Weekly Monitoring and Forecasting of Hydropower Production Coupling Meteo-Hydrological Modeling with Ground and Satellite Data in the Italian Alps
Abstract
:1. Introduction
- Improvement of the interpolation technique of ground precipitation measurements considering the altitude;
- Forecast of the energy production at weekly scale using a distributed snow model coupled with ensemble weather forecast;
- The local application to the Bolzano province.
2. Materials and Methods
2.1. Case Study Area and Data
2.1.1. Energy Production at Hydropower Power Plants and Lake Reconstructed Inflow
2.1.2. Ground Meteorological and Nivometric Data
2.1.3. Satellite Data of Snow Coverage
2.2. Methodology
2.2.1. Snow Dynamics in the FEST-EWB
2.2.2. Precipitation and Air Temperature Data Interpolation
2.2.3. Hydropower Production and Lake Inflow
2.2.4. Weekly Meteorological Forecast
3. Results
3.1. Ground Meteorological Data Interpolation
3.1.1. Air Temperature Interpolation
3.1.2. Precipitation Interpolation
3.2. Snow Model Calibration and Validation against Ground and Satellite Data
3.3. Lake Inflow Volume and Energy Production
3.4. Effect of Meteorological Forecast on SWE and Energy Production
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kaygusuz, K. Hydropower and the world’s energy future. Energy Sources 2004, 26, 215–224. [Google Scholar] [CrossRef]
- Schaefli, B. Projecting hydropower production under future climates: A guide for decision-makers and modelers to interpret and design climate change impact assessments. Water 2015, 2, 271–289. [Google Scholar] [CrossRef] [Green Version]
- Gaudard, L.; Romerio, F. The future of hydropower in Europe: Interconnecting climate, markets and policies. Environ. Sci. Policy 2014, 37, 172–181. [Google Scholar] [CrossRef]
- Gaudard, L.; Romerio, F.; Valle, D.F.; Gorret, R.; Maran, S.; Ravazzani, G.; Stoffel, M.; Volonterio, M. Climate change impacts on hydropower in the Swiss and Italian Alps. Sci. Total Environ. 2014, 493, 1211–1221. [Google Scholar] [CrossRef]
- Ravazzani, G.; Dalla Valle, F.; Gaudard, L.; Mendlik, T.; Gobiet, A.; Mancini, M. Assessing climate impacts on hydropower production: The case of the toce river basin. Climate 2016, 4, 16. [Google Scholar] [CrossRef]
- Beniston, M.; Stoffel, M.; Hill, M. Impacts of climatic change on water and natural hazards in the alps: Can current water governance cope with future challenges? examples from the European ACQWA project. Environ. Sci. Policy 2011, 14, 734–743. [Google Scholar] [CrossRef] [Green Version]
- Bongio, M.; Avanzi, F.; De Michele, C. Hydroelectric power generation in an Alpine basin: Future water-energy scenarios in a run-of-the-river plant. Adv. Water Resour. 2016, 94, 318–331. [Google Scholar] [CrossRef]
- Corbari, C.; Ravazzani, G.; Martinelli, J.; Mancini, M. Elevation based correction of snow coverage retrieved from satellite images to improve model calibration. Hydrol. Earth Syst. Sci. 2009, 13, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, J.; Wever, N.; Essery, R.; Helbig, N.; Winstral, A.; Jonas, T. Evaluating snow models with varying process representations for hydrological applications. Water Resour. Res. 2015, 51, 2707–2723. [Google Scholar] [CrossRef] [Green Version]
- Verbunt, M.; Gurtz, J.; Jasper, K.; Lang, H.; Warmerdam, P.; Zappa, M. The hydrological role of snow and glaciers in alpine river basins and their distributed modelling. J. Hydrol. 2003, 282, 36–55. [Google Scholar] [CrossRef]
- Shamir, E.; Georgakakos, K.P. Distributed snow accumulation and ablation modelling in the American River basin. Adv. Water Resour. 2006, 29, 558–570. [Google Scholar] [CrossRef]
- Adam, J.C.; Lettenmaier, D.P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res. 2003, 108, 4257. [Google Scholar] [CrossRef]
- Avanzi, F.; Ercolani, G.; Gabellani, S.; Cremonese, E.; Pogliotti, P.; Filippa, G.; Morra di Cella, U.; Ratto, S.; Stevenin, H.; Cauduro, M.; et al. Learning about precipitation lapse rates from snow course data improves water balance modeling. Hydrol. Earth Syst. Sci. 2021, 25, 2109–2131. [Google Scholar] [CrossRef]
- Bocchiola, D.; Rosso, R. The distribution of daily snow water equivalent in the central Italian Alps. Adv. Water Resour. 2007, 30, 135–147. [Google Scholar] [CrossRef]
- Gelfan, A.N.; Pomeroy, J.W.; Kuchment, L.S. Modeling Forest Cover Influences on Snow Accumulation, Sublimation, and Melt. J. Hydrometeor. 2004, 5, 785–803. [Google Scholar] [CrossRef]
- Rango, A.; Martinec, J. Application of a snowmelt–runoff model using Landsat data. Nord. Hydrol. 1979, 10, 225–238. [Google Scholar] [CrossRef]
