elastic behaviour and composition of dentine matrix soaked in EDTA and NaOC1 independently and in combination. Int. Endod. J. 2003, 36, 939. [Google Scholar]
- Banerjee, A. Minimal intervention dentistry: Part 7. Minimally invasive operative caries management: Rationale and techniques. Br. Dent. J. 2013, 214, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, G.; Pires, P.M.; Calarco, A.; Peluso, G.; Banerjee, A.; Rengo, S.; Boneta, A.R.E.; Sauro, S. An in-vitro study investigating the effect of air-abrasion bioactive glasses on dental adhesion, cytotoxicity and odontogenic gene expression. Dent. Mater. 2021, 37, 1734–1750. [Google Scholar] [CrossRef] [PubMed]
- Ayad, M.F.; Maghrabi, A.A.; Saif, R.E.; García-Godoy, F. Influence of tooth preparation burs on the roughness and bond strength of adhesives to human dentin surfaces. Am. J. Dent. 2011, 24, 176–182. [Google Scholar]
- Sauro, S.; Watson, T.F.; Thompson, I.; Banerjee, A. One-bottle self-etching adhesives applied to dentine air-abraded using bioactive glasses containing polyacrylic acid: An in vitro microtensile bond strength and confocal microscopy study. J. Dent. 2012, 40, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Sauro, S.; Watson, T.F.; Thompson, I.; Toledano, M.; Nucci, C.; Banerjee, A. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement. Eur. J. Oral Sci. 2012, 120, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Pashley, D.H. Dentin bonding: Overview of the substrate with respect to adhesive material. J. Esthet. Restor. Dent. 1991, 3, 46–50. [Google Scholar] [CrossRef]
- Bauer, J.; e Silva, A.S.; Carvalho, E.M.; Ferreira, P.V.C.; Carvalho, C.N.; Manso, A.P.; Carvalho, R.M. Dentin pretreatment with 45S5 and niobophosphate bioactive glass: Effects on pH, antibacterial, mechanical properties of the interface and microtensile bond strength. J. Mech. Behav. Mater. 2019, 90, 374–380. [Google Scholar] [CrossRef]
- Mei, M.L.; Li, Q.; Chu, C.; Yiu, C.K.; Lo, E.C. The inhibitory effects of silver diamine fluoride at different concentrations on matrix metalloproteinases. Dent. Mater. 2012, 28, 903–908. [Google Scholar] [CrossRef]
- Carrilho, M.; Geraldeli, S.; Tay, F.; De Goes, M.; Carvalho, R.M.; Tjäderhane, L.; Reis, A.; Hebling, J.; Mazzoni, A.; Breschi, L. In vivo preservation of the hybrid layer by chlorhexidine. J. Dent. Res. 2007, 86, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Scaffa, P.M.C.; Vidal, C.d.M.; Barros, N.; Gesteira, T.F.; Carmona, A.K.; Breschi, L.; Pashley, D.H.; Tjäderhane, L.; Tersariol, I.L.d.S.; Nascimento, F.D. Chlorhexidine inhibits the activity of dental cysteine cathepsins. J. Dent. Res. 2012, 91, 420–425. [Google Scholar] [CrossRef]
- De Goes, M.F.; Giannini, M.; Foxton, R.M.; Nikaido, T.; Tagami, J. Microtensile bond strength between crown and root dentin and two adhesive systems. J. Prosthet. Dent. 2007, 97, 223–228. [Google Scholar] [CrossRef] [PubMed]
- de Melo, R.M.; Galhano, G.; Barbosa, S.H.; Valandro, L.F.; Pavanelli, C.A.; Bottino, M.A. Effect of adhesive system type and tooth region on the bond strength to dentin. J. Adhes. Dent. 2008, 10, 127–133. [Google Scholar]
- Mjör, I.; Smith, M.; Ferrari, M.; Mannocci, F. The structure of dentine in the apical region of human teeth. Int. Endod. J. 2001, 34, 346–353. [Google Scholar] [CrossRef]
