Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, L.X.; Faulkner, H.J.; Howard, W.H.; Low, A.K. Displaced medial clavicle fractures: A systematic review of outcomes after nonoperative and operative management. JSES Int. 2023, 7, 79–85. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Y.; Liu, S.; Hou, Z.; Zhang, X.; Lv, H.; Zhang, Y. Demographic and socioeconomic factors influencing the incidence of clavicle fractures, a national population-based survey of five hundred and twelve thousand, one hundred and eighty seven individuals. Int. Orthop. 2018, 42, 651–658. [Google Scholar] [CrossRef] [PubMed]
- DeFroda, S.F.; Lemme, N.; Kleiner, J.; Gil, J.; Owens, B.D. Incidence and mechanism of injury of clavicle fractures in the NEISS database: Athletic and non athletic injuries. J. Clin. Orthop. Trauma 2019, 10, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Gustafson, P.A.; Jastifer, J. The effect of clavicle malunion on shoulder biomechanics; a computational study. Clin. Biomech. 2012, 27, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Iannolo, M.; Werner, F.W.; Sutton, L.G.; Serell, S.M.; VanValkenburg, S.M. Forces across the middle of the intact clavicle during shoulder motion. J. Shoulder Elb. Surg. 2010, 19, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Peeters, I.; Braeckevelt, T.; Palmans, T.; Van Tongel, A.; De Wilde, L. Kinematic analysis of scapulothoracic movements in the shoulder girdle: A whole cadaver study. JSES Int. 2023, 7, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Postacchini, F.; Gumina, S.; De Santis, P.; Albo, F. Epidemiology of clavicle fractures. J. Shoulder Elb. Surg. 2002, 11, 452–456. [Google Scholar] [CrossRef]
- Van Tassel, D.; Owens, B.D.; Pointer, L.; Moriatis Wolf, J. Incidence of clavicle fractures in sports: Analysis of the NEISS Database. Int. J. Sports Med. 2014, 35, 83–86. [Google Scholar] [CrossRef][Green Version]
- Walton, B.; Meijer, K.; Melancon, K.; Hartman, M. A cost analysis of internal fixation versus nonoperative treatment in adult midshaft clavicle fractures using multiple randomized controlled trials. J. Orthop. Trauma 2015, 29, 173–180. [Google Scholar] [CrossRef]
- Filardi, V. Stress shielding analysis on easy step staple prosthesis for calcaneus fractures. J. Orthop. 2020, 18, 132–137. [Google Scholar] [CrossRef]
- Filardi, V. Characterization of an innovative intramedullary nail for diaphyseal fractures of long bones. Med. Eng. Phys. 2017, 49, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, S.A.; Roeloffs, C.W.; van den Bremer, J.; Krijnen, P.; Schipper, I.B. The relationship between trauma mechanism, fracture type, and treatment of midshaft clavicular fractures. Eur. J. Emerg. Med. 2013, 20, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Jeray, K.J. Acute midshaft clavicular fracture. J. Am. Acad. Orthop. Surg. 2007, 15, 239–248. [Google Scholar] [CrossRef]
- Kihlstrom, C.; Moller, M.; Lonn, K.; Wolf, O. Clavicle fractures: Epidemiology, classification and treatment of 2 422 fractures in the Swedish Fracture Register; an observational study. BMC Musculoskelet. Disord. 2017, 18, 82. [Google Scholar] [CrossRef]
- Asadollahi, S.; Bucknill, A. Acute medial clavicle fracture in adults: A systematic review of demographics, clinical features and treatment outcomes in 220 patients. J. Orthop. Traumatol. 2019, 20, 24. [Google Scholar] [CrossRef]
- Allman, F.L., Jr. Fractures and ligamentous injuries of the clavicle and its articulation. J. Bone Jt. Surg. Am. 1967, 49, 774–784. [Google Scholar] [CrossRef]
