Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Methods
2.1. Fabrication of Vibro-Acoustic Exposure Device
2.2. Platelet Preparation
2.3. Platelet Activation State
2.4. Effect of Snoring on Platelet Activation
2.5. Scanning Electron Microscopy
2.6. Effect of Vibro-Acoustic Stimulation on Platelet Activation
2.7. Effect of Epinephrine on Platelets Pre-Exposed to Snore
2.8. Effect of Hypoxia on Platelets Exposed to Snore
2.9. Effect of Aspirin on Snore-Mediated Platelet Activation
2.10. Optoacoustic Vibration Patterns Generated by Snore Frequency Components
2.11. Statistical Analysis
3. Results
3.1. Mechanical Characterization of Vibro-Acoustic Exposure Device
3.2. Effect of Contact versus Noncontact on Snore-Mediated Platelet Activation
3.3. Effect of Time of Exposure on Snore-Mediated Platelet Activation
3.4. Effect of Snore Vibro-Acoustic Exposure on Platelet Morphology
3.5. Effect of Varying Snore Intensity on Platelet Activation
3.6. Effect of Differing Dominant Frequencies on Snore-Mediated Platelet Activation
3.7. Effect of Epinephrine versus Epinephrine + Snore-Associated Vibration on Platelet Activation
3.8. Effect of Hypoxia versus Hypoxia + Snore-Associated Vibration on Platelet Activation
3.9. Combined Effects of Epinephrine and Hypoxia with Snore Vibration Platelet Activation
3.10. Effect of Aspirin on Snore and Combinational Agonist-Mediated Platelet Activation
3.11. Optoacoustic Vibration Patterns Generated by Snore Frequency Components
4. Discussion
4.1. Vibro-Acoustic Stimulation of Biological Cells
4.2. Vibration Effects on Stresses Acting on Flowing Platelets
4.3. Effects of Vibro-Acoustic Dose on Platelet Activation
4.4. Effect of Frequency on Platelet Activation
4.5. Combined Effects of Vibration and Biochemical Agonists on Platelet Activation
4.6. Combined Effect of Aspirin, Agonist, and Snore-Associated Vibration on Platelet Activation
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Victor, L.D. Obstructive Sleep Apnea. Am. Fam. Physician 1999, 60, 2279–2286. [Google Scholar] [PubMed]
- Parish, J.M.; Somers, V.K. Obstructive sleep apnea and cardiovascular disease. Mayo Clin. Proc. 2004, 79, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Semelka, M.; Wilson, J.; Floyd, R.; Health, E.; Hospital, L. Diagnosis and Treatment of Obstructive Sleep Apnea in Adults. Am. Fam. Physician 2016, 94, 355–360. [Google Scholar] [PubMed]
- Alghanim, N.; Comondore, V.R.; Fleetham, J.; Marra, C.A.; Ayas, N.T. The economic impact of obstructive sleep apnea. Lung 2008, 186, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Somers, V.K.; White, D.P.; Amin, R.; Abraham, W.T.; Costa, F.; Culebras, A.; Daniels, S.; Floras, J.S.; Hunt, C.E.; Olson, L.J.; et al. Sleep Apnea and Cardiovascular Disease: An American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. Circulation 2008, 118, 1080–1111. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Palta, M.; Dempsey, J.; Peppard, P.E.; Nieto, F.J.; Hla, K.M. Burden of Sleep Apnea: Rationale, Design, and Major Findings of the Wisconsin Sleep Cohort Study. WMJ 2009, 108, 246–249. [Google Scholar]
- Friedman, O.; Logan, A.G. The Price of Obstructive Sleep Apnea—Hypopnea: Hypertension and Other Ill Effects. Am. J. Hypertens. 2009, 22, 474–483. [Google Scholar] [CrossRef]
- Palomaki, H. Snoring and the risk of ischemic brain infarction. Stroke 1991, 22, 1021–1025. [Google Scholar] [CrossRef]