- Tay, F.; Frankenberger, R.; Krejci, I.; Bouillaguet, S.; Pashley, D.H.; Carvalho, R.; Lai, C. Single-bottle adhesives behave as permeable membranes after polymerization. I. In vivo evidence. J. Dent. 2004, 32, 611–621. [Google Scholar] [CrossRef]
- Davidson, C.; De Gee, A.J. Relaxation of polymerization contraction stresses by flow in dental composites. J. Dent. Res. 1984, 63, 146–148. [Google Scholar] [CrossRef]
- Tay, F.R.; Loushine, R.J.; Lambrechts, P.; Weller, R.N.; Pashley, D.H. Geometric factors affecting dentin bonding in root canals: A theoretical modeling approach. J. Endod. 2005, 31, 584–589. [Google Scholar] [CrossRef] [PubMed]
- De Munck, J.; Mine, A.; Poitevin, A.; Van Ende, A.; Cardoso, M.V.; Van Landuyt, K.; Peumans, M.; Van Meerbeek, B. Meta-analytical review of parameters involved in dentin bonding. J. Dent. Res. 2012, 91, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Goracci, C.; Tavares, A.U.; Fabianelli, A.; Monticelli, F.; Raffaelli, O.; Cardoso, P.C.; Tay, F.; Ferrari, M. The adhesion between fiber posts and root canal walls: Comparison between microtensile and push-out bond strength measurements. Eur. J. Oral Sci. 2004, 112, 353–361. [Google Scholar] [CrossRef]
- Scherrer, S.S.; Cesar, P.F.; Swain, M.V. Direct comparison of the bond strength results of the different test methods: A critical literature review. Dent. Mater. 2010, 26, e78–e93. [Google Scholar] [CrossRef] [PubMed]
- Leloup, G.; D’Hoore, W.; Bouter, D.; Degrange, M.; Vreven, J. Concise review biomaterials & bioengineering: Meta-analytical review of factors involved in dentin adherence. J. Dent. Res. 2001, 80, 1605–1614. [Google Scholar]
- Bitter, K.; Gläser, C.; Neumann, K.; Blunck, U.; Frankenberger, R. Analysis of resin-dentin interface morphology and bond strength evaluation of core materials for one stage post-endodontic restorations. PLoS ONE 2014, 9, e86294. [Google Scholar] [CrossRef]
- Bitter, K.; Paris, S.; Pfuertner, C.; Neumann, K.; Kielbassa, A.M. Morphological and bond strength evaluation of different resin cements to root dentin. Eur. J. Oral Sci. 2009, 117, 326–333. [Google Scholar] [CrossRef]
- Profeta, A.C.; Mannocci, F.; Foxton, R.M.; Thompson, I.; Watson, T.F.; Sauro, S. Bioactive effects of a calcium/sodium phosphosilicate on the resin–dentine interface: A microtensile bond strength, scanning electron microscopy, and confocal microscopy study. Eur. J. Oral Sci. 2012, 120, 353–362. [Google Scholar] [CrossRef]
- Sano, H.; Yoshiyama, M.; Ebisu, S.; Burrow, M.; Takatsu, T.; Ciucchi, B.; Carvalho, R.; Pashley, D.H. Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper. Dent. 1995, 20, 160–167. [Google Scholar]
- Castelnuovo, J.; Tjan, A.; Liu, P. Microleakage of multi-step and simplified-step bonding systems. Am. J. Dent. 1996, 9, 245–248. [Google Scholar]
- Bindl, A.; Mörmann, W.H. Clinical evaluation of adhesively placed Cerec endo-crowns after 2 years-preliminary results. J. Adhes. Dent. 1999, 1, 255–265. [Google Scholar] [PubMed]
- Mazzoni, A.; Marchesi, G.; Cadenaro, M.; Mazzotti, G.; Di Lenarda, R.; Ferrari, M.; Breschi, L. Push-out stress for fibre posts luted using different adhesive strategies. Eur. J. Oral Sci. 2009, 117, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Radovic, I.; Mazzitelli, C.; Chieffi, N.; Ferrari, M. Evaluation of the adhesion of fiber posts cemented using different adhesive approaches. Eur. J. Oral Sci. 2008, 116, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Zicari, F.; Couthino, E.; De Munck, J.; Poitevin, A.; Scotti, R.; Naert, I.; Van Meerbeek, B. Bonding effectiveness and sealing ability of fiber-post bonding. Dent. Mater. 2008, 24, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; Dorigo, E.D.S. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- Reis, A.; Carrilho, M.; Breschi, L.; Loguercio, A. Overview of clinical alternatives to minimize the degradation of the resin-dentin bonds. Oper. Dent. 2013, 38, E103–E127. [Google Scholar] [CrossRef]
