Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, L.X.; Faulkner, H.J.; Howard, W.H.; Low, A.K. Displaced medial clavicle fractures: A systematic review of outcomes after nonoperative and operative management. JSES Int. 2023, 7, 79–85. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Y.; Liu, S.; Hou, Z.; Zhang, X.; Lv, H.; Zhang, Y. Demographic and socioeconomic factors influencing the incidence of clavicle fractures, a national population-based survey of five hundred and twelve thousand, one hundred and eighty seven individuals. Int. Orthop. 2018, 42, 651–658. [Google Scholar] [CrossRef] [PubMed]
- DeFroda, S.F.; Lemme, N.; Kleiner, J.; Gil, J.; Owens, B.D. Incidence and mechanism of injury of clavicle fractures in the NEISS database: Athletic and non athletic injuries. J. Clin. Orthop. Trauma 2019, 10, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Patel, B.; Gustafson, P.A.; Jastifer, J. The effect of clavicle malunion on shoulder biomechanics; a computational study. Clin. Biomech. 2012, 27, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Iannolo, M.; Werner, F.W.; Sutton, L.G.; Serell, S.M.; VanValkenburg, S.M. Forces across the middle of the intact clavicle during shoulder motion. J. Shoulder Elb. Surg. 2010, 19, 1013–1017. [Google Scholar] [CrossRef] [PubMed]
- Peeters, I.; Braeckevelt, T.; Palmans, T.; Van Tongel, A.; De Wilde, L. Kinematic analysis of scapulothoracic movements in the shoulder girdle: A whole cadaver study. JSES Int. 2023, 7, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Postacchini, F.; Gumina, S.; De Santis, P.; Albo, F. Epidemiology of clavicle fractures. J. Shoulder Elb. Surg. 2002, 11, 452–456. [Google Scholar] [CrossRef]
- Van Tassel, D.; Owens, B.D.; Pointer, L.; Moriatis Wolf, J. Incidence of clavicle fractures in sports: Analysis of the NEISS Database. Int. J. Sports Med. 2014, 35, 83–86. [Google Scholar] [CrossRef]
- Walton, B.; Meijer, K.; Melancon, K.; Hartman, M. A cost analysis of internal fixation versus nonoperative treatment in adult midshaft clavicle fractures using multiple randomized controlled trials. J. Orthop. Trauma 2015, 29, 173–180. [Google Scholar] [CrossRef]
- Filardi, V. Stress shielding analysis on easy step staple prosthesis for calcaneus fractures. J. Orthop. 2020, 18, 132–137. [Google Scholar] [CrossRef]
- Filardi, V. Characterization of an innovative intramedullary nail for diaphyseal fractures of long bones. Med. Eng. Phys. 2017, 49, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, S.A.; Roeloffs, C.W.; van den Bremer, J.; Krijnen, P.; Schipper, I.B. The relationship between trauma mechanism, fracture type, and treatment of midshaft clavicular fractures. Eur. J. Emerg. Med. 2013, 20, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Jeray, K.J. Acute midshaft clavicular fracture. J. Am. Acad. Orthop. Surg. 2007, 15, 239–248. [Google Scholar] [CrossRef]
- Kihlstrom, C.; Moller, M.; Lonn, K.; Wolf, O. Clavicle fractures: Epidemiology, classification and treatment of 2 422 fractures in the Swedish Fracture Register; an observational study. BMC Musculoskelet. Disord. 2017, 18, 82. [Google Scholar] [CrossRef]
- Asadollahi, S.; Bucknill, A. Acute medial clavicle fracture in adults: A systematic review of demographics, clinical features and treatment outcomes in 220 patients. J. Orthop. Traumatol. 2019, 20, 24. [Google Scholar] [CrossRef]
- Allman, F.L., Jr. Fractures and ligamentous injuries of the clavicle and its articulation. J. Bone Jt. Surg. Am. 1967, 49, 774–784. [Google Scholar] [CrossRef]
- Toogood, P.; Horst, P.; Samagh, S.; Feeley, B.T. Clavicle fractures: A review of the literature and update on treatment. Phys. Sportsmed. 2011, 39, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Hulsmans, M.H.; van Heijl, M.; Houwert, R.M.; Burger, B.J.; Verleisdonk, E.J.M.; Veeger, D.J.; van der Meijden, O.A. Surgical fixation of midshaft clavicle fractures: A systematic review of biomechanical studies. Injury 2018, 49, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Backus, J.D.; Merriman, D.J.; McAndrew, C.M.; Gardner, M.J.; Ricci, W.M. Upright versus supine radiographs of clavicle fractures: Does positioning matter? J. Orthop. Trauma 2014, 28, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.H.; DeAngelis, J.P.; Wu, J.S. Imaging of traumatic shoulder injuries—Understanding the surgeon’s perspective. Eur. J. Radiol. Open 2022, 9, 100411. [Google Scholar] [CrossRef] [PubMed]