- Bai, J.; He, B.; Wang, N.; Chen, Y.; Liu, J.; Wang, H.; Liu, D. Snoring Is Associated with Increased Risk of Stroke: A Cumulative Meta-Analysis. Front. Neurol. 2021, 12, 574649. [Google Scholar] [CrossRef]
- Lavie, L. From Oxidative Stress to Cardiovascular Risk in Obstructive Sleep Apnoea. Somnologie 2006, 10, 113–119. [Google Scholar] [CrossRef]
- Redline, S.; Yenokyan, G.; Gottlieb, D.J.; Shahar, E.; O’Connor, G.T.; Resnick, H.E.; Diener-West, M.; Sanders, M.H.; Wolf, P.A.; Geraghty, E.M.; et al. Obstructive sleep apnea-hypopnea and incident stroke: The sleep heart health study. Am. J. Respir. Crit. Care Med. 2010, 182, 269–277. [Google Scholar] [CrossRef]
- Yaggi, H.K.; Concato, J.; Kernan, W.N.; Lichtman, J.H.; Brass, L.M.; Mohsenin, V. Obstructive Sleep Apnea as a Risk Factor for Stroke and Death. N. Engl. J. Med. 2005, 353, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, C.; Sandberg, O.; Gustafson, Y.; Bucht, G.; Carlberg, B.; Stenlund, H.; Franklin, K.A. Obstructive sleep apnea is a risk factor for death in patients with stroke: A 10-year follow-up. Arch. Intern. Med. 2008, 168, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Butt, M.; Dwivedi, G.; Khair, O.; Lip, G.Y.H. Obstructive sleep apnea and cardiovascular disease. Int. J. Cardiol. 2010, 139, 7–16. [Google Scholar] [CrossRef]
- Jehan, S.; Farag, M.; Zizi, F.; Pandi-Perumal, S.R.; Chung, A.; Truong, A.; Tello, D.; McFarlane, S.I. Obstructive sleep apnea and stroke HHS Public Access. Sleep Med. Disord. 2018, 2, 120–125. [Google Scholar]
- Palomaki, H.; Partinen, M.; Juvela, S.; Kaste, M. Snoring as a Risk Factor for Sleep-Related Brain Infarction. 1989. Available online: http://ahajournals.org (accessed on 21 November 2023).
- Bhopal, R.S. Snoring as a risk factor for disease. Br. Med. J. 1985, 291, 1204. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Shukla, G. Obstructive sleep apnea and stroke. J. Clin. Sleep Med. 2018, 14, 1819. [Google Scholar] [CrossRef]
- Lipford, M.C.; Flemming, K.D.; Calvin, A.D.; Mandrekar, J.; Brown, R.D.; Somers, V.K.; Caples, S.M. Associations between cardioembolic stroke and obstructive sleep apnea. Sleep 2015, 38, 1699–1705. [Google Scholar] [CrossRef]
- Peng, Y.-H.; Liao, W.-C.; Chung, W.-S.; Muo, C.-H.; Chu, C.-C.; Liu, C.-J.; Kao, C.-H. Association between obstructive sleep apnea and deep vein thrombosis/pulmonary embolism: A population-based retrospective cohort study. Thromb. Res. 2014, 134, 340–345. [Google Scholar] [CrossRef]
- Eisensehr, I.; Noachtar, S. Haematological aspects of obstructive sleep apnoea. Sleep Med. Rev. 2001, 5, 207–221. [Google Scholar] [CrossRef]
- Eckert, D.J.; Malhotra, A.; Jordan, A.S. Mechanisms of apnea. Prog Cardiovasc Dis. 2009, 51, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Hermann, D.M.; Bassetti, C.L. Role of sleep-disordered breathing and sleep-wake disturbances for stroke and stroke recovery. Neurology 2016, 87, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Wolk, R.; Somers, V.K. Sleep and the metabolic syndrome. Exp. Physiol. 2007, 92, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Bokinsky, G.; Miller, M.; Ault, K.; Husband, P.; Mitchell, J. Spontaneous Platelet Activation and Aggregation During Obstructive Sleep Apnea and Its Response to Therapy with Nasal Continuous Positive Airway Pressure. Chest 1995, 108, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Sanner, B.M.; Konermann, M.; Tepel, M.; Groetz, J.; Mummenhoff, C.; Zidek, W. Platelet function in patients with obstructive sleep apnoea syndrome. Eur. Respir. J. 2000, 16, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Geiser, T.; Buck, F.; Beat, J.M.; Bassetti, C.; Haeberli, A.; Gugger, M. In vivo Platelet Activation Is Increased during Sleep in Patients with Obstructive Sleep Apnea Syndrome. Respiration 2002, 69, 229–234. [Google Scholar] [CrossRef]