- Dündar, M.; Özcan, M.; Çömlekoğlu, M.; Şen, B. Nanoleakage inhibition within hybrid layer using new protective chemicals and their effect on adhesion. J. Dent. Res. 2011, 90, 93–98. [Google Scholar] [CrossRef]
- Marchesi, G.; Mazzoni, A.; Turco, G.; Cadenaro, M.; Ferrari, M.; Di Lenarda, R.; Breschi, L. Aging affects the adhesive interface of posts luted with self-adhesive cements: A 1-year study. J Adhes Dent 2013, 15, 173–180. [Google Scholar]
- Breschi, L.; Mazzoni, A.; De Stefano Dorigo, E.; Ferrari, M. Adhesion to intraradicular dentin: A review. J. Adhes. Sci. Technol. 2009, 23, 1053–1083. [Google Scholar] [CrossRef]
- Arrais, C.A.; Giannini, M.; Rueggeberg, F.A. Effect of sodium sulfinate salts on the polymerization characteristics of dual-cured resin cement systems exposed to attenuated light-activation. J. Dent. 2009, 37, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, R.L.; Powers, J.M. Craig’s Restorative Dental Materials-e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Salomão, F.M.; Vicentin, B.L.S.; Contreras, E.F.R.; Hoeppner, M.G.; Di Mauro, E. The influence of a translucent fiberglass post on the polymerization of dual cure resin cement analyzed by electron paramagnetic resonance. Mater. Res. 2015, 18, 1023–1028. [Google Scholar] [CrossRef]
- Arrais, C.A.; Rueggeberg, F.A.; Waller, J.L.; Mario, F.; Giannini, M. Effect of curing mode on the polymerization characteristics of dual-cured resin cement systems. J. Dent. 2008, 36, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, N.; Papsthart, G.; Hugo, B.; Klaiber, B. Comparison of photo-activation versus chemical or dual-curing of resin-based luting cements regarding flexural strength, modulus and surface hardness. J. Oral Rehabil. 2001, 28, 1022–1028. [Google Scholar] [CrossRef]
- Kournetas, N.; Tzoutzas, I.; Eliades, G. Monomer conversion in dual-cured core buildup materials. Oper. Dent. 2011, 36, 92–97. [Google Scholar] [CrossRef]
- Hashimoto, M.; Ohno, H.; Sano, H.; Kaga, M.; Oguchi, H. In vitro degradation of resin–dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials 2003, 24, 3795–3803. [Google Scholar] [CrossRef]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of curing modes on thermal stability, hardness development and network integrity of dual-cure resin cements. Dent. Mater. 2021, 37, 1854–1864. [Google Scholar] [CrossRef]
- Watson, T. Fact and artefact in confocal microscopy. Adv. Dent. Res. 1997, 11, 433–441. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Stansbury, J.; Burke, F.J.T. Self-adhesive resin cements–chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Skupien, J.; Cenci, M.; Moraes, R.; Pereira-Cenci, T. The role of resin cement on bond strength of glass-fiber posts luted into root canals: A systematic review and meta-analysis of in vitro studies. Oper. Dent. 2014, 39, E31–E44. [Google Scholar] [CrossRef]
