Comparing Statistical Downscaling and Arithmetic Mean in Simulating CMIP6 Multi-Model Ensemble over Brunei
Abstract
:1. Introduction
2. Study Area
3. Methodology
3.1. Data
3.2. Statistical Downscaling Model of MME (SD)
3.3. Arithmetic Mean of MME (AM)
3.4. Bias Correction
3.5. Performance of Model Evaluation
4. Results and Discussion
4.1. Statistical Downscaling Model (SD)
4.2. Calibration and Validation of the Models
4.3. Future Projection of Precipitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoang, L.P.; Lauri, H.; Kummu, M.; Koponen, J.; Van Vliet, M.T.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F. Mekong River flow and hydrological extremes under climate change. Hydrol. Earth Syst. Sci. 2016, 20, 3027–3041. [Google Scholar] [CrossRef]
- Uk, S.; Yoshimura, C.; Siev, S.; Try, S.; Yang, H.; Oeurng, C.; Li, S.; Hul, S. Tonle Sap Lake: Current status and important research directions for environmental management. Lakes Reserv. Res. Manag. 2018, 23, 177–189. [Google Scholar] [CrossRef]
- Energy and Industry Department. Brunei Darussalam’s Second National Communication: Under the United Nations Framework Convention on Climate Change; The Prime Minister’s Office: Singapore, 2017.
- Yuan, C.; Yamagata, T. Impacts of IOD, ENSO and ENSO Modoki on the Australian Winter Wheat Yields in Recent Decades. Sci. Rep. 2015, 5, 17252. [Google Scholar] [CrossRef]
- Guven, A.; Aytek, A. New Approach for Stage–Discharge Relationship: Gene-Expression Programming. J. Hydrol. Eng. 2009, 14, 812–820. [Google Scholar] [CrossRef]
- Adib, M.N.M.; Harun, S.; Rowshon, M.K. Long-term rainfall projection based on CMIP6 scenarios for Kurau River Basin of rice-growing irrigation scheme, Malaysia. SN Appl. Sci. 2022, 4, 70. [Google Scholar] [CrossRef]
- Ayugi, B.; Shilenje, Z.W.; Babaousmail, H.; Lim Kam Sian, K.T.C.; Mumo, R.; Dike, V.N.; Iyakaremye, V.; Chehbouni, A.; Ongoma, V. Projected changes in meteorological drought over East Africa inferred from bias-adjusted CMIP6 models. Nat. Hazards 2022, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Hamed, M.M.; Nashwan, M.S.; Shahid, S.; Ismail, T.B.; Dewan, A.; Asaduzzaman, M. Thermal bioclimatic indicators over Southeast Asia: Present status and future projection using CMIP6. Environ. Sci. Pollut. Res. 2022, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S. Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin. Weather Clim. Extrem. 2014, 5–6, 56–66. [Google Scholar] [CrossRef]
- Hossain, I.; Rasel, H.; Imteaz, M.A.; Mekanik, F. Long-term seasonal rainfall forecasting: Efficiency of linear modelling technique. Environ. Earth Sci. 2018, 77, 280. [Google Scholar] [CrossRef]
- Islam, F.; Imteaz, M.A. Development of prediction model for forecasting rainfall in Western Australia using lagged climate indices. Int. J. Water 2019, 13, 248–268. [Google Scholar] [CrossRef]
- Hussain, M.; Yusof, K.W.; Mustafa, M.R.; Afshar, N.R. Application of statistical downscaling model (SDSM) for long term prediction of rainfall in Sarawak, Malaysia. In Water Resources Management VII; WIT Press: Southampton, UK, 2015; Volume 196, pp. 269–278. [Google Scholar]
- Aziz, K.S.A.; Shams, S.; Rahman, E.K.A.; Ratnayake, U. An Analysis of Statistical Correlation for Downscaled Precipitation Data. In Proceedings of the 7th Brunei International Conference on Engineering and Technology 2018 (BICET 2018), Univerisiti Teknologi Brunei, Bandar Seri Begawan, Brunei, 12–14 November 2018. [Google Scholar]
- Hasan, D.S.N.A.b.P.A.; Ratnayake, U.; Shams, S.; Nayan, Z.B.H.; Rahman, E.K.A. Prediction of climate change in Brunei Darussalam using statistical downscaling model. Theor. Appl. Climatol. 2018, 133, 343–360. [Google Scholar] [CrossRef]
- Dk Fathiyah, P.S.; Ratnayake, U.; Rashid, A.A.; Rahman, E.K.A. The Comparison of Bias Correction Methods in Statistical Downscaling Precipitation in Brunei Darussalam. In Proceedings of the The 8th Brunei International Conference on Engineering and Technology, Bandar Seri Begawan, Brunei, 8–10 November 2021. [Google Scholar]