- Toogood, P.; Horst, P.; Samagh, S.; Feeley, B.T. Clavicle fractures: A review of the literature and update on treatment. Phys. Sportsmed. 2011, 39, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, M.H.; van Heijl, M.; Houwert, R.M.; Burger, B.J.; Verleisdonk, E.J.M.; Veeger, D.J.; van der Meijden, O.A. Surgical fixation of midshaft clavicle fractures: A systematic review of biomechanical studies. Injury 2018, 49, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Backus, J.D.; Merriman, D.J.; McAndrew, C.M.; Gardner, M.J.; Ricci, W.M. Upright versus supine radiographs of clavicle fractures: Does positioning matter? J. Orthop. Trauma 2014, 28, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.H.; DeAngelis, J.P.; Wu, J.S. Imaging of traumatic shoulder injuries—Understanding the surgeon’s perspective. Eur. J. Radiol. Open 2022, 9, 100411. [Google Scholar] [CrossRef] [PubMed]
- McKee, R.C.; Whelan, D.B.; Schemitsch, E.H.; McKee, M.D. Operative versus nonoperative care of displaced midshaft clavicular fractures: A meta-analysis of randomized clinical trials. J. Bone Jt. Surg. Am. 2012, 94, 675–684. [Google Scholar] [CrossRef]
- Ziran, N.; Soles, G.L.S.; Matta, J.M. Outcomes after surgical treatment of acetabular fractures: A review. Patient Saf. Surg. 2019, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, R.; Altomare, D.; Sconza, C.; Kon, E.; Castagna, A.; Marcacci, M.; Monina, E.; Di Matteo, B. Conservative management vs. surgical repair in degenerative rotator cuff tears: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Pozzuoli, A.; Belluzzi, E.; Scucchiari, D.; Bragazzi, N.L.; Rossin, A.; Cerchiaro, M.; Ruggieri, P. An Institutional Standardised Protocol for the Treatment of Acute Displaced Midshaft Clavicle Fractures (ADMCFs): Conservative or Surgical Management for Active Patients? Healthcare 2023, 11, 1883. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.M.; Court-Brown, C.M.; McQueen, M.M.; Wakefield, A.E. Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J. Bone Jt. Surg. Am. 2004, 86, 1359–1365. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yang, D.S.; Bae, J.H.; Cha, Y.H.; Lee, K.W.; Choy, W.S. Clinical and Radiological Outcomes after Various Treatments of Midshaft Clavicle Fractures in Adolescents. Clin. Orthop. Surg. 2020, 12, 396–403. [Google Scholar] [CrossRef]
- Daniilidis, K.; Raschke, M.J.; Vogt, B.; Herbort, M.; Schliemann, B.; Gunther, N.; Koesters, C.; Fuchs, T. Comparison between conservative and surgical treatment of midshaft clavicle fractures: Outcome of 151 cases. Technol. Health Care 2013, 21, 143–147. [Google Scholar] [CrossRef]
- Narsaria, N.; Singh, A.K.; Arun, G.R.; Seth, R.R. Surgical fixation of displaced midshaft clavicle fractures: Elastic intramedullary nailing versus precontoured plating. J. Orthop. Traumatol. 2014, 15, 165–171. [Google Scholar] [CrossRef]
- Wang, X.H.; Guo, W.J.; Li, A.B.; Cheng, G.J.; Lei, T.; Zhao, Y.M. Operative versus nonoperative treatment for displaced midshaft clavicle fractures: A meta-analysis based on current evidence. Clinics 2015, 70, 584–592. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Xia, S.; Fu, B. Minimally invasive in the treatment of clavicle middle part fractures with locking reconstruction plate. Int. J. Surg. 2014, 12, 654–658. [Google Scholar] [CrossRef][Green Version]
- Sanchez, P.H.; Fleury, I.G.; Parker, E.A.; Davison, J.; Westermann, R.; Kopp, B.; Willey, M.C.; Buckwalter, J.A. Early Versus Delayed Surgery for Midshaft Clavicle Fractures: A Systematic Review. Iowa Orthop. J. 2023, 43, 151–160. [Google Scholar]
- Nourian, A.; Dhaliwal, S.; Vangala, S.; Vezeridis, P.S. Midshaft Fractures of the Clavicle: A Meta-analysis Comparing Surgical Fixation Using Anteroinferior Plating Versus Superior Plating. J. Orthop. Trauma 2017, 31, 461–467. [Google Scholar] [CrossRef]
- Robinson, C.M.; Goudie, E.B.; Murray, I.R.; Jenkins, P.J.; Ahktar, M.A.; Read, E.O.; Foster, C.J.; Clark, K.; Brooksbank, A.J.; Arthur, A.; et al. Open reduction and plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: A multicenter, randomized, controlled trial. J. Bone Jt. Surg. Am. 2013, 95, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Woltz, S.; Krijnen, P.; Schipper, I.B. Plate Fixation Versus Nonoperative Treatment for Displaced Midshaft Clavicular Fractures: A Meta-Analysis of Randomized Controlled Trials. J. Bone Jt. Surg. Am. 2017, 99, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V. Numerical comparison of two different tibial nails: Expert tibial nail and innovative nail. Int. J. Interact. Des. Manuf. 2018, 12, 1435–1445. [Google Scholar] [CrossRef]
