Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metabolic Network Analysis
2.2. Plasmid Construction
2.3. Reconstruction of Expression Vector
2.4. Gene Modules Construction
Plasmid | Encoded Gene | Description | Reference |
---|---|---|---|
pET-28a | High-copy-number, T7 promotor, pBR322 ori, KanR | [27] | |
pET-28a_mdh2 | mdh2 gene from B. methanolicus MGA3 | The mdh2 gene was amplified from synthesized mdh2 with codon optimization using primers 01 and 02 and ligated into the NheI/BamHI site of pET-28a. | [27] |
pET-28a_mdh-CT | mdh-CT gene from Cupriavidus necator N-1 | The mdh-CT gene was amplified from synthesized mdh-CT with codon optimization using primers 03 and 04 and ligated into the NheI/HindIII site of pET-28a. | This study |
pET-28a_TaADH | TaADH gene from Thermoplasma acidophilum DSM 1728 | The TaADH gene was amplified from Thermoplasma acidophilum DSM 1728 using primers 05 and 06 and ligated into the NheI/HindIII site of pET-28a. | This study |
pET-28a_hps-phi | The artificial fusion of hps and phi with codon optimization | The artificial fusion of the hps and phi genes was amplified using primers 07 and 08 and ligated into the NdeI/XhoI site of pET-28a. | This study |
pACYCDuet-1 | High-copy-number, T7 promotor, P15A ori, CmR | Novagen | |
pTrc99a | High-copy-number, Trc promotor, pBR322 ori, AmpR | Novagen | |
pZQ | The two T7 promotors of pACYCDuet-1 were replaced by the Trc promotor of pTrc99a using primers 09, 10, 11, 12, 13, 14, 15, and 16 according to the method of GGA. | This study | |
pZQ_mdh2 | mdh2 gene from B. methanolicus MGA3 | The mdh2 gene was amplified from synthesized mdh2 with codon optimization using primers 17 and 18 and ligated into the BamHI/EcoRI site of pZQ. | This study |
pZQ_mdh2-hps-phi | mdh2 gene from B. methanolicus MGA3 and artificial fusion of hps and phi with codon optimization | The artificial fusion of the hps and phi genes was amplified using primers 19 and 20 and ligated into the NdeI/XhoI site of pZQ_mdh2. | This study |
pBHR68 | phaA, phaB, and phaC from Ralstonia eutropha | phaA, phaB, and phaC expression plasmid, pBluescript SK¯ derivative, AmpR | [26] |
pBHR70 | phaA, phaB, phaC, fbp and fxpk from Bifidobacterium adolescentis | phaA, phaB, phaC, fbp and fxpk expression plasmid, pBluescript SK¯ derivative, AmpR | This study |
pTKRED | pSC101 replication, ParaBAD-driven I-SceI gene, λ-Red, SpR | [28] | |
pTKS/CS | p15A replication, LP regions, I-SceI restriction sites, CmR, TetR | [28] |
2.5. Genome Manipulation
Strain | Feature | Source |
---|---|---|
JM109 | E. coli, recA1, endA1, gyrA96, thi, hsdR17, supE44, relA1, Δ(lac proAB)/F’ [traD36, proAB+, lacq lacZΔM15] | TransGen Biotech |
BL21(DE3) | E. coli, F–, ompT, gal, dcm, lon, hsdSB(rB- mB-), λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) | TransGen Biotech |
BL21-pet28a_mdh2 | BL21(DE3), pet28a_mdh2 | This study |
BL21-pet28a_mdh-CT | BL21(DE3), pet28a_mdh-CT | This study |
BL21-pet28a_TaADH | BL21(DE3), pet28a_TaADH | This study |
BL21-pet28a_ hps-phi | BL21(DE3), pet28a_ hps-phi | This study |
JM109-Δfrm | E. coli JM109, ΔfrmA | This study |
JM109-Δfrm-mdh2 | JM109-Δfrm, pZQ_mdh2 | This study |
JM109-Δfrm-C1 | JM109-Δfrm, pZQ_mdh2-hps-phi | This study |
JM109-NOG | JM109, Pfbp::PJ23100, ::fxpk | [29] |
JM109-NOG-Δfrm | JM109-NOG, ΔfrmA | This study |
JM109-NOG-Δfrm-PHB | JM109-NOG-Δfrm, pBHR68 | This study |
JM109-NOG-Δfrm-C1-PHB | JM109-NOG-Δfrm, pZQ_mdh2-hps-phi and pBHR68 | This study |