- Shashikanth, K.; Sukumar, P. Indian Monsoon Rainfall Projections for Future Using GCM Model Outputs Under Climate Change. Res. India Publ. 2017, 10, 1501–1516. [Google Scholar]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Khujanazarov, T.; Oeurng, C. Comparison of CMIP5 and CMIP6 GCM performance for flood projections in the Mekong River Basin. J. Hydrol. Reg. Stud. 2022, 40, 101035. [Google Scholar] [CrossRef]
- Su, X.; Shao, W.; Liu, J.; Jiang, Y. Multi-Site Statistical Downscaling Method Using GCM-Based Monthly Data for Daily Precipitation Generation. Water 2020, 12, 904. [Google Scholar] [CrossRef]
- Liang, J.; Tan, M.L.; Hawcroft, M.; Catto, J.L.; Hodges, K.I.; Haywood, J.M. Monsoonal precipitation over Peninsular Malaysia in the CMIP6 HighResMIP experiments: The role of model resolution. Clim. Dyn. 2022, 58, 2783–2805. [Google Scholar] [CrossRef]
- Tan, B.T.; Fam, P.S.; Firdaus, R.B.R.; Tan, M.L.; Gunaratne, M.S. Impact of Climate Change on Rice Yield in Malaysia: A Panel Data Analysis. Agriculture 2021, 11, 569. [Google Scholar] [CrossRef]
- Juneng, L.; Tangang, F.T.; Kang, H.; Lee, W.-J.; Seng, Y.K. Statistical Downscaling Forecasts for Winter Monsoon Precipitation in Malaysia Using Multimodel Output Variables. J. Clim. 2010, 23, 17–27. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Shao, W.; Mei, C.; Su, X.; Wang, H. Comparison of CMIP5 and CMIP6 Multi-Model Ensemble for Precipitation Downscaling Results and Observational Data: The Case of Hanjiang River Basin. Atmosphere 2021, 12, 867. [Google Scholar] [CrossRef]
- Wang, B.; Jin, C.; Liu, J. Understanding Future Change of Global Monsoons Projected by CMIP6 Models. J. Clim. 2020, 33, 6471–6489. [Google Scholar] [CrossRef]
- Supharatid, S.; Nafung, J.; Aribarg, T. Projected changes in temperature and precipitation over mainland Southeast Asia by CMIP6 models. J. Water Clim. Chang. 2022, 13, 337–356. [Google Scholar] [CrossRef]
- Masud, B.; Cui, Q.; Ammar, M.E.; Bonsal, B.R.; Islam, Z.; Faramarzi, M. Means and Extremes: Evaluation of a CMIP6 Multi-Model Ensemble in Reproducing Historical Climate Characteristics across Alberta, Canada. Water 2021, 13, 737. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ayugi, B.; Babaousmail, H.; Karim, R.; Ongoma, V. Evaluation of precipitation simulations in CMIP6 models over Uganda. Int. J. Climatol. 2021, 41, 4743–4768. [Google Scholar] [CrossRef]
- Mishra, V.; Bhatia, U.; Tiwari, A.D. Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Sci. Data 2020, 7, 338. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhu, C.; Liu, B.; Jiang, S. Annual Cycle of East Asian Precipitation Simulated by CMIP6 Models. Atmosphere 2020, 12, 24. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Chen, T.; Zheng, G.; Wang, Y.; Jiang, L.; De Maeyer, P. Assessment of CMIP6 in simulating precipitation over arid Central Asia. Atmos. Res. 2021, 252, 105451. [Google Scholar] [CrossRef]
- Kang, S.; Hur, J.; Ahn, J. Statistical downscaling methods based on APCC multi-model ensemble for seasonal prediction over South Korea. Int. J. Climatol. 2014, 34, 3801–3810. [Google Scholar] [CrossRef]
- Hasan, D.S.N.A.B.P.A.; Ratnayake, U.; Shams, S. Evaluation of rainfall and temperature trends in Brunei Darussalam. AIP Conf. Proc. 2016, 1705, 020034. [Google Scholar]
- Shrestha, M. Data analysis relied on Linear Scaling bias correction (V.1.0) Microsoft Excel file. 2015. [Google Scholar]
- Akhter, J.; Das, L.; Meher, J.K.; Deb, A. Evaluation of different large-scale predictor-based statistical downscaling models in simulating zone-wise monsoon precipitation over India. Int. J. Climatol. 2019, 39, 465–482. [Google Scholar] [CrossRef]
- Molina, O.D.; Bernhofer, C. Projected climate changes in four different regions in Colombia. Environ Syst Res. 2019, 8, 33. [Google Scholar] [CrossRef]
- Yang, C.-M. Technologies to Improve Water Management for Rice Cultivation to Cope with Climate Change. Crop. Environ. Bioinform. 2012, 8, 193–207. [Google Scholar]