- Marie, C. Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input. Med. Biol. Eng. Comput. 2015, 53, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Fanter, N.J.; Kenny, R.M.; Baker, C.L., 3rd; Baker, C.L., Jr. Surgical treatment of clavicle fractures in the adolescent athlete. Sports Health 2015, 7, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, S.; Benninger, E.; Meier, C. Nonoperative Treatment of Midshaft Clavicle Fractures in Adults. Open Orthop. J. 2018, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Poinern, E.; Brundavanam, S.; Fawcett, D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Am. J. Biomed. Eng. 2012, 2, 218–240. [Google Scholar] [CrossRef]
- Shayesteh Moghaddam, N.; Taheri Andani, M.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. Metals for bone implants: Safety, design, and efficacy. Biomanufacturing Rev. 2016, 1, 1. [Google Scholar] [CrossRef]
- Andani, M.T.; Shayesteh Moghaddam, N.; Haberland, C.; Dean, D.; Miller, M.J.; Elahinia, M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014, 10, 4058–4070. [Google Scholar] [CrossRef]
- Alito, A.; Filardi, V.; Milardi, D. Quadriceps Muscle and Medial Retinaculum Combinate Effects on Patellar Instability during Knee Flexion. Appl. Sci. 2023, 13, 5420. [Google Scholar] [CrossRef]
- Filardi, V. Healing of femoral fractures by the meaning of an innovative intramedullary nail. J. Orthop. 2018, 15, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V.; Milardi, D. Experimental strain analysis on the entire bony leg compared with FE analysis. J. Orthop. 2017, 14, 115–122. [Google Scholar] [CrossRef]
- Lake, N.; Mombell, K.W.; Bernstein, E.; O’Mary, K.; Scott, J.; Deafenbaugh, B. Improved Functional Outcomes Following Operative Treatment of Midshaft Clavicle Fractures in an Active Duty Population. Cureus 2020, 12, e7488. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.R.; Saunders, P.E.; Phillips, M.; Mitchell, S.M.; McKee, M.D.; Schemitsch, E.H.; Dehghan, N. Comparative effectiveness of treatment options for displaced midshaft clavicle fractures: A systematic review and network meta-analysis. Bone Jt. Open 2021, 2, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Anzillotti, G.; Iacomella, A.; Grancagnolo, M.; Bertolino, E.M.; Marcacci, M.; Sconza, C.; Kon, E.; Di Matteo, B. Conservative vs. Surgical Management for Femoro-Acetabular Impingement: A Systematic Review of Clinical Evidence. J. Clin. Med. 2022, 11, 5852. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, P.M.; Garlick, N.I.; Barber, J.; Tims, E.M.; The Clavicle Trial Collaborative Group. The Clavicle Trial: A Multicenter Randomized Controlled Trial Comparing Operative with Nonoperative Treatment of Displaced Midshaft Clavicle Fractures. J. Bone Jt. Surg. Am. 2017, 99, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, S.; Hamzehgardeshi, L.; Hessam, S.; Hamzehgardeshi, Z. Patient involvement in health care decision making: A review. Iran. Red Crescent Med. J. 2014, 16, e12454. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, S.; Hau, R.C.; Page, R.S.; Richardson, M.; Edwards, E.R. Complications associated with operative fixation of acute midshaft clavicle fractures. Injury 2016, 47, 1248–1252. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Min Kim, S.; Kim, Y. Numerical simulation and biomechanical analysis of locking screw caps on clavicle locking plates. Medicine 2022, 101, e29319. [Google Scholar] [CrossRef]
