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Abstract: This paper presents a system for supporting hydropower production on mountainous
areas. The system couples the outputs of a numerical weather prediction model and a snow melting
and accumulation temperature-based model. Several procedures are presented for interpolating
meteorological variables and calibrating and validating model parameters that can be generalized to
any other mountainous area where the estimation of current and forecasted snow water equivalent
and melting amount is required. The system reliability has been assessed through the validation
of three components: spatial interpolation of meteorological data, mathematical modeling, and
quantitative meteorological forecast. The results show that good accuracy of meteorological data
spatial interpolation can be achieved when the data from snow gauges are used for assessing the
precipitation lapse rate at higher altitudes, and the temperature lapse rate is computed from data at
each time step. The temperature-based hydrological model proved to be effective in simulating lake
inflow water volume and energy production. No clear result has been found for snow melt forecast
due to the difficulties in providing reliable quantitative weather forecast in complex alpine area.

Keywords: hydropower production; alpine basins; meteorological forecast; snow melt modelling

1. Introduction

Since late XIX century, hydropower production is constantly increasing all around
the world [1], with production being around 15% of all global electricity [2]. The combina-
tion of different upstream river catchments characteristics, mainly in terms of hydrology,
climatology, and topography, influences the potential of hydropower production [3–5].
Climate change may also modify this hydropower potential by greatly impacting the snow
dynamics with shifts in the time of the melt water volumes, as well as the patterns and
amount of rainfall [6,7].

Thus, an enhanced knowledge of the snow dynamics and their spatial variability is
fundamental for monitoring and forecasting hydropower production, as well as for river
flow hydrograph monitoring and the management of water resources in Alpine catchments.

In the literature, a large amount of research has been conducted on snow dynamics
modeling and monitoring with ground and satellite data [8–11]. However, especially
snowmelt modeling is still challenging, mainly due to the scarcity and accuracy of meteoro-
logical information at high elevations, particularly for precipitation underestimation [12,13]
and to the difficulties in monitoring and understanding the snow processes over complex
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surfaces and densely forested area [14,15]. Hence, snowmelt simulation is usually based on
temperature degree factors and energy balance models [16–18].

The air temperature-based models are the most used for operational purposes (e.g.,
hydropower production forecast) [19], mainly due to the wide availability of air temperature
data in respect to wind and radiation information and an easier computational capability
without losing accuracy. These models are based on a relationship between air temperature
and a snowmelt degree-day factor [18] when a temperature threshold for snow melt is
reached. This degree-day factor is a highly variable coefficient which might be influenced
by catchments topography [20], with higher values with increasing altitude, snow density
and sun exposure [21,22], while lower values are expected in highly forested areas [23].
Moreover, a seasonal trend of the factor can also be present with a decrease in its values
due to the increase in the surface albedo [24]. The degree day factor has been calibrated
locally against ground-observed snow water equivalent (SWE) data or by merging ground
SWE with ground snow depth data [19,23]. Satellite data of snow coverage areas can be
used for model calibration to ensure a higher spatial consistency of model estimates and
accuracy in non-gauged areas, improving not only the snow coverage distribution but
also the SWE and the runoff, especially during the melt season [8,20,25–28]. However, as
snow cover satellite data provides only the geographical distribution of snow presence or
absence, the SWE estimation relies only on models estimates. Another disadvantage of
satellite data, either at high (Sentinel 20 m or Landsat at 30 m) or low spatial resolutions
(MODIS at 500 m) [29], is related to the missing information with cloud cover [30,31] or
over densely forested areas [8].

Moreover, in the operational applications, especially for hydropower production,
the monitoring of SWE or runoff should be joined by the forecasts of the same variables,
coupling hydrological and weather forecast models [32,33]. Weather forecasts in Alpine and
generally mountainous regions are challenging due to the effects of complex orography on
atmosphere thermodynamics from mesoscale to microscale [34]. In Southern Tyrol, an area
in the Eastern Italian Alps, there is the presence of several ridges and valleys, positioned
on east–west or north–south axes, leading to specific micro-climates, depending on the
interaction with large scale weather systems, different irradiance patterns and other local
effects. For this reason, an accurate forecast requires high resolution local area models
(LAM), built with specific microphysics schemes. A dense observational network is also
needed to accurately describe the different microclimates [35]. These uncertainties are then
reflected into the hydrological simulation, with the propagation of meteorological forecast
errors into the SWE and runoff forecasts [32,33,36]. An improvement in the processes’
estimates may come from the use of probabilistic forecasts, widely used in hydrological
applications in the last years [37,38], while very few applications are available for the SWE
forecast in high elevation catchments [33]. Their main advantage is linked to the possibility
of representing the meteorological forecast uncertainty into the hydrological application.

In this study, we aim at monitoring and forecasting the hydropower production for
eight small river basins underlying a hydroelectric power plant in the Italian Alps in the
Province of Bolzano. The distributed hydrological FEST-EWB (Flash-flood Event-based
Spatially distributed rainfall–runoff Transformation Energy Water Balance model) [8,39]
model estimates of SWE have been calibrated against ground measurements of snow height
and validated with satellite MODIS data of area coverage. The estimates of model hy-
dropower productions have then been compared at monthly scale with measured data at
each powerplant. The calibrated model has been finally coupled with ensemble meteoro-
logical forecasts based on the WRF-ARW (Weather Research and Forecasting Advanced
Research WRF) model [40] to provide SWE and energy production for a week in advance.
The quality of these forecasts is verified for the different basins.

