Open-Source Code for Radium-Derived Ocean-Groundwater Modeling: Project Open RaDOM
Abstract
:1. Introduction
2. Model Descriptions
2.1. General Approach
2.2. SGD Flux Models
- One source, two radium isotopes;
- One source, two radium isotopes with example data;
- One source, three radium isotopes;
- Two sources, three radium isotopes.
2.3. Mixing Models
- Two sources, two radium isotopes;
- Three sources, two radium isotopes;
- Two sources, three radium isotopes;
- Three sources, three radium isotopes;
- Three sources, four radium isotopes.
3. Examples from the Literature
3.1. SGD Flux Models
3.2. Mixing Models
4. Case Studies
4.1. SGD Flux Models
4.2. Mixing Models
5. Limitations and Assumptions
5.1. SGD Flux Models
5.2. Mixing Models
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, W.S. The role of submarine groundwater discharge in coastal biogeochemistry. J. Geochemical Explor. 2006, 88, 389–393. [Google Scholar] [CrossRef]
- Lecher, A.L.; Mackey, K.R.M. Synthesizing the Effects of Submarine Groundwater Discharge on Marine Biota. Hydrology 2018, 5, 60. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.S. The effect of submarine groundwater discharge on the ocean. Ann. Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Lecher, A.L. Groundwater Discharge in the Arctic: A Review of Studies and Implications for Biogeochemistry. Hydrology 2017, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Swarzenski, P.W.; Reich, C.; Kroeger, K.D.; Baskaran, M. Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Mar. Chem. 2007, 104, 69–84. [Google Scholar] [CrossRef]
- De Sieyes, N.R.; Yamahara, K.M.; Layton, B.A.; Joyce, E.H.; Boehm, A.B. Submarine discharge of nutrient-enriched fresh groundwater at Stinson Beach, California is enhanced during neap tides. Limnol. Ocean. 2008, 53, 1434–1445. [Google Scholar] [CrossRef] [Green Version]
- Varma, S.; Turner, J.; Underschultz, J. Estimation of submarine groundwater discharge into Geographe Bay, Bunbury, Western Australia. J. Geochemical Explor. 2010, 106, 197–210. [Google Scholar] [CrossRef]
- Mejias, M.; Ballesteros, B.J.; Anton-Pacheco, C.; Dominguez, J.A.; Garcia-Orellana, J.; Garcia-Solsona, E.; Masque, P. Methodological study of submarine groundwater discharge from a karstic aquifer in the Western Mediterranean Sea. J. Hydrol. 2012, 464–465, 27–40. [Google Scholar] [CrossRef]
- Taniguchi, M.; Burnett, W.C.; Cable, J.E.; Turner, J.V. Investigation of submarine groundwater discharge. Hydrol. Process. 2002, 16, 2115–2129. [Google Scholar] [CrossRef]
- Rama; Moore, W.S. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes. Geochim. Cosmochim. Acta 1996, 60, 4645–4652. [Google Scholar] [CrossRef]
- Moore, W.S.; Krest, J. Distribution of 223Ra and 224Ra in the plumes of the Mississippi and Atchafalaya Rivers and the Gulf of Mexico. Mar. Chem. 2004, 86, 105–119. [Google Scholar] [CrossRef]
- Crotwell, A.M.; Moore, W.S. Nutrient and Radium Fluxes from Submarine Groundwater Discharge to Port Royal Sound, South Carolina. Aquat. Geochem. 2003, 9, 191–208. [Google Scholar] [CrossRef]
- Shellenbarger, G.G.; Monismith, S.G.; Genin, A.; Paytan, A. The importance of submarine groundwater discharge to the nearshore nutrient supply in the Gulf of Aqaba (Israel). Limnol. Oceanogr. 2006, 51, 1876–1886. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.J.; Rapaglia, J.P.; Cochran, J.K.; Bokuniewicz, H.J.; Yang, S. Submarine groundwater discharge to Great South Bay, NY, estimated using Ra isotopes. Mar. Chem. 2008, 109, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Knee, K.; Street, J.H.; Grossman, E.G.; Paytan, A. Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: Relation to land use (Kona coast, Hawaii, U.S.A.). Limnol. Oceanogr. 2010, 55, 1105–1122. [Google Scholar] [CrossRef] [Green Version]
- Knee, K.L.; Garcia-solsona, E.; Garcia-orellana, J.; Boehm, A.B.; Paytan, A. Using radium isotopes to characterize water ages and coastal mixing rates: A sensitivity analysis. Limnol. Oceanogr. Methods 2011, 9, 380–395. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.S. Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 2003, 66, 75–93. [Google Scholar] [CrossRef]
- Barnes, N. Publish your computer code: It is good enough. Nature 2010, 467, 753. [Google Scholar] [CrossRef]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; SIAM: Philadelphia, PA, USA, 1995; Volume 15, ISBN 0898713560. [Google Scholar]
- Mullen, K.M.; van Stokkum, I.H.M. The Lawson-Hanson Algorithm for Non-Negative Least Squares (NNLS). R Package Version 1.4 2015. Available online: https://cran.r-project.org/web/packages/nnls/nnls.pdf (accessed on 10 May 2022).