- Mazurkiewicz, A.B.; Callery, D.G.; McDonnell, J.J. Assessing the controls of the snow energy balance and water available for runoff in a rain-on-snow environment. J. Hydrol. 2008, 354, 1–14. [Google Scholar] [CrossRef]
- Howard, C. Revisiting the degree-day method for snowmelt computations-Discussion. Water Resour. Bull. 1996, 32, 411–413. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- He, Z.H.; Parajka, J.; Tian, F.Q.; Blöschl, G. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci. 2014, 18, 4773–4789. [Google Scholar] [CrossRef] [Green Version]
- Bormann, K.J.; Evans, J.P.; McCabe, M.F. Constraining snowmelt in a temperature-index model using simulated snow densities. J. Hydrol. 2014, 517, 652–667. [Google Scholar] [CrossRef]
- Marsh, C.B.; Pomeroy, J.W.; Spiteri, R.J. Implications of mountain shading on calculating energy for snowmelt using unstructured triangular meshes. Hydrol. Process. 2012, 26, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Rango, A.; Martinec, J. Revisting the degree-day method for snowmelt computations. Water Resour. Bull. 1995, 31, 657–669. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, N. Determination of snowmelt factor in the Himalayan region. Hydrol. Sci. J. 1996, 41, 301–310. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote. Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Franz, K.J.; Karsten, L.R. Calibration of a distributed snow model using MODIS snow covered area data. J. Hydrol. 2013, 494, 160–175. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol. 2008, 358, 240–258. [Google Scholar] [CrossRef]
- Magnusson, J.; Nævdal, G.; Matt, F.; Burkhart, J.F.; Winstral, A. Improving hydropower inflow forecasts by assimilating snow data. Hydrol. Res. 2020, 51, 226–237. [Google Scholar] [CrossRef]
- Largeron, C.; Dumont, M.; Morin, S.; Boone, A.; Lafaysse, M.; Metref, S.; Cosme, E.; Jonas, T.; Winstral, A.; Margulis, S. Toward Snow Cover Estimation in Mountainous Areas Using Modern Data Assimilation Methods: A Review. Front. Earth Sci. 2020, 8, 325. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images-potential for snow cover mapping. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Da Ronco, P.; De Michele, C. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrol. Earth Syst. Sci. 2014, 18, 4579–4600. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Lettenmaier, D.P.; Margulis, S.A.; Andreadis, K. The Value of Accurate High-Resolution and Spatially Continuous Snow Information to Streamflow Forecasts. J. Hydrometeorol. 2019, 20, 731–749. [Google Scholar] [CrossRef]
- Jörg-Hess, S.; Griessinger, N.; Zappa, M. Probabilistic Forecasts of Snow Water Equivalent and Runoff in Mountainous Areas. J. Hydrometeorol. 2015, 16, 2169–2186. [Google Scholar] [CrossRef]
- Blumen, W. Atmospheric Processes Over Complex Terrain; Meteorological Monographs 23.45; American Meteorological Society: Boston, MA, USA, 1990. [Google Scholar]
- Faccani, C.; Ferretti, R.; Visconti, G. High-Resolution Weather Forecasting over Complex Orography: Sensitivity to the Assimilation of Conventional Data. Mon. Weather Rev. 2000, 131, 136–154. [Google Scholar] [CrossRef]
- Berg, A.A.; Mulroy, K.A. Streamflow predictability in the Saskatchewan/Nelson River basin given macroscale estimates of the initial soil moisture status. Hydrol. Sci. 2006, 51, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.H.; van Andel, S.J.; Pappenberger, F. Do probabilistic forecasts lead to better decisions? Hydrol. Earth Syst. Sci. 2013, 17, 2219–2232. [Google Scholar] [CrossRef] [Green Version]
- Dale, M.; Wicks, J.; Mylne, K.; Pappenberger, F.; Laeger, S.; Taylor, S. Probabilistic flood forecasting and decision-making: An innovative risk-based approach. Nat. Hazards 2014, 70, 159–172. [Google Scholar] [CrossRef]
- Boscarello, L.; Ravazzani, G.; Rabuffetti, D.; Mancini, M. Integrating glaciers raster-based modelling in large catchments hydrological balance: The Rhone case study. Hydrol. Process. 2012, 28, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallucci, S.; Majone, B.; Bellin, A. Detection and attribution of hydrological changes in a large Alpine river basin. J. Hydrol. 2019, 575, 1214–1229. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Barton, J.S.; Casey, K.; Chien, J.Y.L.; Di Girolamo, N.E.; Klein, A.G.; Powell, H.W.; Tait, A.B. Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms. NASA GSFC, 2001; pp. 1–45. Available online: http://www.modis-snow-ice.gsfc.nasa.gov/atbd01.html (accessed on 11 June 2019).