JM109-Δfrm-C1-PHB | JM109-Δfrm, pZQ_mdh2-hps-phi and pBHR68 | This study |
JM109-NOG-Δfrm-C1-PHB-NOG | JM109-NOG-frm, pZQ_mdh2-hps-phi and pBHR70 | This study |
2.6. Gene Expression in E. coli and Protein Purification
2.7. Enzyme Activity Measurement
2.7.1. Assay of NAD-Dependent Methanol Dehydrogenase Activity In Vitro
2.7.2. Assay of Hps–phi Fusion Activity In Vitro
2.7.3. Enzyme Activity Measurement by Formaldehyde Production/Consumption In Vivo
2.7.4. PHB Production and Assay of PHB
3. Results
3.1. Prediction of Optimal PHB Production Pathway
3.2. Evaluation of the Effect of frmA Deletion on the Degradation of Formaldehyde
3.3. Construction of C1 Assimilation Module
3.4. Evaluation of the Effect of C1 and NOG Module on PHB Production from Methanol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, S.K.S.; Gupta, R.K.; Kalia, V.C.; Lee, J.-K. Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour. Technol. 2021, 323, 124550. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Patel, S.K.S.; Gupta, R.K.; Otari, S.V.; Gao, H.; Lee, J.-K.; Zhang, L. Enhanced Saccharification and Fermentation of Rice Straw by Reducing the Concentration of Phenolic Compounds Using an Immobilized Enzyme Cocktail. Biotechnol. J. 2019, 14, 1800468. [Google Scholar] [CrossRef] [PubMed]
- Zezzi do Valle Gomes, M.; Palmqvist, A.E.C. Influence of operating conditions and immobilization on activity of alcohol dehydrogenase for the conversion of formaldehyde to methanol. New J. Chem. 2017, 41, 11391–11397. [Google Scholar] [CrossRef]
- Westlake, R. Large-scale Continuous Production of Single Cell Protein. Chem. Ing. Tech. 1986, 58, 934–937. [Google Scholar] [CrossRef]
- Windass, J.D.; Worsey, M.J.; Pioli, E.M.; Pioli, D.; Barth, P.T.; Atherton, K.T.; Dart, E.C.; Byrom, D.; Powell, K.; Senior, P.J. Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature 1980, 287, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Schrader, J.; Schilling, M.; Holtmann, D.; Sell, D.; Filho, M.V.; Marx, A.; Vorholt, J.A. Methanol-based industrial biotechnology: Current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 2009, 27, 107–115. [Google Scholar] [CrossRef]
- Brautaset, T.; Jakobsen, O.M.; Josefsen, K.D.; Flickinger, M.C.; Ellingsen, T.E. Bacillus methanolicus: A candidate for industrial production of amino acids from methanol at 50 degrees C. Appl. Microbiol. Biotechnol. 2007, 74, 22–34. [Google Scholar] [CrossRef]
- Whitaker, W.B.; Jones, J.A.; Bennett, R.K.; Gonzalez, J.E.; Vernacchio, V.R.; Collins, S.M.; Palmer, M.A.; Schmidt, S.; Antoniewicz, M.R.; Koffas, M.A.; et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab. Eng. 2017, 39, 49–59. [Google Scholar] [CrossRef]
- Sanford, P.A.; Woolston, B.M. Synthetic or natural? Metabolic engineering for assimilation and valorization of methanol. Curr. Opin. Biotechnol. 2022, 74, 171–179. [Google Scholar] [CrossRef]
- Muller, J.E.N.; Meyer, F.; Litsanov, B.; Kiefer, P.; Potthoff, E.; Heux, S.; Quax, W.J.; Wendisch, V.F.; Brautaset, T.; Portais, J.C.; et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 2015, 28, 190–201. [Google Scholar] [CrossRef]
- Bogorad, I.W.; Chen, C.T.; Theisen, M.K.; Wu, T.Y.; Schlenz, A.R.; Lam, A.T.; Liao, J.C. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc. Natl. Acad. Sci. USA 2014, 111, 15928–15933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haynes, C.A.; Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 2014, 10, 331–339. [Google Scholar] [CrossRef]
