Detection of Bacteria-Induced Early-Stage Dental Caries Using Three-Dimensional Mid-Infrared Thermophotonic Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Caries Creation Protocol
2.2. Thermophotonic Imaging Instrumentation and Parameters
2.3. ICDAS Visual Assessment of Caries
2.4. Micro-CT Imaging
3. Results and Discussion
3.1. Sample B8: 8-Day Bacterial Demineralization Treatment
3.2. Samples M: 2-, 4-, 6-, and 8-Day Bacterial Demineralization Treatments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, U.; Kanellis, M.J.; Drake, D. Effects of four anticaries agents on lesion depth progression in an in vitro caries model. Pediatr. Dent. 1999, 21, 176–180. [Google Scholar] [PubMed]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Ismail, A. Dental caries. Nat. Rev. Dis. Prim. 2017, 3, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeRocher, K.A.; Smeets, P.J.; Goodge, B.H.; Zachman, M.J.; Balachandran, P.V.; Stegbauer, L.; Joester, D. Chemical gradients in human enamel crystallites. Nature 2020, 583, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Tzschoppe, M.; Paris, S. Radiographic caries detection: A systematic review and meta-analysis. J. Dent. 2015, 43, 924–933. [Google Scholar] [CrossRef]
- National Institutes of Health. Diagnosis and management of dental caries throughout life. NIH Consens. Statement 2001, 65, 1162–1168. [Google Scholar]
- Penning, C.; Van Amerongen, J.P.; Seef, R.E.; Ten Cate, J.M. Validity of probing for fissure caries diagnosis. Caries Res. 1992, 26, 445–449. [Google Scholar] [CrossRef]
- González-Cabezas, C.; Fernández, C.E. Recent Advances in Remineralization Therapies for Caries Lesions. Adv. Dent. Res. 2018, 29, 55–59. [Google Scholar] [CrossRef]
- Darling, C.L.; Huynh, G.; Fried, D. Scattering properties of natural and artificially demineralized dental enamel at 1310 nm. J. Biomed. Opt. 2006, 11, 34023. [Google Scholar] [CrossRef]
- Hellen, A.; Mandelis, A.; Finer, Y.; Amaechi, B.T. Quantitative evaluation of the kinetics of human enamel simulated caries using photothermal radiometry and modulated luminescence. J. Biomed. Opt. 2011, 16, 071406. [Google Scholar] [CrossRef]
- Lancaster, P.; Brettle, D.; Carmichael, F.; Clerehugh, V. In-vitro Thermal Maps to Characterize Human Dental Enamel and Dentin. Front. Physiol. 2017, 8, 461. [Google Scholar] [CrossRef] [Green Version]
- Kaiplavil, S.; Mandelis, A. Truncated-correlation photothermal coherence tomography for deep subsurface analysis. Nat. Photonics 2014, 8, 635–642. [Google Scholar] [CrossRef]
- Tavakolian, P.; Sivagurunathan, K.; Mandelis, A. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions. J. Appl. Phys. 2017, 112, 023103. [Google Scholar] [CrossRef]
- Welch, R.; Sivagurunathan, K.; Tavakolian, P.; Mandelis, A. Computationally optimized and simplified modalities of Truncated Correlation Photothermal Coherence Tomography. J. Biophotonics 2022, 15, e202200018. [Google Scholar] [CrossRef]
- Roointan, S.; Tavakolian, P.; Sivagurunathan, K.S.; Floryan, M.; Mandelis, A.; Abrams, S.H. 3D Dental Subsurface Imaging Using Enhanced Truncated Correlation-Photothermal Coherence Tomography. Sci. Rep. 2019, 9, 16788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roointan, S.; Tavakolian, P.; Sivagurunathan, K.S.; Mandelis, A.; Abrams, S.H. Detection and monitoring of early dental caries and erosion using three-dimensional enhanced truncated-correlation photothermal coherence tomography imaging. J. Biomed. Opt. 2021, 26, 046004. [Google Scholar] [CrossRef]
- Lo, E.C.M.; Zhi, Q.H.; Itthagarun, A. Comparing two quantitative methods for studying remineralization of artificial caries. J. Dent. 2010, 38, 352–359. [Google Scholar] [CrossRef]
- Ngai, K. Dental Adhesive Systems Loaded with Antimicrobial Drug-silica-Co-assembled Particles for Interfacial Biodegradation and Recurrent Caries Reduction. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2020. Available online: https://tspace.library.utoronto.ca/handle/1807/103721 (accessed on 6 December 2021).