- McKee, R.C.; Whelan, D.B.; Schemitsch, E.H.; McKee, M.D. Operative versus nonoperative care of displaced midshaft clavicular fractures: A meta-analysis of randomized clinical trials. J. Bone Jt. Surg. Am. 2012, 94, 675–684. [Google Scholar] [CrossRef]
- Ziran, N.; Soles, G.L.S.; Matta, J.M. Outcomes after surgical treatment of acetabular fractures: A review. Patient Saf. Surg. 2019, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, R.; Altomare, D.; Sconza, C.; Kon, E.; Castagna, A.; Marcacci, M.; Monina, E.; Di Matteo, B. Conservative management vs. surgical repair in degenerative rotator cuff tears: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Pozzuoli, A.; Belluzzi, E.; Scucchiari, D.; Bragazzi, N.L.; Rossin, A.; Cerchiaro, M.; Ruggieri, P. An Institutional Standardised Protocol for the Treatment of Acute Displaced Midshaft Clavicle Fractures (ADMCFs): Conservative or Surgical Management for Active Patients? Healthcare 2023, 11, 1883. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.M.; Court-Brown, C.M.; McQueen, M.M.; Wakefield, A.E. Estimating the risk of nonunion following nonoperative treatment of a clavicular fracture. J. Bone Jt. Surg. Am. 2004, 86, 1359–1365. [Google Scholar] [CrossRef]
- Kim, H.Y.; Yang, D.S.; Bae, J.H.; Cha, Y.H.; Lee, K.W.; Choy, W.S. Clinical and Radiological Outcomes after Various Treatments of Midshaft Clavicle Fractures in Adolescents. Clin. Orthop. Surg. 2020, 12, 396–403. [Google Scholar] [CrossRef]
- Daniilidis, K.; Raschke, M.J.; Vogt, B.; Herbort, M.; Schliemann, B.; Gunther, N.; Koesters, C.; Fuchs, T. Comparison between conservative and surgical treatment of midshaft clavicle fractures: Outcome of 151 cases. Technol. Health Care 2013, 21, 143–147. [Google Scholar] [CrossRef]
- Narsaria, N.; Singh, A.K.; Arun, G.R.; Seth, R.R. Surgical fixation of displaced midshaft clavicle fractures: Elastic intramedullary nailing versus precontoured plating. J. Orthop. Traumatol. 2014, 15, 165–171. [Google Scholar] [CrossRef]
- Wang, X.H.; Guo, W.J.; Li, A.B.; Cheng, G.J.; Lei, T.; Zhao, Y.M. Operative versus nonoperative treatment for displaced midshaft clavicle fractures: A meta-analysis based on current evidence. Clinics 2015, 70, 584–592. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Xia, S.; Fu, B. Minimally invasive in the treatment of clavicle middle part fractures with locking reconstruction plate. Int. J. Surg. 2014, 12, 654–658. [Google Scholar] [CrossRef]
- Sanchez, P.H.; Fleury, I.G.; Parker, E.A.; Davison, J.; Westermann, R.; Kopp, B.; Willey, M.C.; Buckwalter, J.A. Early Versus Delayed Surgery for Midshaft Clavicle Fractures: A Systematic Review. Iowa Orthop. J. 2023, 43, 151–160. [Google Scholar]
- Nourian, A.; Dhaliwal, S.; Vangala, S.; Vezeridis, P.S. Midshaft Fractures of the Clavicle: A Meta-analysis Comparing Surgical Fixation Using Anteroinferior Plating Versus Superior Plating. J. Orthop. Trauma 2017, 31, 461–467. [Google Scholar] [CrossRef]
- Robinson, C.M.; Goudie, E.B.; Murray, I.R.; Jenkins, P.J.; Ahktar, M.A.; Read, E.O.; Foster, C.J.; Clark, K.; Brooksbank, A.J.; Arthur, A.; et al. Open reduction and plate fixation versus nonoperative treatment for displaced midshaft clavicular fractures: A multicenter, randomized, controlled trial. J. Bone Jt. Surg. Am. 2013, 95, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Woltz, S.; Krijnen, P.; Schipper, I.B. Plate Fixation Versus Nonoperative Treatment for Displaced Midshaft Clavicular Fractures: A Meta-Analysis of Randomized Controlled Trials. J. Bone Jt. Surg. Am. 2017, 99, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V. Numerical comparison of two different tibial nails: Expert tibial nail and innovative nail. Int. J. Interact. Des. Manuf. 2018, 12, 1435–1445. [Google Scholar] [CrossRef]