- Lecher, A.L. Project Open RaDOM. Available online: https://rstudio.cloud/content/3560079 (accessed on 10 May 2022).
- Lecher, A.L.; Kessler, J.; Sparrow, K.; Garcia-Tigreros Kodovska, F.; Dimova, N.; Murray, J.; Tulaczyk, S.; Paytan, A. Methane transport through submarine groundwater discharge to the North Pacific and Arctic Ocean at two Alaskan sites. Limnol. Oceanogr. 2015, 61, S344–S355. [Google Scholar] [CrossRef]
- Hwang, D.W.; Lee, Y.W.; Kim, G. Large submarine groundwater discharge and benthic eutrophication on Bangdu Bay on volcanic Jeju Island, Korea. Limnol. Oceanogr. 2005, 50, 1393–1403. [Google Scholar] [CrossRef]
- Oehler, T.; Tamborski, J.; Rahman, S.; Moosdorf, N.; Ahren, J.; Mori, C.; Neuholz, R.; Schnetger, B.; Beck, M. DSi as a Tracer for Submarine Groundwater Discharge. Front. Mar. Sci. 2019, 563. [Google Scholar] [CrossRef]
- Lin, I.-T.; Wang, C.-H.; You, C.-F.; Lin, S.; Huang, K.-F.; Chen, Y.-G. Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Mar. Chem. 2010, 122, 51–58. [Google Scholar] [CrossRef]
- Lecher, A.L.; Fisher, A.T.; Paytan, A. Submarine groundwater discharge in Northern Monterey Bay, California: Evaluation by mixing and mass balance models. Mar. Chem. 2016, 179, 44–55. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.-W.; Kim, G.; Lee, Y.-W.; Yang, H.-S. Estimating submarine inputs of groundwater and nutrients to a coastal bay using radium isotopes. Mar. Chem. 2005, 96, 61–71. [Google Scholar] [CrossRef]
- Moore, W.S. Radium isotopes as tracers of submarine groundwater discharge in Sicily. Cont. Shelf Res. 2006, 26, 852–861. [Google Scholar] [CrossRef]
- Tamborski, J.; Cochran, J.K.; Bokuniewicz, H.; Heilbrun, C.; Garcia-Orellana, J.; Rodellas, V.; Wilson, R. Radium Mass Balance Sensitify Analysis for Submarine Groudwater Discharge Estimation in Semi-Enclosed Basins: The Case Study of Long Island Sound. Front. Environ. Sci. 2020, 8, 108. [Google Scholar] [CrossRef]
- Moore, W.S.; Blanton, J.O.; Joye, S.B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Xiao, K.; Zhang, Y.; Luo, M.; Zheng, C.; Hailong, L. Submarine groundwater discharge and associated nutrient fluxes in teh Greater Bay Area, China revealed by radium and stable isotopes. Geosci. Front. 2021, 12, 101223. [Google Scholar] [CrossRef]
- Young, M.B.; Gonneea, M.E.; Fong, D.A.; Moore, W.S.; Herrera-Silveira, J.; Paytan, A. Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using radium isotopes and water chemistry. Mar. Chem. 2008, 109, 377–394. [Google Scholar] [CrossRef]
- Luo, X.; Jiao, J.J.; Moore, W.S.; Ming Lee, C. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production. Mar. Pollut. Bull. 2014, 82, 144–154. [Google Scholar] [CrossRef]
- Kim, G.; Ryu, J.-W.; Hwang, D.-W. Radium tracing of submarine groundwater discharge (SGD) and associated nutrient fluxes in a highly-permeable bed coastal zone, Korea. Mar. Chem. 2008, 109, 307–317. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Luo, M.; Xiao, K.; Wang, Q.; Tian, Y.; Qiu, W.; Xiong, Y.; Zheng, C.; Li, H. Radium and nitrogen isotopes tracing fluxes and sources of submarine groundwater discharge driven nitrate in an urbanized coastal area. Sci. Total Environ. 2021, 763, 144616. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-I.; Choi, J.-M.; Lee, Y.-G.; Lee, M.-O.; Lee, W.-C.; Kim, J.-K. Coastal environmental assessment and management by ecological simulation in Yeoja Bay, Korea. Estuar. Coast. Shelf Sci. 2008, 80, 495–508. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.; Park, K.S.; Hwang, D.W.; Yang, H.S. Large submarine groundwater discharge (SGD) from a volcanic island. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Garcia-Solsona, E.; Garcia-Orellana, J.; Masque, P.; Rodellas, V.; Mejias, M.; Ballesteros, B.; Dominguez, J.A. Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain). Biogeosciences 2010, 7, 2625–2638. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Orellana, J.; Rodellas, V.; Tamborski, J.; Diego-Feliu, M.; van Beek, P.; Weinstein, Y.; Charette, M.; Alorda-Kleinglass, A.; Michael, H.A.; Stieglitz, T.; et al. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations. Earth Sci. Rev. 2021, 220, 103681. [Google Scholar] [CrossRef]