The main innovation points are:

1. Improvement of the interpolation technique of ground precipitation measurements
considering the altitude;



Hydrology 2022, 9, 29 3 of 21

2. Forecast of the energy production at weekly scale using a distributed snow model
coupled with ensemble weather forecast;

3. The local application to the Bolzano province.

2. Materials and Methods
2.1. Case Study Area and Data

The case study area is the Province of Bolzano (Northern Italy), which covers an area
of about 7400 km2 (Figure 1). The basin is an Alpine catchment, characterized by almost
entirely mountainous areas with high elevation gradients. Three main rivers shape the
area: (i) in the western part, the Adige river; (ii) in the northern part, the Isarco; and (iii) in
the eastern part, the Rienza river. The runoff regime is snow and glacier dominated. The
climate is characterized by dry winters and high snowmelt during the spring season [41,42].
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Figure 1. Case study area with the pluviometric, thermometer and nivometric stations, the hy-
dropower plants and the relative basins.

Eight smaller river basins are identified as underlying a hydroelectric power plant.
In the Southern part of the area are located the Lago Verde and Lago Pesce basins, the
smallest ones and at the highest elevations. These are in turn sub-basins of the Zoccolo
basin. Nearby, the Gioveretto catchment is also located, which is characterized by not only
its natural river catchment area, but it also includes a series of connected basins which
directly supply water to the power plant. A similar hydraulic scheme is also observable
in the northern basins of Neves and Vernago. In the northwest, the San Valentino basin is
located, while in the eastern area is the Monguelfo one, which is the largest and the lowest
basin. Table 1 reports a list of relevant information about these catchments.

2.1.1. Energy Production at Hydropower Power Plants and Lake Reconstructed Inflow

Alperia Greenpower Srl (www.alperiagroup.eu, accessed on 27 December 2021) man-
ages 34 hydroelectric power stations in the South Tyrol mountains, producing an average
of 4500 GWh of energy every year. For this analysis, eight power stations (Table 1) are
considered, which receive water from the natural and connected basins (Figure 1). In the
considered hydrographic catchment, irrigation is not present and drinking water uses are
negligible, so the management of the reservoirs can be simulated as completely oriented to
hydropower production.

www.alperiagroup.eu
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Monthly energy production is available at the three powerplants of Naturno, Glorenza
and Lasa from 2006 to 2020; while reconstructed inflow to the power plants lakes is available
for all the eight basins from 2017 to 2021.

Table 1. The Alperia hydropower plants and the relative basins along with their energy production.

Basin Name Basin Area (km2)
Mean Basin

Elevation (m a.s.l.)

Mean Annual
Precipitation

(mm)

Hydropower
Plant

Mean Annual
Production

(GWh)

Lago Verde 6.3 2916 1293 Fontana Bianca 10.2

Lago Pesce 6.9 2575 1260 San Valburga 87.8

Neves 32.5 2503 1295 Lappago 73

Gioveretto 117.4 2740 1201 Lasa 222

Vernago 147.4 2595 1178 Naturno 304

Zoccolo 166.7 2113 1168 San Pancrazio 94.9

San Valentino 348 2431 1073 Glorenza 237

Monguelfo 598.3 1873 1179 Brunico 151

2.1.2. Ground Meteorological and Nivometric Data

Meteorological stations are available from the Bolzano Province network (Figure 1): 87
of them provide air temperature, and 48 also provide precipitation. All the data are available
at an hourly resolution from 2016 to 2021 from the website http://meteobrowser.eurac.edu/
(accessed on 10 October 2020). Higher total yearly precipitation values are observed in the
Neves, Gioveretto and Lago Verde and Pesce basins (1200 mm), while the lowest ones are
in the western part (San Valentico catchment) around 1000 mm (Table 1).

Moreover, snow depth data are also available from 21 stations from 2016 to 2019
(Figure 1).

2.1.3. Satellite Data of Snow Coverage

For the analyzed period from 2016 to 2019, a total of 101 images at 500 m spatial
resolution are obtained from satellite data by the MODIS Terra MOD10_A1 daily product
images (MODIS Snow Cover Daily L3 Global 500m Grid) from the MODIS/NSIDC website
archive http://nsidc.org/index.html (accessed on 20 May 2020).

The MODIS instrument is onboard two satellites, namely, Terra and Aqua, while in this
study, only the Terra MODIS data are used because the Aqua MODIS band at 1.6 micron,
which enhances the difference between snow and clouds, was broken just after satellite
launch. The MODIS snow retrieval algorithm [43] is based on the difference between the
infrared reflectance of snow in visible and short-wave wavelengths, where snow has a
strong reflectance in the visible bands and strong absorption in the short-wave bands,
allowing for the distinction with clouds. Snow MODIS data are provided as now cover
area percentage, which is particularly useful for sensitivity during the melting season [44].