- Peled, N.; Kassirer, M.; Kramer, M.R.; Rogowski, O.; Shlomi, D.; Fox, B.; Berliner, A.S.; Shitrit, D. Increased erythrocyte adhesiveness and aggregation in obstructive sleep apnea syndrome. Thromb. Res. 2008, 121, 631–636. [Google Scholar] [CrossRef]
- Minoguchi, K.; Yokoe, T.; Tazaki, T.; Minoguchi, H.; Oda, N.; Tanaka, A.; Yamamoto, M.; Ohta, S.; O’Donnell, C.P.; Adachi, M. Silent brain infarction and platelet activation in obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2007, 175, 612–617. [Google Scholar] [CrossRef]
- Yardim-Akaydin, S.; Caliskan-Can, E.; Firat, H.; Ardic, S.; Simsek, B. Influence of gender on C-reactive protein, fibrinogen, and erythrocyte sedimentation rate in obstructive sleep apnea. Antiinflamm. Antiallergy Agents Med. Chem. 2014, 13, 56–63. [Google Scholar] [CrossRef]
- Tyagi, T.; Ahmad, S.; Gupta, N.; Sahu, A.; Ahmad, Y.; Nair, V.; Chatterjee, T.; Bajaj, N.; Sengupta, S.; Ganju, L.; et al. Altered expression of platelet proteins and calpain activity mediate hypoxia-induced prothrombotic phenotype. Blood 2014, 123, 1250–1260. [Google Scholar] [CrossRef]
- Ingber, D.E. Cellular mechanotransduction: Putting all the pieces together again. FASEB J. 2006, 20, 811–827. [Google Scholar] [CrossRef]
- Wang, N. Review of cellular mechanotransduction. J. Phys. D Appl. Phys. 2017, 50, 233002. [Google Scholar] [CrossRef]
- Slepian, M.J.; Sheriff, J.; Hutchinson, M.; Tran, P.; Bajaj, N.; Garcia, J.G.; Saavedra, S.S.; Bluestein, D. Shear-mediated platelet activation in the free flow: Perspectives on the emerging spectrum of cell mechanobiological mechanisms mediating cardiovascular implant thrombosis. J. Biomech. 2017, 50, 20–25. [Google Scholar] [CrossRef]
- Vibrations in Fluid–Structure Interaction Systems. In Flow-Induced Vibrations; Academic Press: Cambridge, MA, USA, 2014; pp. 359–401. [CrossRef]
- Mihaescu, M.; Murugappan, S.; Kalra, M.; Khosla, S.; Gutmark, E. Large Eddy simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: An investigation of obstructive sleep apnea. J. Biomech. 2008, 41, 2279–2288. [Google Scholar] [CrossRef]
- Mihaescu, M.; Mylavarapu, G.; Gutmark, E.J.; Powell, N.B. Large Eddy Simulation of the pharyngeal airflow associated with Obstructive Sleep Apnea Syndrome at pre and post-surgical treatment. J. Biomech. 2011, 44, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Fleck, R.J.; Ishman, S.L.; Shott, S.R.; Gutmark, E.J.; McConnell, K.B.; Mahmoud, M.; Mylavarapu, G.; Subramaniam, D.R.; Szczesniak, R.; Amin, R.S. Dynamic volume computed tomography imaging of the upper airway in obstructive sleep apnea. J. Clin. Sleep Med. 2017, 13, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.; Odeh, M.; Oliven, A.; Gavriely, N. The acoustic properties of snores. Eur. Respir. J. 1995, 8, 2120–2128. [Google Scholar] [CrossRef]
- Pevernagie, D.; Aarts, R.M.; De Meyer, M. The acoustics of snoring. Sleep Med. Rev. 2010, 14, 131–144. [Google Scholar] [CrossRef]
- Hedner, J.A.; Wilcox, I.; Sullivan, C.E. Speculations on the interaction between vascular disease and obstructive sleep apnea. In Sleep and Breathing; Saunders, N.A., Sullivan, C., Eds.; Dekker: New York, NY, USA, 1994; pp. 823–846. [Google Scholar]