- Anderson, A.J.; Dawes, E.A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990, 54, 450–472. [Google Scholar] [CrossRef]
- Lee, S.Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996, 49, 1–14. [Google Scholar] [CrossRef]
- Williams, S.F.; Martin, D.P.; Horowitz, D.M.; Peoples, O.P. PHA applications: Addressing the price performance issue: I. Tissue engineering. Int. J. Biol. Macromol. 1999, 25, 111–121. [Google Scholar] [CrossRef] [PubMed]
- van der Walle, G.A.M.; Buisman, G.J.H.; Weusthuis, R.A.; Eggink, G. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int. J. Biol. Macromol. 1999, 25, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Müller-Santos, M.; Koskimäki, J.J.; Alves, L.P.S.; de Souza, E.M.; Jendrossek, D.; Pirttilä, A.M. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol. Rev. 2020, 45, fuaa058. [Google Scholar] [CrossRef]
- Orth, J.D.; Thiele, I.; Palsson, B.O. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Monk, J.M.; Lloyd, C.J.; Brunk, E.; Mih, N.; Sastry, A.; King, Z.; Takeuchi, R.; Nomura, W.; Zhang, Z.; Mori, H.; et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 2017, 35, 904–908. [Google Scholar] [CrossRef]
- Ebrahim, A.; Lerman, J.A.; Palsson, B.O.; Hyduke, D.R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 2013, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, T.Y.; Chen, C.T.; Liu, J.T.; Bogorad, I.W.; Damoiseaux, R.; Liao, J.C. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Appl. Microbiol. Biotechnol. 2016, 100, 4969–4983. [Google Scholar] [CrossRef] [Green Version]
- Marino-Marmolejo, E.N.; De Leon-Rodriguez, A.; de la Rosa, A.P.; Santos, L. Heterologous expression and characterization of an alcohol dehydrogenase from the archeon Thermoplasma acidophilum. Mol. Biotechnol. 2009, 42, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Orita, I.; Sakamoto, N.; Kato, N.; Yurimoto, H.; Sakai, Y. Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. Appl. Microbiol. Biotechnol. 2007, 76, 439–445. [Google Scholar] [CrossRef]
- Engler, C.; Kandzia, R.; Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 2008, 3, e3647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiekermann, P.; Rehm, B.H.; Kalscheuer, R.; Baumeister, D.; Steinbuchel, A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 1999, 171, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Silva-Rocha, R.; Martínez-García, E.; Calles, B.; Chavarría, M.; Arce-Rodríguez, A.; de Las Heras, A.; Páez-Espino, A.D.; Durante-Rodríguez, G.; Kim, J.; Nikel, P.I.; et al. The Standard European Vector Architecture (SEVA): A coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 2013, 41, D666–D675. [Google Scholar] [CrossRef]
- Kuhlman, T.E.; Cox, E.C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res. 2010, 38, e92. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yuan, Q.; Zheng, Y.; Ma, H.; Chen, T.; Zhao, X. An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli. Biotechnol. Lett. 2016, 38, 1359–1365. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Wen, L.; Huang, K.; Liu, Y.; Wang, P.G. Facile Enzymatic Synthesis of Phosphorylated Ketopentoses. ACS Catal. 2016, 6, 1649–1654. [Google Scholar] [CrossRef]
- Kruger, N.J. The Bradford method for protein quantitation. Methods Mol. Biol. 1994, 32, 9–15. [Google Scholar] [PubMed]
- Yasueda, H.; Kawahara, Y.; Sugimoto, S. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J. Bacteriol. 1999, 181, 7154–7160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lessmeier, L.; Pfeifenschneider, J.; Carnicer, M.; Heux, S.; Portais, J.C.; Wendisch, V.F. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl. Microbiol. Biotechnol. 2015, 99, 10163–10176. [Google Scholar] [CrossRef]