- Bourbia, M.; Ma, D.; Cvitkovitch, D.G.; Santerre, J.P.; Finer, Y. Cariogenic bacteria degrade dental resin composites and adhesives. J. Dent. Res. 2013, 92, 989–994. [Google Scholar] [CrossRef]
- Huang, B.; Sadeghinejad, L.; Adebayo, O.I.; Ma, D.; Xiao, Y.; Siqueira, W.L.; Finer, Y. Gene expression and protein synthesis of esterase from Streptococcus mutans are affected by biodegradation by-product from methacrylate resin composites and adhesives. Acta Biomater. 2018, 81, 158–168. [Google Scholar] [CrossRef]
- Huang, B.; Siqueira, W.L.; Cvitkovitch, D.G.; Finer, Y. Esterase from a cariogenic bacterium hydrolyzes dental resins. Acta Biomater. 2018, 71, 330–338. [Google Scholar] [CrossRef]
- Sadeghinejad, L.; Cvitkovitch, D.G.; Siqueira, W.L.; Santerre, J.P.; Finer, Y. Triethylene glycol up-regulates virulence-associated genes and proteins in streptococcus mutans. PLoS ONE 2016, 11, e0165760. [Google Scholar] [CrossRef] [Green Version]
- Shu, M.; Wong, L.; Miller, J.H.; Sissons, C.H. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch. Oral Biol. 2000, 45, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Kaiplavil, S.; Mandelis, A. Highly depth-resolved chirped pulse photothermal radar for bone diagnostics. Rev. Sci. Instrum. 2011, 82, 074906. [Google Scholar] [CrossRef] [PubMed]
- Z136.1-2014; Safe Use of Lasers. American National Standards Institute, Laser Institute of America: Orlando, FL, USA, 2014. Available online: https://www.lia.org/resources/laser-safety-information/laser-safety-standards/ansi-z136-standards/z136-1 (accessed on 1 December 2022).
- Dikmen, B. Icdas II criteria (international caries detection and assessment system). J. Istanb. Univ. Fac. Dent. 2015, 49, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Gugnani, N.; Pandit, I.K.; Srivastava, N.; Gupta, M.; Sharma, M. International caries detection and assessment system (ICDAS): A. new concept. Int. J. Clin. Pediatr. Dent. 2011, 4, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Philip, N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef]
- Ten Cate, J.M.; Buzalaf, M.A.R. Fluoride mode of action: Once there was an observant dentist. J. Dent. Res. 2019, 98, 725–730. [Google Scholar] [CrossRef]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- McCormick, M.; Kaszynski, A.; Chen, D.; Musy, M.; Birdsong, T.; Remedios, A. InsightSoftwareConsortium/itkwidgets: Itkwidgets. 0.32.5. Zenodo 2020. [CrossRef]
- Rovaris, K.; Ferreira, L.M.; Sousa, T.O.; Peroni, L.V.; Freitas, D.Q.; Wenzel, A.; Haiter-Neto, F. Feasibility of micro-computed tomography to detect and classify proximal caries lesions in vitro. Dent. Res. J. 2018, 15, 123–129. [Google Scholar]
Rank | Title 2 |
---|---|
0 | Sound |
1 | First visual change in enamel |
2 | Distinct visual change in enamel |
3 | Localized enamel breakdown |
4 | Underlying dark shadow from dentin |
5 | Distinct cavity with visible dentin |
6 | Extensive distinct cavity with visible dentin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welch, R.; Sivagurunathan, K.; Tavakolian, P.; Ngai, K.; Huang, B.; Abrams, S.; Finer, Y.; Mandelis, A. Detection of Bacteria-Induced Early-Stage Dental Caries Using Three-Dimensional Mid-Infrared Thermophotonic Imaging. Bioengineering 2023, 10, 112. https://doi.org/10.3390/bioengineering10010112
Welch R, Sivagurunathan K, Tavakolian P, Ngai K, Huang B, Abrams S, Finer Y, Mandelis A. Detection of Bacteria-Induced Early-Stage Dental Caries Using Three-Dimensional Mid-Infrared Thermophotonic Imaging. Bioengineering. 2023; 10(1):112. https://doi.org/10.3390/bioengineering10010112
Chicago/Turabian StyleWelch, Robert, Koneswaran Sivagurunathan, Pantea Tavakolian, Kimberly Ngai, Bo Huang, Stephen Abrams, Yoav Finer, and Andreas Mandelis. 2023. "Detection of Bacteria-Induced Early-Stage Dental Caries Using Three-Dimensional Mid-Infrared Thermophotonic Imaging" Bioengineering 10, no. 1: 112. https://doi.org/10.3390/bioengineering10010112
APA StyleWelch, R., Sivagurunathan, K., Tavakolian, P., Ngai, K., Huang, B., Abrams, S., Finer, Y., & Mandelis, A. (2023). Detection of Bacteria-Induced Early-Stage Dental Caries Using Three-Dimensional Mid-Infrared Thermophotonic Imaging. Bioengineering, 10(1), 112. https://doi.org/10.3390/bioengineering10010112