Arduino Automated Microwave Oven for Tissue Decalcification
Abstract
:1. Introduction
2. Materials and Methods
- -
- A commercial oven with mechanical input commands (SilverCrest SMW 700 B1, Kpmpernass GMBH, Bochum, Germany). Ovens with electronic timers are unsuitable because bypassing the installed circuit boards is difficult.
- -
- An Arduino board: Arduino is an open-source electronic microcontroller, and there is a large variety of models on the market. Each model works similarly, but it was decided to use the original Arduino UNO (Interaction Design Institute, Ivrea, Italy).
- -
- Two 100 nF capacitors, one resistance of 10 Kohm, one of 3300 Ohm, two diodes model 1N4140, one transistor NPN model 2N2222 (or NPN BC 547b).
- -
- Breadboard and connection cables
- -
- One Arduino-compatible mechanical relay
- -
- An array of neon mini lamp bulbs
Component | Store | Price |
---|---|---|
Arduino | Arduino official store | 23 $ |
Capacitors | Digikey.com | 0.92 $ |
Resistance | Digickey.com | 0.60 $ |
Dioedes | RS-online.com | 1 $ |
Breadboard and connection cables | Digikey.com | 23 $ |
Transistor | RS-online.com | 0.27 $ |
Microwave oven | Lidl Italy SRL | 65 $ |
Neon bulbs | Farrel.it | 103 $ |
Total | 226,84 $ |
2.1. Microwave Oven Modifications and Settings
2.2. Safety Electronic Circuit Board
2.3. Sample Placement, Decalcification, and Duty Cycle
2.4. Histological Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclosure Statement
References
- Skinner, R.A. Decalcification of Bone Tissue. In Handbook of Histology Methods for Bone and Cartilage; An, Y.H., Martin, K.L., Eds.; Humana Press: Totowa, NJ, USA, 2003. [Google Scholar]
- Liu, H.; Zhu, R.; Liu, C.; Ma, R.; Wang, L.; Chen, B.; Li, L.; Niu, J.; Zhao, D.; Mo, F.; et al. Evaluation of Decalcification Techniques for Rat Femurs Using HE and Immunohistochemical Staining. Biomed Res. Int. 2017, 2017, 9050754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogoevski, K.; Woloszyk, A.; Blackwood, K.; Woodruff, M.A.; Glatt, V. Tissue Morphology and Antigenicity in Mouse and Rat Tibia: Comparing 12 Different Decalcification Conditions. J. Histochem. Cytochem. 2019, 67, 545–561. [Google Scholar] [CrossRef] [PubMed]
- Campo, R.D.; Betz, R.R. Loss of proteoglycans during decalcification of fresh metaphyses with disodium ethylenediaminetetraacetate (EDTA). Calcif. Tissue Int. 1987, 41, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, N.G.; Pradhan, P.; Badhe, B.A.; Ilanchezian, K.; Manimehalai, D.; Jyothish, A. A novel approach to decalcification in histopathology laboratory: An adaptation from the Hammersmith protocol. Indian J. Pathol. Microbiol. 2019, 62, 423–429. [Google Scholar] [CrossRef]
- Case, N.M. The use of a cation exchange resin in decalcification. Stain. Technol. 1953, 28, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.E., Jr.; Benton, R.S. Studies on demineralization of bone. III. The effect of ion exchange resins and versenate in demineralization. Am. J. Clin. Pathol. 1956, 26, 771–777. [Google Scholar] [CrossRef]
- Salih, M.M. Comparison between Conventional Decalcification and a Microwave-Assisted Method in Bone Tissue Affected with Mycetoma. Biochem. Res. Int. 2020, 2020, 6561980. [Google Scholar] [CrossRef] [PubMed]
- Sangeetha, R.; Uma, K.; Chandavarkar, V. Comparison of routine decalcification methods with microwave decalcification of bone and teeth. J. Oral Maxillofac. Pathol. 2013, 17, 386–391. [Google Scholar] [PubMed] [Green Version]
- Login, G.R.; Dovorak, A. The Microwave Tool Book a Practical Guide for Microscopist; Beth Israeli Hospital: Boston, MA, USA, 1994; pp. 1–160. [Google Scholar]
- Alers, J.C.; Krijtenburg, P.J.; Vissers, K.J.; van Dekken, H. Effect of bone decalcification procedures on DNA in situ hybridization and comparative genomic hybridization. EDTA is highly preferable to a routinely used acid decalcifier. J. Histochem. Cytochem. 1999, 47, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Morse, A. Formic acid-sodium citrate decalcification and butyl alcohol dehydration of teeth and bones for sectioning in paraffin. J. Dent. Res. 1945, 24, 3–4. [Google Scholar] [CrossRef]