- Nash, T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 1953, 55, 416–421. [Google Scholar] [CrossRef] [Green Version]
- Abe, H.; Doi, Y.; Fukushima, T.; Eya, H. Biosynthesis from gluconate of a random copolyester consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates by Pseudomonas sp. 61-3. Int. J. Biol. Macromol. 1994, 16, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Lin, Z.; Zhang, Y.; Li, Y.; Wang, Z.; Chen, T. Improved poly(3-hydroxybutyrate) production in Escherichia coli by inactivation of cytochrome bd-II oxidase or/and NDH-II dehydrogenase in low efficient respiratory chains. J. Biotechnol. 2014, 192 Pt A, 170–176. [Google Scholar] [CrossRef]
- Gutheil, W.G.; Holmquist, B.; Vallee, B.L. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: A class III alcohol dehydrogenase. Biochemistry 1992, 31, 475–481. [Google Scholar] [CrossRef]
- Gonzalez, C.F.; Proudfoot, M.; Brown, G.; Korniyenko, Y.; Mori, H.; Savchenko, A.V.; Yakunin, A.F. Molecular basis of formaldehyde detoxification. Characterization of two S-formylglutathione hydrolases from Escherichia coli, FrmB and YeiG. J. Biol. Chem. 2006, 281, 14514–14522. [Google Scholar] [CrossRef] [Green Version]
- Bogorad, I.W.; Lin, T.S.; Liao, J.C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 2013, 502, 693–697. [Google Scholar] [CrossRef]
- Li, H.F.; Tian, L.; Lian, G.; Fan, L.H.; Li, Z.J. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch. Front. Bioeng. Biotechnol. 2023, 11, 1130368. [Google Scholar] [CrossRef] [PubMed]
- Yim, S.S.; Choi, J.W.; Lee, Y.J.; Jeong, K.J. Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum. Microb. Cell Fact. 2023, 22, 29. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Firyal, S.; Tayyab, M.; Irfan, M.; Mohy ud Din, A.; Mehmood, T. Bioconversion of apple peels (Malus domestica) to polyhydroxybutyrate using statistical design to optimize process parameters through Bacillus thuringiensis via solid-state fermentation. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
Enzyme Activity (mU/mg) | In Vitro | In Vivo | Description | Sources | Reference |
---|---|---|---|---|---|
mdh2 | 11.4 | 9.2 | Higher activity in vivo | B. methanolicus MGA3 | [10] |
TaADH (Ta1316 ADH) | 0.9 | - | High relative activity in vitro at high temperature | T. acidophilum DSM 1728 | [23] |
mdh-CT | 4.8 | 0.43 | Higher activity in vitro | C. necator N-1 | [22] |
Hps-phi | 4400 | 1602 | Higher efficiency than a simple mixture of individual enzymes | M. gastri MB19 | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Chen, Z.; Deng, X.; Yuan, Q.; Ma, H. Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol. Bioengineering 2023, 10, 415. https://doi.org/10.3390/bioengineering10040415
Wang J, Chen Z, Deng X, Yuan Q, Ma H. Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol. Bioengineering. 2023; 10(4):415. https://doi.org/10.3390/bioengineering10040415
Chicago/Turabian StyleWang, Jiaying, Zhiqiang Chen, Xiaogui Deng, Qianqian Yuan, and Hongwu Ma. 2023. "Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol" Bioengineering 10, no. 4: 415. https://doi.org/10.3390/bioengineering10040415
APA StyleWang, J., Chen, Z., Deng, X., Yuan, Q., & Ma, H. (2023). Engineering Escherichia coli for Poly-β-hydroxybutyrate Production from Methanol. Bioengineering, 10(4), 415. https://doi.org/10.3390/bioengineering10040415