2.2. Methodology

The scheme of the implemented methodology is reported in Figure 2. The FEST-EWB
snow model is firstly run with ground meteorological stations data of rainfall and air
temperature (step 1) to calibrate the snow accumulation and melt parameters (step 2) in
comparison to the modelled SWE with local ground measured snow height (step 3). The
snow model parameters are then validated against MODIS satellite data of snow cover
area (step 4) over the whole Bolzano province. The modeled SWE is then transformed into
potential hydropower production (step 5) and compared with the measured data at the
different power plants (step 6). Finally, the WRF meteorological forecasts (step 1f) are used
as inputs to the FEST-EWB model (step 2f) to generate hydro-meteorological forecasts of

http://meteobrowser.eurac.edu/
http://nsidc.org/index.html
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SWE and energy production (step 5f). Uncertainties of the forecasted variables is assessed
against observed data (step 6f).
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2.2.1. Snow Dynamics in the FEST-EWB

The FEST-EWB distributed water balance model [45,46] computes the main processes
of the hydrological cycle: evapotranspiration, infiltration, surface runoff, flow routing,
subsurface flow and snow dynamics. The model has been proven to be able to reproduce
snow and glacier dynamics in the Italian and Swiss Alps [8,39].

The computational domain is discretized with a mesh of regular square cells (100 m
in this application), where water fluxes are calculated at hourly time steps. The model
needs spatially distributed meteorological forcings of precipitation and air temperature
(see Section 2.2.2).

The snow module of FEST-EWB includes snow melt and snow accumulation dynamics.
The partitioning of total precipitation, P, in liquid, Pl, and solid, Ps, phase is a function of
air temperature, Ta [47]:

Pl = αpP (1)

Ps =
(
1 − αp

)
P (2)

where αp is computed as:

αp =


0, if Ta ≤ Tlow

1, if Ta ≥ Tup

Ta − Tlow
Tup − Tlow

, if Tlow < Ta < Tup

(3)

where Tlow and Tup are air temperatures below/above which all precipitation falls as
snow/rain, respectively, to be found by means of calibration.

The snow melt simulation is based on the degree day concept [23], where the snowmelt
for a time period is a linear function of the temperature. The melt rate in m s−1, Ms,
is proportional to the difference between air temperature and a predefined threshold
temperature, Tb:

Ms =

{
Cm (Ta − Tb), if Ta > Tb

0, if Ta ≤ Tb
(4)



Hydrology 2022, 9, 29 6 of 21

where Cm (m ◦C −1 s−1) is an empirical coefficient depending on meteorological conditions
and geographic location. The model is then able to quantify the snow water equivalent
(SWE) directly from precipitation information without the need of considering the snow
density and depth.

The model was subjected to a rigorous process of calibration and validation for the
years 2016–2019 against different datasets. The model parameters describing the snow
melt and accumulation processes are calibrated against ground stations time series of
snow height, while the independent dataset of satellite data of snow coverage is used for
parameters validation at a pixel-by-pixel scale. Moreover, the verification of the model
performance is also performed on energy production without any further adjustment of
the parameters. The year 2020 was used for the real-time forecast analysis.

The calibration of the snow accumulation temperature parameters, Tlow and Tup,
in Equation (3), of the snow melt parameter Cm and Tb in Equation (4), is based on the
comparison of: (1) simulated snow cover extent with the one retrieved from satellite images
and (2) the correspondence of snow melt and snow accumulation periods against ground
stations. Hence, the simulated SWE data are converted into binary information, with a
“snow” pixel having an SWE higher than 0.05 m and “no-snow” pixels with SWEs lower
than 0.05 m. The calibration is performed by minimizing the root mean squared error
(RMSE) and maximizing the correct performance index (CPI) [8].

The RMSE is computed as:

RMSE =

√
1
n

n

∑
i=1

(Ni − N∗
0)

2 (5)

where n is the total number of images, Ns is the number of simulated “snow” pixels and
N∗

0 is the number of observed “snow”. The RMSE, however, does not consider the spatial
distribution of the snow-covered pixels, while the CPI overcomes this limit. In fact, the CPI
is computed on a pixel-to-pixel comparison by computing contingency tables [48] based on
the definition of a correct a hit when an agreement between observed and simulated data
are present (either “snow” or “no-snow”). The CPI is then defined as the ratio between the
number of hits (H) and the total number of outcomes (tot):

CPI =
H
tot

(6)

2.2.2. Precipitation and Air Temperature Data Interpolation

The data measured by the rain gauges and temperature stations are spatially interpo-
lated with the Inverse Distance Weighting (IDW) method with the power parameter equal
to 2, considering a vertical lapse rate, which is normally negative for temperature (the
temperature decreases with altitude) and positive for the precipitation (the precipitation
increases with altitude). Operationally, once the lapse rate to be applied has been defined,
the data measured at the stations are transferred to a reference altitude of 1000 m, applying
the corresponding lapse rate. The data are then interpolated with IDW and, subsequently,
moved back to the ground considering the cell elevation from the digital elevation model.
The temperature lapse rate is updated at each time step from the linear regression of the
observed data with respect to station’s elevations. The evaluation of the precipitation lapse
rate is described in Section 3.1.2.