- Marie, C. Strength analysis of clavicle fracture fixation devices and fixation techniques using finite element analysis with musculoskeletal force input. Med. Biol. Eng. Comput. 2015, 53, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Fanter, N.J.; Kenny, R.M.; Baker, C.L., 3rd; Baker, C.L., Jr. Surgical treatment of clavicle fractures in the adolescent athlete. Sports Health 2015, 7, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, S.; Benninger, E.; Meier, C. Nonoperative Treatment of Midshaft Clavicle Fractures in Adults. Open Orthop. J. 2018, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Poinern, E.; Brundavanam, S.; Fawcett, D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Am. J. Biomed. Eng. 2012, 2, 218–240. [Google Scholar] [CrossRef]
- Shayesteh Moghaddam, N.; Taheri Andani, M.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. Metals for bone implants: Safety, design, and efficacy. Biomanufacturing Rev. 2016, 1, 1. [Google Scholar] [CrossRef]
- Andani, M.T.; Shayesteh Moghaddam, N.; Haberland, C.; Dean, D.; Miller, M.J.; Elahinia, M. Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater. 2014, 10, 4058–4070. [Google Scholar] [CrossRef]
- Alito, A.; Filardi, V.; Milardi, D. Quadriceps Muscle and Medial Retinaculum Combinate Effects on Patellar Instability during Knee Flexion. Appl. Sci. 2023, 13, 5420. [Google Scholar] [CrossRef]
- Filardi, V. Healing of femoral fractures by the meaning of an innovative intramedullary nail. J. Orthop. 2018, 15, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V.; Milardi, D. Experimental strain analysis on the entire bony leg compared with FE analysis. J. Orthop. 2017, 14, 115–122. [Google Scholar] [CrossRef]
- Lake, N.; Mombell, K.W.; Bernstein, E.; O’Mary, K.; Scott, J.; Deafenbaugh, B. Improved Functional Outcomes Following Operative Treatment of Midshaft Clavicle Fractures in an Active Duty Population. Cureus 2020, 12, e7488. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.R.; Saunders, P.E.; Phillips, M.; Mitchell, S.M.; McKee, M.D.; Schemitsch, E.H.; Dehghan, N. Comparative effectiveness of treatment options for displaced midshaft clavicle fractures: A systematic review and network meta-analysis. Bone Jt. Open 2021, 2, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Anzillotti, G.; Iacomella, A.; Grancagnolo, M.; Bertolino, E.M.; Marcacci, M.; Sconza, C.; Kon, E.; Di Matteo, B. Conservative vs. Surgical Management for Femoro-Acetabular Impingement: A Systematic Review of Clinical Evidence. J. Clin. Med. 2022, 11, 5852. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, P.M.; Garlick, N.I.; Barber, J.; Tims, E.M.; The Clavicle Trial Collaborative Group. The Clavicle Trial: A Multicenter Randomized Controlled Trial Comparing Operative with Nonoperative Treatment of Displaced Midshaft Clavicle Fractures. J. Bone Jt. Surg. Am. 2017, 99, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Vahdat, S.; Hamzehgardeshi, L.; Hessam, S.; Hamzehgardeshi, Z. Patient involvement in health care decision making: A review. Iran. Red Crescent Med. J. 2014, 16, e12454. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, S.; Hau, R.C.; Page, R.S.; Richardson, M.; Edwards, E.R. Complications associated with operative fixation of acute midshaft clavicle fractures. Injury 2016, 47, 1248–1252. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Min Kim, S.; Kim, Y. Numerical simulation and biomechanical analysis of locking screw caps on clavicle locking plates. Medicine 2022, 101, e29319. [Google Scholar] [CrossRef]