- Amatoury, J.; Howitt, L.; Wheatley, J.R.; Avolio, A.P.; Amis, T.C. Snoring-related energy transmission to the carotid artery in rabbits. J. Appl. Physiol. 2006, 100, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Chuang, H.H.; Liu, C.H.; Wang, C.Y.; Lo, Y.L.; Lee, G.S.; Chao, Y.P.; Li, H.-Y.; Kuo, T.B.J.; Yang, C.C.H.; Shyu, L.-Y.; et al. Snoring sound characteristics are associated with common carotid artery profiles in patients with obstructive sleep apnea. Nat. Sci. Sleep 2021, 13, 1243–1255. [Google Scholar] [CrossRef]
- Uzer, G.; Manske, S.L.; Chan, M.E.; Chaing, F.P.; Rubin, C.T.; Frame, M.D.; Judex, S. Separating Fluid Shear Stress from Acceleration during Vibrations in Vitro: Identification of Mechanical Signals Modulating the Cellular Response. Cell. Mol. Bioeng. 2012, 5, 266–276. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, J.; Bluestein, D.; Girdhar, G.; Jesty, J. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 2010, 38, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Jesty, J.; Bluestein, D. Acetylated Prothrombin as a Substrate in the Measurement of the Procoagulant Activity of Platelets: Elimination of the Feedback Activation of Platelets by Thrombin. 1999. Available online: http://www.idealibrary.com (accessed on 21 November 2023).
- Roka-Moiia, Y.; Walk, R.; Palomares, D.E.; Ammann, K.R.; Dimasi, A.; Italiano, J.; Sheriff, J.; Bluestein, D.; Slepian, M.J. Platelet Activation via Shear Stress Exposure Induces a Differentiating Biomarker “Signature” of Activation versus Biochemical Agonists. Thromb. Haemost. 2020, 120, 776–792. [Google Scholar] [PubMed]
- Wu, P.; Wang, X.; Lin, W.; Bai, L. Acoustic characterization of cavitation intensity: A review. Ultrason. Sonochemistry 2022, 82, 105878. [Google Scholar] [CrossRef] [PubMed]
- Patel, U.N.; Rothstein, J.P.; Modarres-Sadeghi, Y. Vortex-induced vibrations of a cylinder in inelastic shear-thinning and shear-thickening fluids. J. Fluid Mech. 2022, 934, A39. [Google Scholar] [CrossRef]
- Ruggeri, Z.M.; Orje, J.N.; Habermann, R.; Federici, A.B.; Reininger, A.J. Activation-Independent Platelet Adhesion and Aggregation under Elevated Shear Stress Running title: Platelet adhesion and aggregation in flowing blood. Blood 2006, 108, 1903–1911. [Google Scholar] [CrossRef]
- Nobili, M.; Sheriff, J.; Morbiducci, U.; Redaelli, A.; Bluestein, D. Platelet activation due to hemodynamic shear stresses: Damage accumulation model and comparison to in vitro measurements. ASAIO J. 2008, 54, 64–72. [Google Scholar] [CrossRef]
- Casa, L.D.C.; Deaton, D.H.; Ku, D.N. Role of high shear rate in thrombosis. J. Vasc. Surg. 2015, 61, 1068–1080. [Google Scholar] [CrossRef]
- Girdhar, G.; Xenos, M.; Alemu, Y.; Chiu, W.-C.; Lynch, B.E.; Jesty, J.; Einav, S.; Slepian, M.J.; Bluestein, D. Device thrombogenicity emulation: A novel method for optimizing mechanical circulatory support device thromboresistance. PLoS ONE 2012, 7, e32463. [Google Scholar] [CrossRef]
- Bass, H.E.; Sutherland, L.C.; Zuckerwar, A.J.; Blackstock, D.T.; Hester, D.M. Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 1995, 97, 680–683. [Google Scholar] [CrossRef]
- Gilbert, K.E.; Bass, H.E. Acoustic Waves. In Encyclopedia of Atmospheric Sciences; Judith, A., Curry, J.A., Pyle, J.A., Eds.; Academic Press Inc. Ltd.: London, UK, 2003. [Google Scholar]
- Available online: https://www.acs.psu.edu/drussell/Demos/Absorption/Absorption.html (accessed on 21 November 2023).