2.2.3. Hydropower Production and Lake Inflow

To compute the energy production, the FEST-EWB model firstly calculates a modeled
SWE aggregated at basin scale; subsequently, the water volume is computed multiplying
the SWE by the basin area covered by snow, which is finally transformed into energy
production (KWh) by multiplying the water volume by the energy coefficient (KWh m−3)
of each power plant (industrial sensitive data which cannot be published).
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To reproduce the “observed” lake reconstructed monthly inflow, the FEST-EWB simu-
lated SWE, which represents the melt volume along the season, is aggregated at a monthly
scale over each basin.

2.2.4. Weekly Meteorological Forecast

Weather forecast data are obtained by an ensemble based on WRF-ARW (Weather
Research and Forecasting Advanced Research WRF), an NWP (Numerical Weather Predic-
tion) model developed by USA NCAR (National Centre for Atmospheric Research). This
model is widely used around the world for both research and operational use [49]. The
WRF model development is a collaborative effort of several institutes and it is supported
by a wide community. The model is extremely flexible, offering several parameterizations
for different physical processes. It features a three-dimensional and four-dimensional
variational (3DVAR and 4DVAR) data assimilation system, and the software architecture
allows computational parallelism and system extensibility.

The WRF is generally run on regional domains (as a LAM, Limited Area Model).
The governing equations, describing the dynamics and thermodynamic evolution of the
atmosphere [50], are solved numerically on grid points over the area of interest that
constitutes the three-dimensional domain of the model. Grid structure is not unique,
and NWP models can utilize different ones, as different geographical projections can
be employed. The WRF-ARW model runs on a C-grid staggering [51], that is, normal
velocities are staggered one-half grid length from the thermodynamic variables. Vertically,
a terrain-following coordinate is used [49,50], with vertical grid stretching permitted.
Limited area models require initial and boundary conditions from a larger LAM or a
global model. The forecast from an NWP model amplifies the biases of the physical
parameterizations of the model and increases the errors present in the initial and boundary
data, which depend on highly non-linear equations [52]. To improve forecast quality, an
ensemble configuration with nine WRF instances is used, each with a different physical
configuration and with a different set of initial and boundary conditions [53,54]. The
ensemble approach has been proved to be a valid instrument in reducing biases and
errors, and numerous studies have demonstrated the overall higher forecasting skill of
the ensemble mean over that of deterministic forecasts by using numerical models with
different degrees of complexity [55–59]. The first approach in extracting the information
from an ensemble model is the use of the average values of each meteorological parameter:
in such a way the meteorological output can be treated as the output of a deterministic
forecast. Subsequently, the use of the probabilistic distribution function, which comes as
the output of an ensemble forecast system, allows the user to have a full view of all possible
scenarios, and to evaluate the probability of occurrence of every single deterministic
configuration. The initial and lateral conditions derive from the GEFS global ensemble
model with boundary conditions updated every 3 h [60]. In the ensemble, further variability
is obtained by using different physical parameterizations within the WRF model: different
radiation schemes, microphysics schemes, boundary layer schemes, convection schemes
and land surface schemes.

The analyzed dataset includes 154 days of simulations between from 31 January to 30
June 2020.

3. Results
3.1. Ground Meteorological Data Interpolation
3.1.1. Air Temperature Interpolation

To verify the effect of the temperature lapse rate on the interpolation of the temperature
data, a jackknife cross validation was applied considering the temperature measurements
from 2016 to 2019. At each hour, in turn, the data measured at a station were removed
and the remaining measurements were interpolated to reconstruct the removed data,
iteratively for all the available stations. For each hour the root mean square error was
calculated between the observed data and those reconstructed with interpolation. The



Hydrology 2022, 9, 29 8 of 21

procedure was repeated considering the following: the interpolation without lapse rate,
the interpolation with standard lapse rate (−0.0065 ◦C m−1) and the interpolation with
lapse rate updated hourly from the linear regression of the observed data with respect
to the altitude. Figure 3 shows the averaged results on a monthly scale. Figure 3 (left)
shows the monthly air temperature lapse rate computed from the linear regression of the
observed data and the related R2 compared to the standard lapse rate. It is noted that
only in the period April–July was the lapse rate calculated from the data comparable to
the standard gradient, while the value of the calculated lapse rate decreases (in absolute
value) significantly in the remaining months of the year, with a minimum in December
equal to −0.0037 ◦C m−1. The value of the R2 of the linear regression is relatively high
(>0.8) in the period between March and September, while it decreases in the rest of the year
due to the thermal inversion phenomenon, frequently occurring in autumn and winter,
which causes a significant deviation from the linear trend of temperature with altitude.
Figure 4 shows two examples of linear regression applied to the measured data: The first
is relative to 9:00 of 2017/02/15, when thermal inversion is significant and data are not
linearly correlated; the second is relative to 16:00 of 2017/07/10, when the linear correlation
between air temperature and station elevation is significant.
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Figure 3. Monthly air temperature lapse rate computed from linear regression of observations and
related R2 compared to standard lapse rate (left) and monthly average root mean square error (RMSE)
resulting from interpolation jackknife cross validation considering no lapse rate, standard lapse rate
and lapse rate computed from data (right).