- Garcia-Solsona, E.; Garcia-Orellana, J.; Masqué, P.; Rodellas, V.; Mejías, M.; Ballesteros, B.; Domínguez, J.A. Interactive comment on “Groundwater and nutrient discharge through karstic coastal springs (Castelló, Spain)” by E. Garcia-Solsona et al. Biogeosciences Discuss. 2010, 7, C211–C215. [Google Scholar]
- Su, N.; Burnett, W.C.; MacIntyre, H.L.; Liefer, J.D.; Peterson, R.N.; Viso, R. Natural Radon and Radium Isotopes for Assessing Groundwater Discharge into Little Lagoon, AL: Implications for Harmful Algal Blooms. Estuaries Coasts 2014, 37, 893–910. [Google Scholar] [CrossRef]
Original | Project RaDOM | ||||||
---|---|---|---|---|---|---|---|
Study | Isotopes | Residence Time | SGD | Isotopes | Residence Time | SGD | SI Script |
Hwang et al. [23] | Ra226 and Ra223 Combined | 2.0 d | 45–48 cm/d | Ra226 and Ra223 | 9.8 d | 1.7 cm/d | Hwang 2005a.R |
Hwang et al. [27] | Ra226 and Ra223 Combined | 8 d | 72 m/y | Ra226 and Ra223 | 55.9 d | 18.3 m/y | Hwang 2005b.R |
Shellenbarger et al. [13] (winter only) | Ra223 and Ra224 Separate | 3–6 h | 19 and 27 L/s | Ra223 and Ra224 | Un 1 | 15.3 L/s | Shellenbarger 2006.R |
Luo et al. [33] (upper layer only) | Ra223 and Ra224 Separate | 7.2 d | 4.6 × 105 and 6.4 × 105 m3/d | Ra223 and Ra224 | 2.1 h | 1.0 × 107 m3/d | Luo 2014.R |
Garcia-Solonsa 2010 | Ra224, Ra223, Ra226, and Ra228 Separate then Averaged | 2.7 d | 71,500 ± 11,200 m3/d | Ra223, Ra226, and Ra228 | 64 d | 2750 m3/d | Garcia- Solosna 2010.R |
Moore [17] | Project RaDOM | |||||
---|---|---|---|---|---|---|
Eastern Transect Station | fns | fos | f0 | fns | fos | fo |
S4 | 0.07 | 0.02 | 0.91 | 0.072 | 0.017 | 0.91 |
S5 | 0.03 | 0.00 | 0.97 | 0.030 | 0.004 | 0.965 |
S6 | 0.02 | 0.00 | 0.98 | 0.023 | 0 | 0.965 |
S7 | 0.02 | 0.00 | 0.98 | 0.016 | 0.004 | 0.978 |
S8 | 0.03 | 0.00 | 0.97 | 0.027 | 0.002 | 0.969 |
S8 | 0.01 | 0.01 | 0.98 | 0.013 | 0.007 | 0.978 |
S8 | 0.03 | 0.00 | 0.97 | 0.030 | 0.004 | 0.965 |
Su et al. [41] | Project RaDOM | |||||
---|---|---|---|---|---|---|
Surface Water Sampling | fSGW | fDGW | fSW | fSGW | fDGW | fSW |
5 April 2010 | 0.07 | 0.05 | 0.88 | 0.064 | 0.053 | 0.882 |
15 November 2010 | 0.07 | 0.10 | 0.83 | 0.046 | 0.095 | 0.858 |
9 March 2011 | 0.11 | 0.11 | 0.78 | 0.110 | 0.110 | 0.778 |
29 November 2011 | 0.02 | 0.15 | 0.83 | 0.008 | 0.144 | 0.847 |
24 April 2012 | 0.22 | 0.32 | 0.46 | 0.212 | 0.322 | 0.465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lecher, A.L. Open-Source Code for Radium-Derived Ocean-Groundwater Modeling: Project Open RaDOM. Hydrology 2022, 9, 106. https://doi.org/10.3390/hydrology9060106
Lecher AL. Open-Source Code for Radium-Derived Ocean-Groundwater Modeling: Project Open RaDOM. Hydrology. 2022; 9(6):106. https://doi.org/10.3390/hydrology9060106
Chicago/Turabian StyleLecher, Alanna L. 2022. "Open-Source Code for Radium-Derived Ocean-Groundwater Modeling: Project Open RaDOM" Hydrology 9, no. 6: 106. https://doi.org/10.3390/hydrology9060106
APA StyleLecher, A. L. (2022). Open-Source Code for Radium-Derived Ocean-Groundwater Modeling: Project Open RaDOM. Hydrology, 9(6), 106. https://doi.org/10.3390/hydrology9060106