- Pisani-Proença, J.; Erhardt, M.C.G.; Amaral, R.; Valandro, L.F.; Bottino, M.A.; Del Castillo-Salmerón, R. Influence of different surface conditioning protocols on microtensile bond strength of self-adhesive resin cements to dentin. J. Prosthet. Dent. 2011, 105, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Bitter, K.; Paris, S.; Martus, P.; Schartner, R.; Kielbassa, A. A confocal laser scanning microscope investigation of different dental adhesives bonded to root canal dentine. Int. Endod. J. 2004, 37, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, G.; Karajouli, G.; Tunjan, R.; Spintig, T.; Bitter, K.; Naumann, M. Damage of lithium-disilicate all-ceramic restorations by an experimental self-adhesive resin cement used as core buildups. Clin. Oral Investig. 2015, 19, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Menezes, M.; Queiroz, E.; Campos, R.; Martins, L.; Soares, C. Influence of endodontic sealer cement on fibreglass post bond strength to root dentine. Int. Endod. J. 2008, 41, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.S.; Murchison, D.F.; Walker, W.A., III. Effects of eugenol and noneugenol endodontic sealer cements on post retention. J. Endod. 1998, 24, 564–567. [Google Scholar] [CrossRef]
- Kielbassa, A.; Attin, T.; Hellwig, E. Diffusion behavior of eugenol from zinc oxide-eugenol mixtures through human and bovine dentin in vitro. Oper. Dent. 1997, 22, 15–20. [Google Scholar] [PubMed]
- Tian, F.; Jett, K.; Flaugher, R.; Arora, S.; Bergeron, B.; Shen, Y.; Tay, F. Effects of dentine surface cleaning on bonding of a self-etch adhesive to root canal sealer-contaminated dentine. J. Dent. 2021, 112, 103766. [Google Scholar] [CrossRef]
- Pereira, R.D.; Leoni, G.B.; Silva-Sousa, Y.T.; Gomes, E.A.; Dias, T.R.; Brito-Júnior, M.; Sousa-Neto, M.D. Impact of conservative endodontic cavities on root canal preparation and biomechanical behavior of upper premolars restored with different materials. J. Endod. 2021, 47, 989–999. [Google Scholar] [CrossRef]
- Silva, E.; Pinto, K.; Ferreira, C.; Belladonna, F.; De-Deus, G.; Dummer, P.; Versiani, M. Current status on minimal access cavity preparations: A critical analysis and a proposal for a universal nomenclature. Int. Endod. J. 2020, 53, 1618–1635. [Google Scholar] [CrossRef]
- Ilie, N.; Bucuta, S.; Draenert, M. Bulk-fill resin-based composites: An in vitro assessment of their mechanical performance. Oper. Dent. 2013, 38, 618–625. [Google Scholar] [CrossRef]
- Isufi, A.; Plotino, G.; Grande, N.M.; Ioppolo, P.; Testarelli, L.; Bedini, R.; Al-Sudani, D.; Gambarini, G. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite. Ann. Di Stomatol. 2016, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Chersoni, S.; Montebugnoli, L.; Montanari, G. Effect of air, dentin and resin-based composite thickness on light intensity reduction. Am. J. Dent. 1999, 12, 231–234. [Google Scholar] [PubMed]
- Rueggeberg, F.A.; Caughman, W.F.; Curtis Jr, J.; Davis, H. Factors affecting cure at depths within light-activated resin composites. Am. J. Dent. 1993, 6, 91–95. [Google Scholar]
- Naumann, M.; Sterzenbach, G.; Rosentritt, M.; Beuer, F.; Meyer-Lückel, H.; Frankenberger, R. Self-adhesive cements as core buildups for one-stage post-endodontic restorations? Int. Endod. J. 2011, 44, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Pest, L.B.; Cavalli, G.; Bertani, P.; Gagliani, M. Adhesive post-endodontic restorations with fiber posts: Push-out tests and SEM observations. Dent. Mater. 2002, 18, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Monoblocks in root canals: A hypothetical or a tangible goal. J. Endod. 2007, 33, 391–398. [Google Scholar] [CrossRef]
