Distinction of Different Colony Types by a Smart-Data-Driven Tool
Abstract
:1. Introduction
2. Methodology
2.1. Microbiological Analysis and Image Database
2.2. The Deep and Classical Machine-Learning Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Yan, B.; Xing, M.; Tian, C. Automated counting of bacterial colonies on agar plates based on images captured at near-infrared light. J. Microbiol. Methods 2018, 153, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Raju, S.; Aparna, H.G.; Krishnan, A.V.; Naryanan, D.; Gangadhran, V.; Paul, S.C. Automated counting of bacterial colonies by image analysis. J. Multidiscip. Dent. Res. 2020, 5, 19–21. [Google Scholar] [CrossRef]
- Breakwell, D.P.; Macdonald, B.; Woolverton, C.J.; Smith, K.C.; Robison, R.A. Colony Morphology Protocol. In Proceedings of the ASM Conference for Undergraduate Educators, San Diego, CA, USA, 16–19 February 2007. [Google Scholar]
- Rodrigues, P.M.; Luís, J.; Tavaria, F.K. Image Analysis Semi-Automatic System for Colony-Forming-Unit Counting. Bioengineering 2022, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U. Inhibition of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus feacalis through Malus DomesticaExtracts to Eliminate Food Borne Illness. Am. J. Biomed. Sci. Res. 2019, 3, 391–397. [Google Scholar] [CrossRef]
- Cleven, B.E.E.; Palka-Santini, M.; Gielen, J.; Meembor, S.; Krönke, M.; Krut, O. Identification and Characterization of Bacterial Pathogens Causing Bloodstream Infections by DNA Microarray. J. Clin. Microbiol. 2006, 44, 2389–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedge, A. Survival of Escherichia coli, Pseudomona aeruginosa, Staphylococcus aureus on Wood and Plastic Surfaces. J. Microb. Biochem. Technol. 2015, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, M.H.; Wiwasuku, T.; Day, A.S.; Youngme, S.; Hwang, D.S.; Yoon, J.Y. Human sensor-inspired supervised machine learning of smartphone-based paper microfluidic analysis for bacterial species classification. Biosens. Bioelectron. 2021, 188, 113335. [Google Scholar] [CrossRef] [PubMed]
- Zieliński, B.; Plichta, A.; Misztal, K.; Spurek, P.; Brzychczy-Włoch, M.; Ochońska, D. Deep learning approach to bacterial colony classification. PLoS ONE 2017, 12, e0184554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalifa, N.E.M.; Taha, M.H.N.; Hassanien, A.E.; Hemedan, A.A. Deep bacteria: Robust deep learning data augmentation design for limited bacterial colony dataset. Int. J. Reason.-Based Intell. Syst. 2019, 11, 256. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Tang, S.; Zou, H.; Wang, W.; Qi, G.; Zhang, H.; Jin, K.; Wang, Y.; Chen, H.; et al. 2D nanomaterial sensing array using machine learning for differential profiling of pathogenic microbial taxonomic identification. Microchim. Acta 2022, 189, 273. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.M.; Luis, J.; Tavaria, F.K. Petri Dishes Digital Images Dataset of E. coli, S. aureus and P. aeruginosa. 2022. Available online: https://figshare.com/articles/dataset/Dataset_bioengineering_17489364/20109377/2 (accessed on 20 November 2022).
- Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 20 November 2022).
- Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote. Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Missiakas, D.M.; Schneewind, O. Growth and Laboratory Maintenance of Staphylococcus aureus. Curr. Protoc. Microbiol. 2013, 28. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Rahman, W.; Ali, M.; Sultana, T.; Hossain, K. Identification and Antibiogram Assay of Escherichia coli Isolated from Chicken Eggs. J. Bio-Sci. 2021, 29, 123–133. [Google Scholar] [CrossRef]
- Agarwal, G.; Kapil, A.; Kabra, S.K.; Das, B.K.; Dwivedi, S.N. Characterization of Pseudomonas aeruginosa isolated from chronically infected children with cystic fibrosis in India. BMC Microbiol. 2005, 5, 43. [Google Scholar] [CrossRef] [PubMed]
Ref. | Year | ML Model | Comparison Group | Accuracy |
---|---|---|---|---|
[8] | 2021 | SVM | E. coli vs. S. aureus vs. S. Typhimurium vs. E. faecium vs. P. aeruginosa | 93.3% |
[9] | 2017 | CNN | 33 bacteria comparison (all the bacteria used in this study are included) | 97.24% |
[10] | 2019 | CNN | 33 bacteria comparison (all the bacteria used in this study are included) | 98.22% |
[11] | 2022 | Linear Discriminant | E. coli vs. E. coli-β vs. S. aureus vs. methicillin-resistant S. aureus vs. P. aeruginosa vs. E. faecalis vs. K. pneumoniae vs. C. albicans | 92% |
ML Model | Optimal Parameters | |
---|---|---|
DT | Medium Tree | Maximum number of splits = 150 & criterion = “gini” |
SVM | Radial Basis | Cost = 1 & gamma = 2 |
KNN | Balltree | Number of neighbors = 3 |
MLP | 1 input layer | activation function = “relu” |
training algorithm = “adam” | ||
1 hidden layer | L2 regulation term = 1 | |
fullyConnectedLayer = 3 | ||
1 output layer | hidden layer neurons = 100 | |
Ensemble | Random Forest (RF) | Maximum number of splits = 100 & criterion = “gini” |
Bagged Trees (BagT) | Maximum number of splits = 150 & criterion = “gini” | |
XGBoost | boosted trees to fit = 150 | |
learning rate = 0.1 | ||
max depth of the tree = 6 | ||
L2 regulation term = 1 |
Escherichia coli vs. Pseudomonas aeruginosa | Escherichia coli vs. Staphylococcus aureus | Pseudomonas aeruginosa vs. Staphylococcus aureus | ||||||
---|---|---|---|---|---|---|---|---|
Classifiers | Accuracy | F1-Score | Classifiers | Accuracy | F1-Score | Classifiers | Accuracy | F1-Score |
Xception-DT | 76.79% | 76.76% | Xception-XGBoost | 81.49% | 81.47% | Xception-XGBoost | 81.33% | 81.26% |
VGG16-XGBoost | 77.26% | 77.26% | VGG16-XGBoost | 84.90% | 84.89% | VGG16-XGBoost | 84.70% | 84.67% |
VGG19-XGBoost | 71.86% | 71.85% | VGG19-XGBoost | 84.04% | 84.04% | VGG19-XGBoost | 84.94% | 84.93% |
ResNet50-XGBoost | 77.96% | 77.95% | ResNet50-XGBoost | 86.97% | 86.97% | ResNet50-XGBoost | 86.75% | 86.74% |
ResNet50V2-XGBoost | 76.20% | 76.17% | ResNet50V2-XGBoost | 82.10% | 82.09% | ResNet50V2-XGBoost | 87.11% | 87.11% |
ResNet101-BagT | 76.91% | 76.89% | ResNet101-XGBoost | 85.51% | 85.49% | ResNet101-XGBoost | 88.43% | 88.42% |
ResNet101V2-XGBoost | 74.79% | 74.79% | ResNet101V2-XGBoost | 75.52% | 75.50% | ResNet101V2-XGBoost | 78.43% | 78.37% |
ResNet152-XGBoost | 79.02% | 78.99% | ResNet152-XGBoost | 86.11% | 86.11% | ResNet152-XGBoost | 86.99% | 86.99% |
ResNet152V2-XGBoost | 75.15% | 75.15% | ResNet152V2-XGBoost | 78.20% | 78.19% | ResNet152V2-XGBoost | 80.96% | 80.94% |
InceptionV3-XGBoost | 75.38% | 75.37% | InceptionV3-XGBoost | 76.49% | 76.49% | InceptionV3-RF | 77.83% | 77.68% |