Figure 3 (right) shows the monthly average results of the cross validation. We note
how the interpolation that updates the lapse rate at each step shows a lower error in all
months compared to considering the standard lapse rate or not considering a lapse rate in
the interpolation.

3.1.2. Precipitation Interpolation

There is generally a limited number of rain gauges at high elevations due to the diffi-
culties of installing and maintaining them. Even when there are stations, the precipitation
measurement is often affected by significant errors, especially in the winter period caused
by the presence of wind and by the malfunctioning of the heating system for snowfall
melting. Precipitation in the Alps generally follows an increasing trend with elevation.
Reconstructing a precipitation field considering only the measurements available at lower
altitudes leads to an underestimation of the total precipitation volume. It is therefore crucial
to evaluate the precipitation lapse rate to be used in spatial interpolation, including the
measurements at the highest elevations. To compensate for the lack of rain gauges at high
altitudes, measurements from snow gauges were considered in this analysis. Precipitation
was calculated from the increases in height measured by the snow gauge, assuming the
minimum snow density valid for newly deposited snow. The procedure was validated at
the Alpe di Siusi Zallinger station, where precipitation and snow depth measurements were
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available at the same time. Figure 5a shows the good agreement between the cumulative
precipitation measured by the rain gauge and that calculated from the snow height data,
selecting the periods between November and April when, at high altitudes, due to the low
air temperature, precipitation falls in the form of snow.
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For the calculation of the snow season lapse rate, the precipitation measurements of the
stations above 1500 m with a percentage of missing data lower than 25% (9 stations) and the
data of the snow gauges (21 stations), which reach an altitude of 3035 m a.s.l., were analyzed.
The considered period is between 2016 and 2019. The vertical lapse rate was computed
from the linear regression of snow season precipitation and station elevation (Figure 5b).
The final value 0.000073 mm/h/m was subsequently used for spatial interpolation of
precipitation measurements.

3.2. Snow Model Calibration and Validation against Ground and Satellite Data

At first, the snow melt parameters, Tb and Cm in Equation (4), are assumed to be,
respectively, 0 ◦C and 4.32 mm d−1 ◦C−1, while Tlow and Tup are both equal to 0 ◦C,



Hydrology 2022, 9, 29 10 of 21

resulting from a previous calibration of the FEST-WB snow melt model in the Toce one in
Piemonte alpine area in Italy [8].

The threshold temperature values, Tlow and Tup, depend on local meteorological
conditions, so a wide range of values are available in literature, from −1 to 3 ◦C [61], from
−1 ◦C to 7 ◦C [62] and from 0.5 ◦C to 1 ◦C [63] to a maximum value of 5.5 ◦C [64]. In
the literature, a large variability of the melt Cm parameter value also exists, ranging from
2.7 mm d−1 ◦C −1 to 11.6 mm d−1 ◦C−1, varying from site to site related to differences in
the importance of the radiation components, air temperature and wind velocity [19,64],
while the parameter Tb is considered equal to 0 ◦C [19].

The results of the calibration based on the measured ground data are summarized
in Figure 6, where the modeled snow dynamics are compared with the ground observed
snow depths data for three selected stations. The comparison is performed only in terms of
accumulation and melt times, as a “snow”–“no snow” series; while a direct comparison
of simulated snow water equivalent and measured snow heights is not possible because
the snow density is not known. In fact, we recall that the output of the FEST-EWB snow
model is the snow water equivalent (e.g., which produce a direct impact on hydropower
production), while it does not reproduce the complex processes of the snow pack [65].
The model generally performs well both in the accumulation and the melting period,
but FEST-EWB underestimates the observed snow coverage by about 7%, globally. The
months in which the major differences are registered are from June to September; this is
probably due to the fact that snowfalls occurring in summer are of low intensity and thus
hardly representable. This result is confirmed by the contingency tables which are build
up including simulated snow data for different combination of Tup and Tlow and observed
snow depth, for each single station.
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Figure 6. FEST-EWB snow dynamics calibration against ground snow height and MODIS snow cover
at the pixel of different ground stations from 2016 to 2019.

In Table 2, the mean contingency table for all 21 ground stations is reported resulting
in a CPI of 92%. The values of the best fit calibrating parameters are 0 ◦C for Tlow, 1 ◦C for
Tup and Cm 4.32 mm d−1 ◦C−1; while for snow melt, Tb is equal to 3 ◦C.

Table 2. The correct performance index (CPI) for all the stations from 2016 to 2019, between FEST-EWB
model and ground height and MODIS snow cover at the pixel of the ground stations.

Observed Stations

No Snow Snow

FEST model
No snow 0.52 0.07

Snow 0.01 0.4

MODIS

No Snow Snow

FEST model
No snow 0.52 0.11

Snow 0.02 0.35

In Figure 7 the CPI values for each single station is shown in respect to station elevation
and slope aspect, but no clear tendency is observable. This is of particular relevance
confirming the ability of the degree-day model which doesn’t consider the solar radiation
(e.g., shadowed areas).