- Ferrari, M.; Carvalho, C.; Goracci, C.; Antoniolli, F.; Mazzoni, A.; Mazzotti, G.; Cadenaro, M.; Breschi, L. Influence of luting material filler content on post cementation. J. Dent. Res. 2009, 88, 951–956. [Google Scholar] [CrossRef]
- Feilzer, A.J.; De Gee, A.J.; Davidson, C. Setting stress in composite resin in relation to configuration of the restoration. J. Dent. Res. 1987, 66, 1636–1639. [Google Scholar] [CrossRef]
- Magne, P.; Lazari, P.; Carvalho, M.; Johnson, T.; Del Bel Cury, A. Ferrule-effect dominates over use of a fiber post when restoring endodontically treated incisors: An in vitro study. Oper. Dent. 2017, 42, 396–406. [Google Scholar] [CrossRef]
- Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. “Ferrule comes first. Post is second!” Fake news and alternative facts? A systematic review. J. Endod. 2018, 44, 212–219. [Google Scholar] [CrossRef]
- Avila, G.; Galindo-Moreno, P.; Soehren, S.; Misch, C.E.; Morelli, T.; Wang, H.L. A novel decision-making process for tooth retention or extraction. J. Periodontol. 2009, 80, 476–491. [Google Scholar] [CrossRef] [PubMed]
- Gegauff, A.G. Effect of crown lengthening and ferrule placement on static load failure of cemented cast post-cores and crowns. J. Prosthet. Dent. 2000, 84, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Tada, S.; Allen, P.; Ikebe, K.; Zheng, H.; Shintani, A.; Maeda, Y. The impact of the crown-root ratio on survival of abutment teeth for dentures. J. Dent. Res. 2015, 94, 220S–225S. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.M.; Kelly, A.; Tagiyeva, N.; Kanagasingam, S. Comparing endocrown restorations on permanent molars and premolars: A systematic review and meta-analysis. Br. Dent. J. 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Al-Dabbagh, R.A. Survival and success of endocrowns: A systematic review and meta-analysis. J. Prosthet. Dent. 2021, 125, 415.e411–415.e419. [Google Scholar] [CrossRef]
- Abtahi, S.; Alikhasi, M.; Siadat, H. Biomechanical behavior of endocrown restorations with different cavity design and CAD-CAM materials under a static and vertical load: A finite element analysis. J. Prosthet. Dent. 2022, 127, 600.e601–600.e608. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Lo Giudice, R.; Dos Santos, A.F.C.; Borges, A.L.S.; Silva-Concílio, L.R.; Amaral, M.; Lo Giudice, G. Lithium disilicate ceramic endocrown biomechanical response according to different pulp chamber extension angles and filling materials. Materials 2021, 14, 1307. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Sun, J.; Jiang, L.; Wu, Y.; He, J.; Ruan, W.; Yan, W. Influence of margin design and restorative material on the stress distribution of endocrowns: A 3D finite element analysis. BMC Oral Health 2022, 22, 30. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Sample Size | Brand Name | Post Material | Final Restoration | Failure Rate | Period (Months) |
---|---|---|---|---|---|---|---|
Fredriksson et al. [7] | 1998 | 236 | Composipost | Carbon | All ceramic/metal-ceramic crown | 2% | 27–41 m |
Ferrari et al. [8] | 2000 | 100 | Composipost | Carbon | All ceramic/metal-ceramic crown | 2% | 48 m |