- Ruffilli, A.; Traina, F.; Pilla, F.; Fenga, D.; Faldini, C. Marchetti Vicenzi elastic retrograde nail in the treatment of humeral shaft fractures: Review of the current literature. Musculoskelet. Surg. 2015, 99, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Rangger, C.; Striepens, N.; Burger, C. Minimally invasive intramedullary nailing of midshaft clavicular fractures using titanium elastic nails. J. Trauma 2008, 64, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Ahmad, M.; Agrawal, N.; Patil, S.T.; Santoshi, J.A.; Rathinam, B.; Gandhi, K.R. The use of precontoured plates for midshaft clavicle fractures is not always the best course of treatment. Anat. Cell Biol. [CrossRef]
- Mullis, B.H.; Jeray, K.J.; Broderick, S.; Tanner, S.L.; Snider, B.G.; Everhart, J.; Southeastern Fracture Consortium. Midshaft clavicle fractures: Is anterior plating an acceptable alternative to superior plating? Eur. J. Orthop. Surg. Traumatol. 2023, 33, 3373–3377. [Google Scholar] [CrossRef] [PubMed]
- Song, H.S.; Kim, H. Current concepts in the treatment of midshaft clavicle fractures in adults. Clin. Shoulder Elb. 2021, 24, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Barber, C.C.; Burnham, M.; Ojameruaye, O.; McKee, M.D. A systematic review of the use of titanium versus stainless steel implants for fracture fixation. OTA Int. 2021, 4, e138. [Google Scholar] [CrossRef]
- Cronier, P.; Pietu, G.; Dujardin, C.; Bigorre, N.; Ducellier, F.; Gerard, R. The concept of locking plates. Orthop. Traumatol. Surg. Res. 2010, 96, S17–S36. [Google Scholar] [CrossRef]
- Axelrod, D.E.; Ekhtiari, S.; Bozzo, A.; Bhandari, M.; Johal, H. What Is the Best Evidence for Management of Displaced Midshaft Clavicle Fractures? A Systematic Review and Network Meta-analysis of 22 Randomized Controlled Trials. Clin. Orthop. Relat. Res. 2020, 478, 392–402. [Google Scholar] [CrossRef]
- Kingsly, P.; Sathish, M.; Ismail, N.D.M. Comparative analysis of functional outcome of anatomical precontoured locking plate versus reconstruction plate in the management of displaced midshaft clavicular fractures. J. Orthop. Surg. 2019, 27, 2309499018820351. [Google Scholar] [CrossRef]
- Filardi, V. Stress distribution in the humerus during elevation of the arm and external abduction. J. Orthop. 2020, 19, 218–222. [Google Scholar] [CrossRef]
- Lawrence, R.L.; Braman, J.P.; Keefe, D.F.; Ludewig, P.M. The Coupled Kinematics of Scapulothoracic Upward Rotation. Phys. Ther. 2020, 100, 283–294. [Google Scholar] [CrossRef]
- Lockhart, J.S.; Wong, M.T.; Langohr, G.D.G.; Athwal, G.S.; Johnson, J.A. The effect of load and plane of elevation on acromial stress after reverse shoulder arthroplasty. Shoulder Elb. 2021, 13, 388–395. [Google Scholar] [CrossRef]
- Wang, C.C.; Lee, C.H.; Chen, K.H.; Pan, C.C.; Tsai, M.T.; Su, K.C. Biomechanical effects of different numbers and locations of screw-in clavicle hook plates. Front. Bioeng. Biotechnol. 2022, 10, 949802. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, H.; Xue, F. Clavicle nonunion and plate breakage after locking compression plate fixation of displaced midshaft clavicular fractures. Exp. Ther. Med. 2020, 19, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Kitzen, J.; Paulson, K.; Korley, R.; Duffy, P.; Martin, C.R.; Schneider, P.S. Biomechanical Evaluation of Different Plate Configurations for Midshaft Clavicle Fracture Fixation: Single Plating Compared with Dual Mini-Fragment Plating. JBJS Open Access 2022, 7, e21.00123. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Zhang, F.; Mei, J.; Lin, C.-Y.J.; Gruber, S.M.S.; Niu, W.; Wong, D.W.-C.; Zhang, M. Biomechanical analysis of four augmented fixations of plate osteosynthesis for comminuted mid-shaft clavicle fracture: A finite element approach. Exp. Ther. Med. 2020, 20, 2106–2112. [Google Scholar] [CrossRef]
- Beirer, M.; Banke, I.J.; Harrasser, N.; Cronlein, M.; Pforringer, D.; Huber-Wagner, S.; Biberthaler, P.; Kirchhoff, C. Mid-term outcome following revision surgery of clavicular non- and malunion using anatomic locking compression plate and iliac crest bone graft. BMC Musculoskelet. Disord. 2017, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Pengrung, N.; Lakdee, N.; Puncreobutr, C.; Lohwongwatana, B.; Sa-Ngasoongsong, P. Finite element analysis comparison between superior clavicle locking plate with and without screw holes above fracture zone in midshaft clavicular fracture. BMC Musculoskelet. Disord. 2019, 20, 465. [Google Scholar] [CrossRef]