The FEST-EWB snow model has then been validated against MODIS snow cover
data at both the different ground stations and the whole basin area. In Figure 6, the
modeled snow dynamics with the selected parameters’ configuration is reported along
with MODIS data at three example stations, showing a higher variability with respect to
ground information. The contingency tables are then computed for all the stations for
all the cloud free days of available satellite images, and in Table 2, the mean values are
reported, resulting in a CPI of 87 %.

None of the computed analyses used for calibration consider the spatial distribution
of snow cover over the whole area. Hence, the model is then validated by comparing the
simulated and observed maps of snow cover in each pixel of the study domain.

In Figure 8 the, time evolution of the snow-covered area from the MODIS and FEST-
EWB models is reported for different classes of zonal elevation. Good agreement is clearly
detectable from both the spatial distribution of snow at high and low altitudes and from the
whole season dynamics (e.g., accumulation, winter and melt periods). It is worth noticing
the several missing dates in the MODIS analysis due to the high percentage of cloud cover
(higher than 40%), while the FEST-EWB model is capable of filling this information gap.
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Contingency maps are also computed for each available date to quantitatively identify
the correct correspondence between modeled and observed data, grouping the agreements
“snow–snow” and “no snow–no snow”, as well as the disagreements “snow MODIS–no
snow FEST-EWB” and “snow FEST-EWB–no snow MODIS”. From these, the CPI index is
computed, confirming the good agreement over the whole area and the seasons with a mean
89.2% and a standard deviation of 10%, which is comparable to the local stations’ analysis.

3.3. Lake Inflow Volume and Energy Production

In order to assess the water availability impacts on hydropower production, the
total observed annual production is firstly compared with the annual estimated power
production from precipitation. In Table 3, the differences between the estimated and
observed mean annual productions are reported in terms of the relative error and the
RMSE. Positive biases (e.g., estimated production higher than measured) are observable
in all the hydropower plants, with errors between 16 and 25%, except for Glorenza and
Lappago (−18 and −22%, respectively). These two opposite behaviors are explainable
when considering, for example, the two hydropower plants of Glorenza and Lasa in more
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detail. The estimates at the Lasa powerplant are slightly overestimating the measured
ones, which is mainly due to the fact that the summer rainfall in the Gioveretto basin
can be intense, overpassing the powerplant capacity of generating energy, thus producing
spillways from the dam during summer. For the Glorenza powerplant, an opposite situation
is observable with the estimated annual production being lower than the measured one.
This may be explained by the fact that during summer, different auxiliary intakes are
activated, increasing the available water in the San Valentino basin.

Table 3. Summary differences of observed and simulated annual production.

Basin Name Hydropower Plant Mean Annual Error
(%) RMSE (MWh)

Zoccolo San Pancrazio 16 3.98 × 104

Neves Lappago −22 2.39 × 104

San Valentino Glorenza −18 5.84 × 104

Gioveretto Lasa 16.3 6.02 × 104

Vernago Naturno 24 1.16 × 105

Monguelfo Brunico 25 5.11 × 104

Then, to validate the FEST-EWB snow model and the entire procedure, the melt season
(from March to June) is considered with almost all the power production is generated by
the snow melt volume. So, the monthly inflow lake volumes from snow melt are computed
from the FEST-EWB model and compared with the observed values for the different power
plants from 2017 to 2021. In Figure 9, the results are shown, highlighting the agreement
between the observed and modeled data, either for large catchments with high water
volumes, such as the Monguelfo at Brunico power plant, or for small high elevation basins,
such as Lago Verde at Fontana Bianca. Usually, the model is able to correctly reproduce the
low flow values of January and February months, as well as the high values of June and
July. Small discrepancies are visible for Monguelfo and for Zoccolo in some years, where
a clear anticipation of the melt season is produced by the model with erroneously high
values in June, which result in too low values in July. This might be related to the lower
altitude of these basins in respect to the others, then having mean higher air temperatures.
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(a) Lasa plant in the Gioveretto basin, (b) Glorenza plant in the San Valentino basin, (c) Naturno plant
in the Vernago basin, (d) Lappago plant in the Neves basin, (e) Brunico plant in the Monguelfo basin,
(f) Pancrazio plant in the Zoccolo basin, (g) Fontana Bianca plant in the Lago Verde basin.

These results are confirmed by the statistical indices of Table 4 showing low RMSE
values in respect to the mean values typical of the specific basin, as well as low RRMSE
values ranging between 2.5 and 3.6%. High Nash Sutcliffe index values are reported for all
the basins.

Table 4. RRMSE, RMSE and the Nash Sutcliffe index of observed and simulated data of monthly
lakes inflow volumes and energy production.