Mannocci et al. [9] | 2002 | 110 | Carbon posts | Carbon | Direct Composite | 3.8% | 60 m |
King et al. [10] | 2003 | 10 | Carbon posts | Carbon | All ceramic/metal-ceramic crown | 40% | 87 m |
Hedlund et al. [11] | 2003 | 65 | Composipost Endopost | Carbon | All ceramic/metal-ceramic crown | 3% | 28 m |
Naumann et al. [12] | 2005 | 149 |
FiberKor, ER, Brasseler | Glass | All ceramic/metal-ceramic crown | 19.7% | 39 m |
Schmitter et al. [13] | 2007 | 50 | ER, Brasseler | Glass | All ceramic/metal-ceramic crown | 6.5% | 14 m |
Ferrari et al. [14] | 2007 | 985 |
Composipost EsthetiPost EsthetiPost Plus | Carbon-Quartz | All ceramic/metal-ceramic crown | 7–11% | 84–132 m |
Bitter et al. [15] | 2009 | 32 | DT Light Post | Quartz | Direct composite/full crown | 7% | 36 m |
Schmitter et al. [16] | 2011 | 50 | ER, Brasseler | Glass | All ceramic/metal-ceramic crown | 28.2% | 61 m |
Naumann et al. [17] | 2012 | 157 | Luscent Anchors (Dentatus) DentinPost (Komet) | Glass | All ceramic/metal-ceramic crown | 4.6% | 120 m |
Sterzenbach et al. [18] | 2012 | 46 | White Post DC | Glass | All ceramic/metal-ceramic crown | 9.8% | 84 m |
Sarkis-Onofre et al. [19] | 2014 | 72 | White Post DC | Glass | All ceramic/metal-ceramic crown | 2.9% | 36 m |
Parisi et al. [20] | 2015 | 114 | Light-Post; | Glass | All ceramic/metal-ceramic crown | 14.1% | 70 m |
Cloet et al. [21] | 2017 | 203 | Parapost FibreLux | Glass | All ceramic crown | 9.2% | 60 m |
Bergoli et al. [22] | 2018 | 70 | White Post DC (FGM) | Glass | All ceramic crown | 7.3 | 37 m |
Remaining Dental Tissue | A 2 mm Margin of Healthy Tissue is Considered Adequate to Provide the Ferrule Effect that Protects the Root. |
---|---|
Post Length | The length of the post must be equal to or greater than that of the crown, or two-thirds the length of the root, with a minimum of 4 mm apical seal. |
Post width | The larger the diameter, the lower is the fracture resistance of the tooth. |
Resin cement | Self or dual-cure resin cements are recommended; such cements are not fully set just after cementation, even if light-polymerization is used. Therefore, a waiting period of 24 h before final tooth preparation is recommended to ensure maximum polymerization and post-retention. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshabib, A.; Abid Althaqafi, K.; AlMoharib, H.S.; Mirah, M.; AlFawaz, Y.F.; Algamaiah, H. Dental Fiber-Post Systems: An In-Depth Review of Their Evolution, Current Practice and Future Directions. Bioengineering 2023, 10, 551. https://doi.org/10.3390/bioengineering10050551
Alshabib A, Abid Althaqafi K, AlMoharib HS, Mirah M, AlFawaz YF, Algamaiah H. Dental Fiber-Post Systems: An In-Depth Review of Their Evolution, Current Practice and Future Directions. Bioengineering. 2023; 10(5):551. https://doi.org/10.3390/bioengineering10050551
Chicago/Turabian StyleAlshabib, Abdulrahman, Khaled Abid Althaqafi, Hani S. AlMoharib, Mahir Mirah, Yasser F. AlFawaz, and Hamad Algamaiah. 2023. "Dental Fiber-Post Systems: An In-Depth Review of Their Evolution, Current Practice and Future Directions" Bioengineering 10, no. 5: 551. https://doi.org/10.3390/bioengineering10050551
APA StyleAlshabib, A., Abid Althaqafi, K., AlMoharib, H. S., Mirah, M., AlFawaz, Y. F., & Algamaiah, H. (2023). Dental Fiber-Post Systems: An In-Depth Review of Their Evolution, Current Practice and Future Directions. Bioengineering, 10(5), 551. https://doi.org/10.3390/bioengineering10050551