- Ruffilli, A.; Traina, F.; Pilla, F.; Fenga, D.; Faldini, C. Marchetti Vicenzi elastic retrograde nail in the treatment of humeral shaft fractures: Review of the current literature. Musculoskelet. Surg. 2015, 99, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Rangger, C.; Striepens, N.; Burger, C. Minimally invasive intramedullary nailing of midshaft clavicular fractures using titanium elastic nails. J. Trauma 2008, 64, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Ahmad, M.; Agrawal, N.; Patil, S.T.; Santoshi, J.A.; Rathinam, B.; Gandhi, K.R. The use of precontoured plates for midshaft clavicle fractures is not always the best course of treatment. Anat. Cell Biol. [CrossRef]
- Mullis, B.H.; Jeray, K.J.; Broderick, S.; Tanner, S.L.; Snider, B.G.; Everhart, J.; Southeastern Fracture Consortium. Midshaft clavicle fractures: Is anterior plating an acceptable alternative to superior plating? Eur. J. Orthop. Surg. Traumatol. 2023, 33, 3373–3377. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Kim, H. Current concepts in the treatment of midshaft clavicle fractures in adults. Clin. Shoulder Elb. 2021, 24, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.C.; Burnham, M.; Ojameruaye, O.; McKee, M.D. A systematic review of the use of titanium versus stainless steel implants for fracture fixation. OTA Int. 2021, 4, e138. [Google Scholar] [CrossRef]
- Cronier, P.; Pietu, G.; Dujardin, C.; Bigorre, N.; Ducellier, F.; Gerard, R. The concept of locking plates. Orthop. Traumatol. Surg. Res. 2010, 96, S17–S36. [Google Scholar] [CrossRef]
- Axelrod, D.E.; Ekhtiari, S.; Bozzo, A.; Bhandari, M.; Johal, H. What Is the Best Evidence for Management of Displaced Midshaft Clavicle Fractures? A Systematic Review and Network Meta-analysis of 22 Randomized Controlled Trials. Clin. Orthop. Relat. Res. 2020, 478, 392–402. [Google Scholar] [CrossRef]
- Kingsly, P.; Sathish, M.; Ismail, N.D.M. Comparative analysis of functional outcome of anatomical precontoured locking plate versus reconstruction plate in the management of displaced midshaft clavicular fractures. J. Orthop. Surg. 2019, 27, 2309499018820351. [Google Scholar] [CrossRef]
- Filardi, V. Stress distribution in the humerus during elevation of the arm and external abduction. J. Orthop. 2020, 19, 218–222. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Braman, J.P.; Keefe, D.F.; Ludewig, P.M. The Coupled Kinematics of Scapulothoracic Upward Rotation. Phys. Ther. 2020, 100, 283–294. [Google Scholar] [CrossRef]
- Lockhart, J.S.; Wong, M.T.; Langohr, G.D.G.; Athwal, G.S.; Johnson, J.A. The effect of load and plane of elevation on acromial stress after reverse shoulder arthroplasty. Shoulder Elb. 2021, 13, 388–395. [Google Scholar] [CrossRef]
- Wang, C.C.; Lee, C.H.; Chen, K.H.; Pan, C.C.; Tsai, M.T.; Su, K.C. Biomechanical effects of different numbers and locations of screw-in clavicle hook plates. Front. Bioeng. Biotechnol. 2022, 10, 949802. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, H.; Xue, F. Clavicle nonunion and plate breakage after locking compression plate fixation of displaced midshaft clavicular fractures. Exp. Ther. Med. 2020, 19, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Kitzen, J.; Paulson, K.; Korley, R.; Duffy, P.; Martin, C.R.; Schneider, P.S. Biomechanical Evaluation of Different Plate Configurations for Midshaft Clavicle Fracture Fixation: Single Plating Compared with Dual Mini-Fragment Plating. JBJS Open Access 2022, 7, e21.00123. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Zhang, F.; Mei, J.; Lin, C.-Y.J.; Gruber, S.M.S.; Niu, W.; Wong, D.W.-C.; Zhang, M. Biomechanical analysis of four augmented fixations of plate osteosynthesis for comminuted mid-shaft clavicle fracture: A finite element approach. Exp. Ther. Med. 2020, 20, 2106–2112. [Google Scholar] [CrossRef]
- Beirer, M.; Banke, I.J.; Harrasser, N.; Cronlein, M.; Pforringer, D.; Huber-Wagner, S.; Biberthaler, P.; Kirchhoff, C. Mid-term outcome following revision surgery of clavicular non- and malunion using anatomic locking compression plate and iliac crest bone graft. BMC Musculoskelet. Disord. 2017, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Pengrung, N.; Lakdee, N.; Puncreobutr, C.; Lohwongwatana, B.; Sa-Ngasoongsong, P. Finite element analysis comparison between superior clavicle locking plate with and without screw holes above fracture zone in midshaft clavicular fracture. BMC Musculoskelet. Disord. 2019, 20, 465. [Google Scholar] [CrossRef]