- Babaousmail, H.; Hou, R.; Ayugi, B.; Ojara, M.; Ngoma, H.; Karim, R.; Rajasekar, A.; Ongoma, V. Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere 2021, 12, 475. [Google Scholar] [CrossRef]
Model Name | Modeling Center | Resolution (Lon × Lat) |
---|---|---|
ACCESS-CM2 | Australian Community Climate and Earth System Simulator, Australia | 1.25° × 1.875° |
AWI-CM-1-MR | Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany | 0.94° × 0.94° |
INM-CM5-0 | Institute for Numerical Mathematics, Russia | 2° × 1.5° |
MIROC6 | University of Tokyo, National Institute for Environmental Studies and Japan Agency for Marine-Earth Science and Technology, Japan | 1.41° × 1.41° |
MPI-ESM1-2-LR | Max Planck Institute for Meteorology, Germany | 1.875° × 1.875° |
MRI-ESM2-0 | Meteorological Research Institute, Japan | 1.125° × 1.125° |
NorESM2-MM | Norwegian Climate Centre, Norway | 1.25° × 0.9375° |
CMIP6 Scenarios | Description |
---|---|
SSP245 | Middle-of-the-road: It considers slight improvement to economic growth with challenges to minimizing vulnerability to environmental changes persist |
SSP370 | Regional Rivalry: It represents the inequality in income within and between countries. |
SSP585 | Fossil-fueled development: It involves strong economic growth due to fossil fuel usage |
Variable | Definition | Coefficient | Std.Err. | p-Value |
---|---|---|---|---|
MRI-ESM2 | −0.000230 | 0.017 | 0.989 | |
MPI-ESM-1-2-LR | 0.005601 | 0.029 | 0.846 | |
MIROC6 | −0.020 | 0.019 | 0.314 | |
NOR-ESM2-MM | 0.036 | 0.018 | 0.046 | |
INM-CSM-0 | 0.036 | 0.016 | 0.024 | |
ACCESS_CM2 | 0.050 | 0.021 | 0.019 | |
AWI-CM-1-MR | 0.047 | 0.017 | 0.006 | |
Constant | 6.705 | 0.439 | 0.000 |
Variable | Definition | Coefficient | Std.Err. | p-Value |
---|---|---|---|---|
Constant | 6.601 | 0.363 | 0.000 | |
ACCESS-CM2 | 0.049 | 0.021 | 0.020 | |
AWI-CM-1-MR | 0.046 | 0.017 | 0.006 | |
INM_-SM_- | 0.036 | 0.016 | 0.026 | |
NOR-ESM2-MM | 0.035 | 0.018 | 0.053 |
Before Bias Correction | After Bias Correction | ||||||
---|---|---|---|---|---|---|---|
Calibration (1979–2009) | Time Series | Mean | NSE | R2 | Mean | NSE | R2 |
Obs | 8.13 | ||||||
SD | 13.90 | −0.63 | 0.82 | 8.13 | 1.00 | 1.00 | |
EM | 8.48 | 0.48 | 0.71 | 8.13 | 1.00 | 1.00 | |
Validation (2010–2019) | Obs | 8.97 | |||||
SD_SSP245 | 11.90 | 115.04 | 0.33 | 7.08 | 75.74 | 0.85 | |
SD_SSP370 | 12.16 | 119.826 | 0.42 | 6.92 | 71.02 | 0.86 | |
SD_SSP585 | 12.07 | 118.15 | 0.39 | 7.84 | 89.812 | 0.84 | |
EM_SSP245 | 8.13 | 85.22 | 0.22 | 7.74 | 57.37 | 0.83 | |
EM_SSP370 | 8.13 | 85.22 | 0.22 | 7.64 | 61.15 | 0.80 | |
EM_SSP585 | 7.05 | 73.07 | 0.23 | 7.48 | 66.60 | 0.77 |
Precipitation Change (%) | |||
---|---|---|---|
Near Future | Mid Future | Far Future | |
(2020–2046) | (2047–2073) | (2074–2100) | |
SD_SSP245 | −27.3 | −27.1 | −17.7 |
SD_SSP370 | −27.8 | −27.8 | −18.5 |
SD_SSP585 | −27.6 | −25.4 | −16.7 |
AM_SSP245 | −10.8 | −11.1 | −14.4 |
AM_SSP370 | −11.7 | −9.4 | −17.6 |
AM_SSP585 | −12.1 | −8.4 | −18.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhymee, H.; Shams, S.; Ratnayake, U.; Rahman, E.K.A. Comparing Statistical Downscaling and Arithmetic Mean in Simulating CMIP6 Multi-Model Ensemble over Brunei. Hydrology 2022, 9, 161. https://doi.org/10.3390/hydrology9090161
Rhymee H, Shams S, Ratnayake U, Rahman EKA. Comparing Statistical Downscaling and Arithmetic Mean in Simulating CMIP6 Multi-Model Ensemble over Brunei. Hydrology. 2022; 9(9):161. https://doi.org/10.3390/hydrology9090161
Chicago/Turabian StyleRhymee, Hamizah, Shahriar Shams, Uditha Ratnayake, and Ena Kartina Abdul Rahman. 2022. "Comparing Statistical Downscaling and Arithmetic Mean in Simulating CMIP6 Multi-Model Ensemble over Brunei" Hydrology 9, no. 9: 161. https://doi.org/10.3390/hydrology9090161
APA StyleRhymee, H., Shams, S., Ratnayake, U., & Rahman, E. K. A. (2022). Comparing Statistical Downscaling and Arithmetic Mean in Simulating CMIP6 Multi-Model Ensemble over Brunei. Hydrology, 9(9), 161. https://doi.org/10.3390/hydrology9090161