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Corbari, C.; Mancini, M. Calibration and validation of a distributed energy water balance model using satellite data of land surface temperature and ground discharge measurements. J. Hydrometeor. 2014, 15, 376–392. [Google Scholar] [CrossRef]
- Corbari, C.; Huber, C.; Yesou, H.; Huang, Y.; Su, Z.; Mancini, M. Multi-Satellite Data of Land Surface Temperature, Lakes Area, and Water Level for Hydrological Model Calibration and Validation in the Yangtze River Basin. Water 2019, 11, 2621. [Google Scholar] [CrossRef] [Green Version]
- Tarboton, D.G. Measurement and modeling of snow energy balance and sublimation from snow. In Proceedings of the International Snow Science Workshop, Snowbird, UT, USA, 31 October–2 November 1994. Utah Water Research Laboratory working paper no. WP-94-HWR-DGT/00. [Google Scholar]
- Mason, S.J.; Graham, N.E. Conditional Probabilities, Relative Operating Characteristics, and Relative Operating Levels. Weather Forecast. 1999, 14, 713–725. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research; WRF Version 3 NCAR Technical Note NCAR/TN-475+STR; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar] [CrossRef]
- Pielke, R.A.S.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system-relevance to climate change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. Lond. Ser. A 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Arakawa, A.; Lamb, V.R. Computational Design of the Basic Dynamical Process of the UCLA General Circulation Model. Methods Comput. Phys. 1977, 17, 173–265. [Google Scholar]
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Leutbecher, M.; Palmer, T.N. Ensemble forecasting. J. Comp. Phys. 2008, 227, 3515–3539. [Google Scholar] [CrossRef]
- Ehrendorfer, M. Predicting the uncertainty of numerical weather forecasts: A review. Meteorol. Z. 1997, 6, 147–183. [Google Scholar] [CrossRef]
- Buizza, R.; Milleer, M.; Palmer, T.N. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. R. Meteorol. Soc. 1999, 125, 2887–2908. [Google Scholar] [CrossRef]
- Duan, W.S.; Huo, Z.H. An approach to generating mutually independent initial perturbations for ensemble forecasts: Orthogonal conditional nonlinear optimal perturbations. J. Atmos. Sci. 2016, 73, 997–1014. [Google Scholar] [CrossRef]
- Houtekamer, P.L.; Derome, J. Methods for ensemble prediction. Mon. Weather Rev. 1995, 123, 2181–2196. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.G.; Bishop, C.H. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes. J. Atmos. Sci. 2003, 60, 1140–1158. [Google Scholar] [CrossRef]
- Wei, M.Z.; Toth, Z.; Wobus, R.; Zhu, Y.J. Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A. 2008, 60, 62–79. [Google Scholar] [CrossRef] [Green Version]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 1997, 125, 3297–3319. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Luce, C.H. Utah Energy Balance Snow Accumulation and Melt Model (UEB), Computer Model Technical Description and Users Guide; Utah Water Res. Lab.: Logan, UT, USA, 1996. [Google Scholar]
- Braun, L.N. Modeling the snow-water equivalent in the mountain environment. IAHS Publ. 1991, 205, 3–17. [Google Scholar]
- US Army Corps of Engineers. Snow Hydrology: Summary Report of the Snow Investigations; Technical Report No. 1985283; North Pacific Division, Corps of Engineers, U.S. Army: Portland, OR, USA, 1956; p. 437. [Google Scholar]