- Kavuri, V.; Bowden, B.; Kumar, N.; Cerynik, D. Complications Associated with Locking Plate of Proximal Humerus Fractures. Indian J. Orthop. 2018, 52, 108–116. [Google Scholar] [CrossRef]
- Shi, F.; Hu, H.; Tian, M.; Fang, X.; Li, X. Comparison of 3 treatment methods for midshaft clavicle fractures: A systematic review and network meta-analysis of randomized clinical trials. Injury 2022, 53, 1765–1776. [Google Scholar] [CrossRef]
- D’Andrea, D.; Cucinotta, F.; Ferroni, F.; Risitano, G.; Santonocito, D.; Scappaticci, L. Development of Machine Learning Algorithms for the Determination of the Centre of Mass. Symmetry 2021, 13, 401. [Google Scholar] [CrossRef]
- Magneli, M.; Ling, P.; Gislen, J.; Fagrell, J.; Demir, Y.; Arverud, E.D.; Hallberg, K.; Salomonsson, B.; Gordon, M. Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle. PLoS ONE 2023, 18, e0289808. [Google Scholar] [CrossRef]
- Donnelly, T.D.; Macfarlane, R.J.; Nagy, M.T.; Ralte, P.; Waseem, M. Fractures of the clavicle: An overview. Open Orthop. J. 2013, 7, 329–333. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Yin, B.; Wang, J.; Li, S.; Liu, G.; Hu, Z.; Wu, W.; Zhang, Y. Finite element analysis of spiral plate and Herbert screw fixation for treatment of midshaft clavicle fractures. Medicine 2019, 98, e16898. [Google Scholar] [CrossRef] [PubMed]
- Tropea, A.; Tisano, A.; Bruschetta, A.; Borzelli, D.; Migliorato, A.; Nirta, G.; Leonardi, G.; Trimarchi, F.; Alito, A. Comparative FE biomechanical and microbial adhesion analyses on an implanted humerus. J. Orthop. 2022, 32, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V. Healing of tibial comminuted fractures by the meaning of an innovative intramedullary nail. J. Orthop. 2019, 16, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V. Tibio talar contact stress: An experimental and numerical study. J. Orthop. 2020, 17, 44–48. [Google Scholar] [CrossRef]
Body Components | Elements | Nodes |
---|---|---|
Rib cage | 12.361 | 13.526 |
Humerus | 18.452 | 21.458 |
Scapula | 17.232 | 19.557 |
Acromion | 10.784 | 15.420 |
Coracoacromial ligament | 5.469 | 5.914 |
Glenohumeral ligament | 4.752 | 5.112 |
Acromioclavicular ligament | 2.845 | 2.946 |
Coracohumeral ligament | 3.025 | 3.412 |
Transverse humeral ligament | 5.231 | 5.417 |
Joint capsule | 4.569 | 4.822 |
Body Components | Equivalent V. Mises Stress [MPa] |
---|---|
Humerus | 40 |
Scapula | 30 |
Clavicle | 9 |
Fractured clavicle | 15 |
Coracoacromial ligament | 8 |
Glenohumeral ligament | 11 |
Acromioclavicular ligament | 10 |
Coracohumeral ligament | 13 |
Transverse humeral ligament | 8 |
Joint capsule | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alito, A.; Fenga, D.; Tropeano, G.; Milardi, D.; Leonetti, D.; Migliorato, A.; Tisano, A.; D’Andrea, D.; Filardi, V. Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering 2023, 10, 1402. https://doi.org/10.3390/bioengineering10121402
Alito A, Fenga D, Tropeano G, Milardi D, Leonetti D, Migliorato A, Tisano A, D’Andrea D, Filardi V. Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering. 2023; 10(12):1402. https://doi.org/10.3390/bioengineering10121402
Chicago/Turabian StyleAlito, Angelo, Domenico Fenga, Giada Tropeano, Demetrio Milardi, Danilo Leonetti, Alba Migliorato, Adriana Tisano, Danilo D’Andrea, and Vincenzo Filardi. 2023. "Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis" Bioengineering 10, no. 12: 1402. https://doi.org/10.3390/bioengineering10121402
APA StyleAlito, A., Fenga, D., Tropeano, G., Milardi, D., Leonetti, D., Migliorato, A., Tisano, A., D’Andrea, D., & Filardi, V. (2023). Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering, 10(12), 1402. https://doi.org/10.3390/bioengineering10121402