- Einav, S.; Bluestein, D. Dynamics of blood flow and platelet transport in pathological vessels. Ann. N. Y. Acad. Sci. 2004, 1015, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.S.; Sheriff, J.; Bluestein, D. A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories. Biomech. Model. Mechanobiol. 2013, 12, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gao, C.; Zhang, N.; Slepian, M.J.; Deng, Y.; Bluestein, D. Multiscale Particle-Based Modeling of flowing platelets in blood plasma using dissipative particle dynamics and coarse grained molecular dynamics. Cel. Mol. Bioeng. 2014, 7, 552–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, L.; Slepian, M.J.; Deng, Y.; Bluestein, D. A multiscale biomechanical model of platelets: Correlating with in-vitro results. J. Biomech. 2017, 50, 26–33. [Google Scholar] [CrossRef]
- Hellums, J.D. Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 1994, 22, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Bluestein, D.; Niu, L.; Schoephoerster, R.T.; Dewanjee, M.K. Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus. Ann. Biomed. Eng. 1997, 25, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Sheriff, J.; Soares, J.S.; Xenos, M.; Jesty, J.; Slepian, M.J.; Bluestein, D. Evaluation of shear-induced platelet activation models under constant and dynamic shear stress loading conditions relevant to devices. Ann. Biomed. Eng. 2013, 41, 1279–1296. [Google Scholar] [CrossRef]
- Erbe, C.; Thomas, J.A. Introduction to Acoustic Terminology and Signal Processing. Explor. Anim. Behav. Through Sound 2022, 1, 111–152. [Google Scholar] [CrossRef]
- Maimon, N.; Hanly, P.J. Does Snoring Intensity Correlate with the Severity of Obstructive Sleep Apnea? JCSM 2010, 6, 5. [Google Scholar] [CrossRef]
- Consolo, F.; Sheriff, J.; Gorla, S.; Magri, N.; Bluestein, D.; Pappalardo, F.; Slepian, M.; Redaelli, A. High Frequency Components of Hemodynamic Shear Stress Profiles are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices. Nat. Sci. Rep. 2017, 7, 4994. [Google Scholar] [CrossRef]
- Feaver, R.E.; Gelfand, B.D.; Blackman, B.R. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat. Commun. 2013, 4, 1525. [Google Scholar] [CrossRef]
- Sei, Y.J.; Ahn, S.I.; Virtue, T.; Kim, T.; Kim, Y. Detection of frequency-dependent endothelial response to oscillatory shear stress using a microfluidic transcellular monitor. Sci. Rep. 2017, 7, 10019. [Google Scholar] [CrossRef]
- Lei, X.; Liu, B.; Wu, H.; Wu, X.; Wang, X.L.; Song, Y.; Zhang, S.-S.; Li, J.-Q.; Bi, L.; Pei, G.X. The effect of fluid shear stress on fibroblasts and stem cells on plane and groove topographies. Cell Adhes. Migr. 2020, 14, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Awtry, E.H.; Loscalzo, J. Aspirin. Circulation 2000, 101, 1206–1218. Available online: http://circ.ahajournals.org/content/101/10/1206.abstract (accessed on 21 November 2023). [CrossRef]
- Vane, J.R.; Botting, R.M. The mechanism of action of aspirin. Thromb. Res. 2003, 110, 255–258. [Google Scholar] [CrossRef]
- Mekaj, Y.H.; Daci, F.T.; Mekaj, A.Y. New insights into the mechanisms of action of aspirin and its use in the prevention and treatment of arterial and venous thromboembolism. Ther. Clin. Risk Manag. 2015, 11, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.R.; Crandall, D.L.; Gustafsson, F.; Jorde, U.P.; Katz, J.N.; Netuka, I.; Uriel, N.; Connors, J.M.; Sood, P.; Heatley, G.; et al. Aspirin and left ventricular assist devices: Rationale and design for the international randomized, placebo-controlled, non-inferiority ARIES HM3 trial. Eur. J. Heart Fail. 2021, 23, 1226–1237. [Google Scholar] [CrossRef]