- Kavuri, V.; Bowden, B.; Kumar, N.; Cerynik, D. Complications Associated with Locking Plate of Proximal Humerus Fractures. Indian J. Orthop. 2018, 52, 108–116. [Google Scholar] [CrossRef]
- Shi, F.; Hu, H.; Tian, M.; Fang, X.; Li, X. Comparison of 3 treatment methods for midshaft clavicle fractures: A systematic review and network meta-analysis of randomized clinical trials. Injury 2022, 53, 1765–1776. [Google Scholar] [CrossRef]
- D’Andrea, D.; Cucinotta, F.; Ferroni, F.; Risitano, G.; Santonocito, D.; Scappaticci, L. Development of Machine Learning Algorithms for the Determination of the Centre of Mass. Symmetry 2021, 13, 401. [Google Scholar] [CrossRef]
- Magneli, M.; Ling, P.; Gislen, J.; Fagrell, J.; Demir, Y.; Arverud, E.D.; Hallberg, K.; Salomonsson, B.; Gordon, M. Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle. PLoS ONE 2023, 18, e0289808. [Google Scholar] [CrossRef]
- Donnelly, T.D.; Macfarlane, R.J.; Nagy, M.T.; Ralte, P.; Waseem, M. Fractures of the clavicle: An overview. Open Orthop. J. 2013, 7, 329–333. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, X.; Yin, B.; Wang, J.; Li, S.; Liu, G.; Hu, Z.; Wu, W.; Zhang, Y. Finite element analysis of spiral plate and Herbert screw fixation for treatment of midshaft clavicle fractures. Medicine 2019, 98, e16898. [Google Scholar] [CrossRef] [PubMed]
- Tropea, A.; Tisano, A.; Bruschetta, A.; Borzelli, D.; Migliorato, A.; Nirta, G.; Leonardi, G.; Trimarchi, F.; Alito, A. Comparative FE biomechanical and microbial adhesion analyses on an implanted humerus. J. Orthop. 2022, 32, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V. Healing of tibial comminuted fractures by the meaning of an innovative intramedullary nail. J. Orthop. 2019, 16, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Filardi, V. Tibio talar contact stress: An experimental and numerical study. J. Orthop. 2020, 17, 44–48. [Google Scholar] [CrossRef]
Body Components | Elements | Nodes |
---|---|---|
Rib cage | 12.361 | 13.526 |
Humerus | 18.452 | 21.458 |
Scapula | 17.232 | 19.557 |
Acromion | 10.784 | 15.420 |
Coracoacromial ligament | 5.469 | 5.914 |
Glenohumeral ligament | 4.752 | 5.112 |
Acromioclavicular ligament | 2.845 | 2.946 |
Coracohumeral ligament | 3.025 | 3.412 |
Transverse humeral ligament | 5.231 | 5.417 |
Joint capsule | 4.569 | 4.822 |
Body Components | Equivalent V. Mises Stress [MPa] |
---|---|
Humerus | 40 |
Scapula | 30 |
Clavicle | 9 |
Fractured clavicle | 15 |
Coracoacromial ligament | 8 |
Glenohumeral ligament | 11 |
Acromioclavicular ligament | 10 |
Coracohumeral ligament | 13 |
Transverse humeral ligament | 8 |
Joint capsule | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alito, A.; Fenga, D.; Tropeano, G.; Milardi, D.; Leonetti, D.; Migliorato, A.; Tisano, A.; D’Andrea, D.; Filardi, V. Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering 2023, 10, 1402. https://doi.org/10.3390/bioengineering10121402
Alito A, Fenga D, Tropeano G, Milardi D, Leonetti D, Migliorato A, Tisano A, D’Andrea D, Filardi V. Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering. 2023; 10(12):1402. https://doi.org/10.3390/bioengineering10121402
Chicago/Turabian StyleAlito, Angelo, Domenico Fenga, Giada Tropeano, Demetrio Milardi, Danilo Leonetti, Alba Migliorato, Adriana Tisano, Danilo D’Andrea, and Vincenzo Filardi. 2023. "Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis" Bioengineering 10, no. 12: 1402. https://doi.org/10.3390/bioengineering10121402
APA StyleAlito, A., Fenga, D., Tropeano, G., Milardi, D., Leonetti, D., Migliorato, A., Tisano, A., D’Andrea, D., & Filardi, V. (2023). Screw Stress Distribution in a Clavicle Fracture with Plate Fixation: A Finite Element Analysis. Bioengineering, 10(12), 1402. https://doi.org/10.3390/bioengineering10121402