InceptionResNetV2-XGBoost | 74.91% | 74.91% | InceptionResNetV2-XGBoost | 74.30% | 74.30% | InceptionResNetV2-XGBoost | 79.28% | 79.24% |
MobileNet-XGBoost | 83.94% | 83.94% | MobileNet-XGBoost | 91.11% | 91.11% | MobileNet-XGBoost | 92.05% | 92.04% |
MobileNetV2-XGBoost | 78.90% | 78.88% | MobileNetV2-XGBoost | 85.75% | 85.75% | MobileNetV2-XGBoost | 88.55% | 88.54% |
DenseNet121-KNN | 79.60% | 79.60% | DenseNet121-KNN | 83.80% | 83.77% | DenseNet121-XGBoost | 86.51% | 86.49% |
DenseNet169-XGBoost | 79.48% | 79.48% | DenseNet169-KNN | 84.17% | 84.15% | DenseNet169-KNN | 84.82% | 84.76% |
DenseNet201-XGBoost | 79.60% | 79.58% | DenseNet201-XGBoost | 84.41% | 84.41% | DenseNet201-XGBoost | 86.14% | 86.15% |
EfficientNetB0-XGBoost | 68.35% | 68.24% | EfficientNetB0-XGBoost | 74.91% | 74.91% | EfficientNetB0-XGBoost | 80.84% | 80.78% |
EfficientNetB1-XGBoost | 70.57% | 70.54% | EfficientNetB1-XGBoost | 78.93% | 78.93% | EfficientNetB1-KNN | 83.13% | 83.06% |
EfficientNetB2-XGBoost | 72.22% | 72.22% | EfficientNetB2-XGBoost | 82.10% | 82.09% | EfficientNetB2-XGBoost | 81.57% | 81.53% |
EfficientNetB3-XGBoost | 67.76% | 67.75% | EfficientNetB3-XGBoost | 69.79% | 69.77% | EfficientNetB3-XGBoost | 75.90% | 75.82% |
EfficientNetB4-XGBoost | 76.55% | 76.55% | EfficientNetB4-XGBoost | 78.81% | 78.80% | EfficientNetB4-XGBoost | 83.73% | 83.71% |
EfficientNetB5-XGBoost | 71.51% | 71.51% | EfficientNetB5-XGBoost | 80.63% | 80.63% | EfficientNetB5-BagT | 83.49% | 83.45% |
EfficientNetB6-XGBoost | 66.47% | 66.47% | EfficientNetB6-XGBoost | 71.86% | 71.87% | EfficientNetB6-XGBoost | 76.39% | 76.31% |
EfficientNetB7-XGBoost | 75.62% | 75.61% | EfficientNetB7-XGBoost | 84.77% | 84.77% | EfficientNetB7-XGBoost | 87.83% | 87.82% |
EfficientNetV2B0-XGBoost | 75.38% | 75.38% | EfficientNetV2B0-XGBoost | 83.68% | 83.67% | EfficientNetV2B0-XGBoost | 86.63% | 86.60% |
EfficientNetV2B1-XGBoost | 75.85% | 75.83% | EfficientNetV2B1-XGBoost | 84.04% | 84.03% | EfficientNetV2B1-XGBoost | 87.47% | 87.45% |
EfficientNetV2B2-XGBoost | 75.85% | 75.85% | EfficientNetV2B2-KNN | 80.63% | 80.52% | EfficientNetV2B2-XGBoost | 84.10% | 84.05% |
EfficientNetV2B3-XGBoost | 79.95% | 79.95% | EfficientNetV2B3-XGBoost | 83.68% | 83.68% | EfficientNetV2B3-XGBoost | 86.51% | 86.50% |
EfficientNetV2S-XGBoost | 70.93% | 70.92% | EfficientNetV2S-XGBoost | 75.03% | 75.01% | EfficientNetV2S-XGBoost | 77.47% | 77.41% |
EfficientNetV2M-XGBoost | 65.42% | 65.42% | EfficientNetV2M-XGBoost | 70.89% | 70.89% | EfficientNetV2M-XGBoost | 67.47% | 67.45% |
EfficientNetV2L-BagT | 63.89% | 63.86% | EfficientNetV2L-XGBoost | 72.59% | 72.59% | EfficientNetV2L-XGBoost | 72.41% | 72.31% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, P.M.; Ribeiro, P.; Tavaria, F.K. Distinction of Different Colony Types by a Smart-Data-Driven Tool. Bioengineering 2023, 10, 26. https://doi.org/10.3390/bioengineering10010026
Rodrigues PM, Ribeiro P, Tavaria FK. Distinction of Different Colony Types by a Smart-Data-Driven Tool. Bioengineering. 2023; 10(1):26. https://doi.org/10.3390/bioengineering10010026
Chicago/Turabian StyleRodrigues, Pedro Miguel, Pedro Ribeiro, and Freni Kekhasharú Tavaria. 2023. "Distinction of Different Colony Types by a Smart-Data-Driven Tool" Bioengineering 10, no. 1: 26. https://doi.org/10.3390/bioengineering10010026
APA StyleRodrigues, P. M., Ribeiro, P., & Tavaria, F. K. (2023). Distinction of Different Colony Types by a Smart-Data-Driven Tool. Bioengineering, 10(1), 26. https://doi.org/10.3390/bioengineering10010026