- Valerio, L.; Tran, P.L.; Sheriff, J.; Brengle, W.; Ghosh, R.; Chiu, W.C.; Redaelli, A.; Fiore, G.B.; Pappalardo, F.; Bluestein, D.; et al. Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices. Thromb. Res. 2016, 140, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Valerio, L.; Sheriff, J.; Tran, P.L.; Brengle, W.; Redaelli, A.; Fiore, G.B.; Pappalardo, F.; Bluestein, D.; Slepian, M.J. Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support. Thromb. Res. 2018, 163, 162–171. [Google Scholar] [CrossRef]
- Sheriff, J.; Girdhar, G.; Chiu, W.-C.; Jesty, J.; Slepian, M.J.; Bluestein, D. Comparative efficacy of in vitro and in vivo metabolized aspirin in the DeBakey ventricular assist device. J. Thromb. Thrombolysis 2014, 37, 499–506. [Google Scholar] [CrossRef]
- Roka-Moiia, Y.; Ammann, K.R.; Miller-Gutierrez, S.; Sweedo, A.; Palomares, D.; Italiano, J.; Sheriff, J.; Bluestein, D.; Slepian, M.J. Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features. J. Biomech. 2021, 123, 110415. [Google Scholar] [CrossRef]
- Scinico, M.; Sostin, O.V.; Agarwal, R.; Kapoor, A.D.; Petrini, J.R.; Mendez, J.L. A Pilot Study of Aspirin Resistance in Obstructive Sleep Apnea Patients. Clin. Investig. Med. 2021, 44, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wen, W.; Cai, X.; Zhu, Q.; Hu, J.; Heizhati, M.; Yuan, Y.; Gan, L.; Dang, Y.; Yang, W.; et al. The Use of Aspirin Increases the Risk of Major Adverse Cardiac and Cerebrovascular Events in Hypertensive Patients with Obstructive Sleep Apnea for the Primary Prevention of Cardiovascular Disease: A Real-World Cohort Study. J. Clin. Med. 2022, 11, 7066. [Google Scholar] [CrossRef] [PubMed]
- Christian, D.; Omar, A.; Vanessa, D.; Francisco, X.E. Paradoxical Thrombotic Effects of Aspirin: Experimental Study on 1000 Animals. Cardiovasc. Hematol. Disord. Drug Targets 2010, 10, 103–110. [Google Scholar]
- Lei, J.; Zhou, Y.; Xie, D.; Zhang, Y. Mechanistic insights into a classic wonder drug-aspirin. J. Am. Chem. Soc. 2015, 137, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.; Grove, E.L.; Hvas, A.M. Contemporary Clinical Use of Aspirin: Mechanisms of Action, Current Concepts, Unresolved Questions, and Future Perspectives. Semin. Thromb. Hemost. 2021, 47, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Södergren, A.L.; Ramström, S. Platelet subpopulations remain despite strong dual agonist stimulation and can be characterized using a novel six-colour flow cytometry protocol. Sci. Rep. 2018, 8, 1441. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palomares, D.E.; Tran, P.L.; Jerman, C.; Momayez, M.; Deymier, P.; Sheriff, J.; Bluestein, D.; Parthasarathy, S.; Slepian, M.J. Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea. Bioengineering 2023, 10, 1414. https://doi.org/10.3390/bioengineering10121414
Palomares DE, Tran PL, Jerman C, Momayez M, Deymier P, Sheriff J, Bluestein D, Parthasarathy S, Slepian MJ. Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea. Bioengineering. 2023; 10(12):1414. https://doi.org/10.3390/bioengineering10121414
Chicago/Turabian StylePalomares, Daniel E., Phat L. Tran, Catherine Jerman, Moe Momayez, Pierre Deymier, Jawaad Sheriff, Danny Bluestein, Sairam Parthasarathy, and Marvin J. Slepian. 2023. "Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea" Bioengineering 10, no. 12: 1414. https://doi.org/10.3390/bioengineering10121414
APA StylePalomares, D. E., Tran, P. L., Jerman, C., Momayez, M., Deymier, P., Sheriff, J., Bluestein, D., Parthasarathy, S., & Slepian, M. J. (2023). Vibro-Acoustic Platelet Activation: An Additive Mechanism of Prothrombosis with Applicability to Snoring and Obstructive Sleep Apnea. Bioengineering, 10(12), 1414. https://doi.org/10.3390/bioengineering10121414