- Bancroft, J.D. Theory and Practice of Histological Techniques, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Gomarasca, M.; Savadori, P.; Mariano, S.; Cipolla, L.; Lombardi, G. Histological validation of adipogenic differentiation potential of ASC on collagen-based 2D scaffolds. Histochem. Cell Biol. 2020, 154, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Belaldavar, C.; Hallikerimath, S.; Angadi, P.V.; Kale, A.D. Comparison of tetrachromic VOF stain to other histochemical staining techniques for characterizing stromal soft and hard tissue components. Biotech. Histochem. 2014, 89, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Savi, F.M.; Brierly, G.I.; Baldwin, J.; Theodoropoulos, C.; Woodruff, M.A. Comparison of Different Decalcification Methods Using Rat Mandibles as a Model. J. Histochem. Cytochem. 2017, 65, 705–722. [Google Scholar] [CrossRef]
- Miquelestorena-Standley, E.; Jourdan, M.-L.; Collin, C.; Bouvier, C.; Larousserie, F.; Aubert, S.; Gomez-Brouchet, A.; Guinebretière, J.-M.; Tallegas, M.; Brulin, B.; et al. Effect of decalcification protocols on immunohistochemistry and molecular analyses of bone samples. Mod. Pathol. 2020, 33, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Page, K.M. Bone. In Theory and Practice of Histological Techniques; Bancroft, J.D., Stevens, A., Eds.; Churchill Livingstone: New York, NY, USA, 1996. [Google Scholar]
- Kapila, S.N.; Natarajan, S.; Boaz, K.; Pandya, J.A.; Yinti, S.R. Driving the Mineral out Faster: Simple Modifications of the Decalcification Technique. J. Clin. Diagn. Res. 2015, 9, ZC93–ZC97. [Google Scholar] [CrossRef] [PubMed]
- Pitol, D.L.; Caetano, F.H.; Lunardi, L.O. Microwave-induced fast decalcification of rat bone for electron microscopic analysis: An ultrastructural and cytochemical study. Braz. Dent. J. 2007, 18, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Imaizumi, K.; Taniguchi, K.; Ogawa, Y. An evaluation of the effect of microwave irradiation on bone decalcification aimed to DNA extraction. Leg. Med. 2013, 15, 272–277. [Google Scholar] [CrossRef]
- Kondaveet, K.H.; Kumar, K.N.; Dayal, V.S.; Mathe Ellison, S.; Suseelai, V. A systematic literature review on prototyping with Arduino: Applications, challenges, advantages, and limitations. Comput. Sci. Rev. 2021, 40, 100364. [Google Scholar] [CrossRef]
- Travlos, G.S. Normal structure, function, and histology of the bone marrow. Toxicol. Pathol. 2006, 34, 548–565. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.K. Manual of Histological Technique; JP Medical Ltd.: London, UK, 2017. [Google Scholar]
- Hairston, M.A. The effect of pH on staining by eosins. Stain. Technol. 1955, 30, 299–304. [Google Scholar] [CrossRef]
- Bendinelli, P.; Maroni, P.; Matteucci, E.; Desiderio, M.A. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia. Int. J. Mol. Sci. 2016, 17, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giardino, L.; Grande, N.M.; Savadori, P.; Del Fabbro, M.; Plotino, G. Clinical and Histological Findings of Post-Treatment Infection in the Presence of Vertical Root Fracture and Apical Periodontitis: Case Reports. Eur. Endod. J. 2019, 4, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Minetti, E.; Palermo, A.; Savadori, P.; Barlattani, A., Jr.; Franco, R.; Michele, M.; Gianfreda, F.; Bollero, P. Autologous tooth graft: A histological comparison between dentin mixed with xenograft and dentin alone grafts in socket preservation. J. Biol. Regul. Homeost. Agents 2019, 33 (Suppl. 2), 189–197. [Google Scholar] [PubMed]
- Farronato, M.; Baselli, G.; Baldini, B.; Favia, G.; Tartaglia, G.M. 3D Cephalometric Normality Range: Auto Contractive Maps (ACM) Analysis in Selected Caucasian Skeletal Class I Age Groups. Bioengineering 2022, 9, 2016. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savadori, P.; Dalfino, S.; Piazzoni, M.; Inchingolo, F.; Del Fabbro, M.; Tartaglia, G.M.; Giardino, L. Arduino Automated Microwave Oven for Tissue Decalcification. Bioengineering 2023, 10, 79. https://doi.org/10.3390/bioengineering10010079
Savadori P, Dalfino S, Piazzoni M, Inchingolo F, Del Fabbro M, Tartaglia GM, Giardino L. Arduino Automated Microwave Oven for Tissue Decalcification. Bioengineering. 2023; 10(1):79. https://doi.org/10.3390/bioengineering10010079
Chicago/Turabian StyleSavadori, Paolo, Sophia Dalfino, Marco Piazzoni, Francesco Inchingolo, Massimo Del Fabbro, Gianluca Martino Tartaglia, and Luciano Giardino. 2023. "Arduino Automated Microwave Oven for Tissue Decalcification" Bioengineering 10, no. 1: 79. https://doi.org/10.3390/bioengineering10010079
APA StyleSavadori, P., Dalfino, S., Piazzoni, M., Inchingolo, F., Del Fabbro, M., Tartaglia, G. M., & Giardino, L. (2023). Arduino Automated Microwave Oven for Tissue Decalcification. Bioengineering, 10(1), 79. https://doi.org/10.3390/bioengineering10010079