Monthly Lakes Inflow Volumes Monthly Energy
Production

Basin
Name

Hydropower
Plant

RRMSE
(%)

RMSE
(m3)

Nash
Sutcliffe

RRMSE
(%)

RMSE
(MWh)

Zoccolo San
Pancrazio 2.9 9.0 × 106 0.97 - -

Neves Lappago 3.3 3.4 × 106 0.96 - -

San
Valentino Glorenza 2.9 1.1 × 107 0.96 8.0 2.5 × 104

Gioveretto Lasa 3.4 8.0 × 106 0.95 9.2 1.4 × 104

Vernago Naturno 2.7 6.7 × 106 0.97 8.9 2.5 × 104

Monguelfo Brunico 3.6 2.5 × 107 0.94 - -

Lago Verde Fontana
Bianca 2.5 4.2 × 105 0.97 - -

Finally, the monthly energy productions computed from the FEST-EWB model are
compared to those observed values at the three available powerplants from 2006 to 2020:
Naturno, Glorenza and Lasa (Figure 10). A good agreement is generally observable,
especially during the first months of the melt season (March to May), while a higher
variability results during the summer period. The errors are reported in Table 4 as the
RRMSE and RMSE of the observed and simulated data. Glorenza and Naturno have a
RMSE value of about 2.5 MWh, while a lower one is found for Lasa of around 1.5 MWh.
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With respect to the monthly lakes’ inflow volume, the energy production higher
discrepancies are obtained between the observed and measured data, especially on the
low and high production peaks. This might be explained by the fact that during January
and February, no snow melt is observable in these high mountain basins, producing no
flow. Instead, the powerplant is producing energy anyway because the lake is full of water.
Conversely, during June and especially July, in addition to the snow melting, the liquid
precipitation is also added, which could also be intense, giving rise to water volumes
greater than the generation capacity of the power plant. The model is not considering this
limitation and provides the natural potential energy production. This is clearly visible in
the summer seasons of 2019 and 2021 where, for all the powerplants, an extremely high
peak of potential production is visible in July.

3.4. Effect of Meteorological Forecast on SWE and Energy Production

The effect of meteorological forecasts on hydrological and energy variables is evaluated
from the coupling of weather and hydrological models. The meteo-hydrological chain, set
up using the ensemble meteorological outputs as inputs in the FEST-WB model, provides
SWE and energy production every day with a forecast horizon of 7 days. The analyzed
dataset includes 154 days of simulations from 31 January to 30 June 2020. Since the weather
model has a forecast horizon of 7 days, in order to assess the forecasting chain, the statistical
analysis has been carried out starting from “day+0”, i.e., the forecast at the same day of the
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initialization date run, up to “day+7”. This last run considers all forecast performances at
7 days from the initialization date.

In Figure 11, the cumulated hourly precipitation and energy production are shown at
day+1 forecast for the whole period, for example, for the Gioveretto basin. In details, the
model simulation forced with observed data and the forecasted variables, respectively, by
the WRF ensembles, plus the 25th, 50th and 75th percentiles are reported. The precipitation
forecast shows a sensible overestimation compared to the observed weather data, being in
the 50th percentiles greater than the observed data of 200 mm over 5 months. This issue
may be related to both the accuracy of ground precipitation data interpolation for high
elevation areas as well as the ability of the weather forecast model to catch the dynamics
over mountainous areas. The hydrological variable of energy production, as rainfall plus
melting, displays a considerable overestimation 50th percentiles greater, about 170 mm,
over the 5 analyzed months.
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Figure 11. The cumulated hourly precipitation (upper plot) and energy production (lower plot) at
day +1 forecast from 31 January to 30 June 2020 for the Gioveretto basin. The red line shows: the
observed precipitation data and the FEST-EWB model simulation forced with observed data for
energy production, the 9 colored lines display the forecasted variables respectively by the WRF
ensembles, while the black line is the median and the black dotted lines the 25th, 75th percentiles.

In Figure 12, the results of the meteo-hydrological forecast skills are summarized for
all catchments and all analyzed variables in terms of Mean Absolute Error (MAE) between
the WRF 50th ensemble percentile and the FEST-EWB estimates for six forecast lead times
(from day 0 to day+6). The minimum MAE value is shown in blue color, while the dark
red corresponds to the maximum MAE. In particular, the considered variables are air
temperature, precipitation, energy production, snow melt and SWE.
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The forecast performances are extremely variable across the basins due to the highly
irregular topography and mainly according to their mean elevation and their location.
Indeed, performances are generally more reliable for the lead time day+1 and, in particular,
for the first days of the forecast horizon and decrease in the later forecast days. In particular,
rainfall MAE is generally very low for the first two days of forecasts and then increase,
except for the two basins, Neves and San Valentino, which show higher MAE values. These
two basins are located in the north part of the case study areas and on the southern side of
the mountains. Air temperature forecasts follow a more regular behavior with low MAE
values for day 0 and day+1 increasing with the increase in the lead time in all the analyzed
catchments. These meteorological variables errors are then reflected into the hydrological
forecasts reporting snow melt MAE values, which decrease with the lead time in some
catchments while for others, remain almost constant. High MAE values are found for
the two basins Neves and San Valentino (e.g., high rainfall MAE), as well as Gioveretto
and Vernago, which show higher MAE values in air temperature after day+3. Variable
MAE values are obtained for energy production with no precise trend on the skills of the
meteorological forecasts. The highest values are again observable for the two Neves and
San Valentino basins. The SWE variable is instead characterized by a less variable behavior
among the basins with an MAE value which decreases with the forecast horizon in a similar
way, even though higher values are found in the Neves catchment.