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Essery, R.; Martin, E.; Douville, H.; Fernandez, A.; Brun, E. A comparison of four snow models using observations from an alpine site. Clim. Dyn. 1999, 15, 583–593. [Google Scholar] [CrossRef]
Basin Name | Basin Area (km2) | Mean Basin Elevation (m a.s.l.) | Mean Annual Precipitation (mm) | Hydropower Plant | Mean Annual Production (GWh) |
---|---|---|---|---|---|
Lago Verde | 6.3 | 2916 | 1293 | Fontana Bianca | 10.2 |
Lago Pesce | 6.9 | 2575 | 1260 | San Valburga | 87.8 |
Neves | 32.5 | 2503 | 1295 | Lappago | 73 |
Gioveretto | 117.4 | 2740 | 1201 | Lasa | 222 |
Vernago | 147.4 | 2595 | 1178 | Naturno | 304 |
Zoccolo | 166.7 | 2113 | 1168 | San Pancrazio | 94.9 |
San Valentino | 348 | 2431 | 1073 | Glorenza | 237 |
Monguelfo | 598.3 | 1873 | 1179 | Brunico | 151 |
Observed Stations | |||
No Snow | Snow | ||
FEST model | No snow | 0.52 | 0.07 |
Snow | 0.01 | 0.4 | |
MODIS | |||
No Snow | Snow | ||
FEST model | No snow | 0.52 | 0.11 |
Snow | 0.02 | 0.35 |
Basin Name | Hydropower Plant | Mean Annual Error (%) | RMSE (MWh) |
---|---|---|---|
Zoccolo | San Pancrazio | 16 | 3.98 × 104 |
Neves | Lappago | −22 | 2.39 × 104 |
San Valentino | Glorenza | −18 | 5.84 × 104 |
Gioveretto | Lasa | 16.3 | 6.02 × 104 |
Vernago | Naturno | 24 | 1.16 × 105 |
Monguelfo | Brunico | 25 | 5.11 × 104 |
Monthly Lakes Inflow Volumes | Monthly Energy Production | |||||
---|---|---|---|---|---|---|
Basin Name | Hydropower Plant | RRMSE (%) | RMSE (m3) | Nash Sutcliffe | RRMSE (%) | RMSE (MWh) |
Zoccolo | San Pancrazio | 2.9 | 9.0 × 106 | 0.97 | - | - |
Neves | Lappago | 3.3 | 3.4 × 106 | 0.96 | - | - |
San Valentino | Glorenza | 2.9 | 1.1 × 107 | 0.96 | 8.0 | 2.5 × 104 |
Gioveretto | Lasa | 3.4 | 8.0 × 106 | 0.95 | 9.2 | 1.4 × 104 |
Vernago | Naturno | 2.7 | 6.7 × 106 | 0.97 | 8.9 | 2.5 × 104 |
Monguelfo | Brunico | 3.6 | 2.5 × 107 | 0.94 | - | - |
Lago Verde | Fontana Bianca | 2.5 | 4.2 × 105 | 0.97 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corbari, C.; Ravazzani, G.; Perotto, A.; Lanzingher, G.; Lombardi, G.; Quadrio, M.; Mancini, M.; Salerno, R. Weekly Monitoring and Forecasting of Hydropower Production Coupling Meteo-Hydrological Modeling with Ground and Satellite Data in the Italian Alps. Hydrology 2022, 9, 29. https://doi.org/10.3390/hydrology9020029
Corbari C, Ravazzani G, Perotto A, Lanzingher G, Lombardi G, Quadrio M, Mancini M, Salerno R. Weekly Monitoring and Forecasting of Hydropower Production Coupling Meteo-Hydrological Modeling with Ground and Satellite Data in the Italian Alps. Hydrology. 2022; 9(2):29. https://doi.org/10.3390/hydrology9020029
Chicago/Turabian StyleCorbari, Chiara, Giovanni Ravazzani, Alessandro Perotto, Giulio Lanzingher, Gabriele Lombardi, Matteo Quadrio, Marco Mancini, and Raffaele Salerno. 2022. "Weekly Monitoring and Forecasting of Hydropower Production Coupling Meteo-Hydrological Modeling with Ground and Satellite Data in the Italian Alps" Hydrology 9, no. 2: 29. https://doi.org/10.3390/hydrology9020029
APA StyleCorbari, C., Ravazzani, G., Perotto, A., Lanzingher, G., Lombardi, G., Quadrio, M., Mancini, M., & Salerno, R. (2022). Weekly Monitoring and Forecasting of Hydropower Production Coupling Meteo-Hydrological Modeling with Ground and Satellite Data in the Italian Alps. Hydrology, 9(2), 29. https://doi.org/10.3390/hydrology9020029