4. Discussion and Conclusions

In this paper, we presented a system for supporting the hydropower production for
eight small river basins underlying a hydroelectric power plant in the Italian Alps in the
Province of Bolzano. This is an area with typical Alpine characteristics, that may impact the
system with specific issues related to high altitude, morphological features and harshness
of the mountainous environment in general.

One limitation of the presented system is that it requires real time detailed precipita-
tion and temperature data in order to perform snow mass balance and provide melting
amount. To this purpose, some methods have been developed and tested in order to get
the maximum from available data, thus providing reliable output. These methods are not
specific of the investigated area and can be applied in any mountainous environment.

The system reliability depends on the accuracy of three components: spatial interpolation of
meteorological observations, a mathematical model and quantitative meteorological forecasts.

A common problem at higher elevations is the shortage of precipitation measurement.
As a matter of fact, the number of rain gauges at high elevations is generally very limited
and, when available, data are often affected by significant errors caused by wind and by the
malfunctioning of the heating system for snowfall melting. In this paper, a methodology to
compensate for the lack of rain gauges at high altitudes, by using measurements from snow
gauges, has been validated. Precipitation was calculated from snow gauge measurements
assuming the minimum snow density for newly deposited snow. By merging data coming
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from snow gauges at higher altitude and precipitation acquired by rain gauges at lower
altitude, vertical precipitation lapse rate was computed from the linear regression of
measurements and station elevation. The advantage of this method is that snow gauge
data are not required for real time application. Data from snow gauges are used in offline
analysis only to assess the vertical lapse rate to be used for real time interpolation of data
from rain gauges. An indirect check of the method for precipitation interpolation comes
from the comparison of the total observed annual production with the annual estimated
power production from precipitation. The latter represents the potential power production
and should be greater or equal to energy production. If this is not the case, the error would
be due to precipitation underestimation.

A second investigated point is the interpolation of air temperature data. Indeed, air
temperature is strongly affected by topography, and lapse rate may be driven by local mor-
phological properties and seasonal variability. A procedure was implemented to compute
the air temperature vertical lapse rate for each hour based on the linear regression of air
temperature measurements and station elevation. A jackknife validation demonstrated the
advantages of this procedure with respect to considering a standard constant lapse rate
or not considering lapse rate at all. The RMSE keeps below 2 ◦C when the lapse rate is
updated hourly, it increases above 3 ◦C during winter when a standard constant value is
used and ranges between 4 ◦C and 5 ◦C when no lapse rate is used.

As far as the accuracy of mathematical simulation is concerned, the snow module
parameters of the FEST-EWB model have been calibrated by comparing snow depth mea-
surements to modelled snow water equivalents and validated against MODIS snow cov-
erage maps. Despite that snow water equivalents cannot be directly compared to snow
depths and MODIS data, the model accuracy can be assessed in reproducing time series of
“snow” and “no snow” status. On the other hand, the aim of the simulation is far from re-
producing the complex processes the snow pack is subjected to, after snow deposition. The
model generally performs well both in accumulation and melting period with CPI about
0.9 (0.92 against snow gauges data, 0.87 against MODIS data). The shortage of available
measurements did not allow us to perform model validation. However, model validity
to simulate the spatial distribution of snow coverage has been assessed by comparing the
simulated and observed maps of snow cover in each pixel of the study domain, with quite
satisfactory results.

A further step toward model validation implied the comparison of model output to
two available datasets: the monthly inflow lake volumes from 2017 to 2021 for most of the
powerplants and the monthly energy productions available only for the three powerplants,
Naturno, Glorenza and Lasa, from 2006 to 2020. From the comparison to lake inflow
volumes, the results show an agreement between the observed and modeled data, either
for large catchments, such as Monguelfo at the Brunico power plant, and for small high
elevation basins, such as Lago Verde at Fontana Bianca. Anticipation of the melt season
was found in Monguelfo and Zoccolo in some years. This might be related to the lower
altitude of these basins, thus having higher air temperatures. Further analysis to calibrate
spatially distributed snow melt parameter is being carried out in order to improve model
performance at low elevation basins.

From comparison to energy production, good agreement is generally achieved, espe-
cially during the first months of the melt season (March to May), while higher variability is
obtained during the summer period.

A final analysis implies the use of WRF-ARW meteorological forecasts to assess
the system capability of forecasting the snow melt amount on a horizon of 7 days. To
improve forecast quality, an ensemble configuration with nine instances is used, each with a
different physical configuration and with a different set of initial and boundary conditions.
Precipitation forecasts show a sensible overestimation compared to observed weather data,
which reflects the general overestimation of forecasted energy production. In terms of
skill scores, the opposite behavior is found for precipitation MAE that increases with lead
time, except for San Valentino and Neves where MAE is greater in the first days. The
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SWE variable is characterized by a less variable behavior among the basins with a MAE
value, which decreases with the forecast horizon. Energy production, being affected by the
variability of all other variables, does not show a general trend of MAE, with greater values
for Neves and San Valentino basins.

The procedures presented in this paper validated on Alpine area, can be generalized
to any other mountainous area where an estimation of current and forecasted snow water
equivalent and melting amount are required.
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