Forecasting High-Flow Discharges in a Flashy Catchment Using Multiple Precipitation Estimates as Predictors in Machine Learning Models
Abstract
:1. Introduction
1.1. Background
1.2. Research Questions and Objectives
2. Materials
2.1. Study Area
2.2. Dataset
2.2.1. Data Description
2.2.2. Data Pre-Processing
3. Methods
3.1. Extreme Learning Machine (ELM) Models
3.2. Experiment Set Up
3.3. Models Comparison
4. Results and Discussion
4.1. Overall Performance Statistics
4.2. Contingency Analysis
4.3. Brief Discussion on Replicability
5. Conclusions
- How the use of multiple precipitation products may benefit poorly gauged or ungauged basis using QPEs based on satellite data (e.g., PERSIANN-CCS, IMERG, GSMaP);
- How does the performance of ML-based rainfall-runoff models that use multiple concurrent QPEs as input compares with the performance of conventional hydrological models that use a post-processed QPE based on the combination of different QPE products (e.g., radar data corrected with gauged data);
- What are the potential gains in performance that rainfall-runoff models based on other popular ML structures (e.g., MLP, LSTM, SVM, random forests) may achieve with the inclusion of concurrent QPEs in the set of predictors;
- How the ML-based rainfall-runoff modeling of basins with characteristics different from the flashy urban catchment used in this study may benefit from the use of multiple concurrent QPEs as input. Examples of such include mountainous catchments and non-flashy basins with larger areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronym | Meaning |
CaPA | Canadian Precipitation Analysis |
CHM | Conventional Hydrological Model |
CSI | Critical Success Index |
ECCC | Environment and Climate Change Canada |
ELM | Extreme Learning Machine |
GEM | Global Environmental Multiscale |
KGE | Kling-Gupta Efficiency |
LSTM | Long-Short Term Memory |
METAR | METeorological Aerodrome Reports (METAR) |
ML | Machine Learning |
NOAA | National Oceanic and Atmospheric Administration |
NWM | Numerical Weather Model |
QPE | Quantitative Precipitation Estimate |
RMSE | Root Mean Squared Error |
TRCA | Toronto and Region Conservation Authority |
References
- UN-Water United Nations World Water Development Report 2020: Water and Climate Change; UNESCO: Paris, France, 2020; ISBN 9789231003714.
- Sanyal, J.; Lu, X.X. Remote Sensing and GIS-Based Flood Vulnerability Assessment of Human Settlements: A Case Study of Gangetic West Bengal, India. Hydrol. Process. 2005, 19, 3699–3716. [Google Scholar] [CrossRef]
- Sanyal, J.; Lu, X.X. Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Nat. Hazards 2004, 33, 283–301. [Google Scholar] [CrossRef]
- Ghosh, S.; Hoque, M.M.; Islam, A.; Barman, S.D.; Mahammad, S.; Rahman, A.; Maji, N.K. Characterizing Floods and Reviewing Flood Management Strategies for Better Community Resilience in a Tropical River Basin, India. Nat. Hazards 2022. [Google Scholar] [CrossRef]
- Corral, C.; Berenguer, M.; Sempere-Torres, D.; Poletti, L.; Silvestro, F.; Rebora, N. Comparison of Two Early Warning Systems for Regional Flash Flood Hazard Forecasting. J. Hydrol. 2019, 572, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Guo, L.; Liu, R.; Zhang, Y. Rainfall Threshold Determination for Flash Flood Warning in Mountainous Catchments with Consideration of Antecedent Soil Moisture and Rainfall Pattern. Nat. Hazards 2018, 94, 605–625. [Google Scholar] [CrossRef]
- Habibi, H.; Dasgupta, I.; Noh, S.; Kim, S.; Zink, M.; Seo, D.J.; Bartos, M.; Kerkez, B. High-Resolution Hydrologic Forecasting for Very Large Urban Areas. J. Hydroinf. 2019, 21, 441–454. [Google Scholar] [CrossRef]
- Fonseca Alves, L.G.; de Oliveira Galvão, C.; de Farias Santos, B.L.; Fernandes de Oliveira, E.; Andrade de Moraes, D. Modelling and Assessment of Sustainable Urban Drainage Systems in Dense Precarious Settlements Subject to Flash Floods. LHB Hydrosci. J. 2022, 108, 1–11. [Google Scholar] [CrossRef]
- WMO—World Meteorological Organization. Multi-Hazard Early Warning Systems: A Checklist. In Proceedings of the Outcome of the first Multi-hazard Early Warning Conference, Cancun, Mexico, 22–23 May 2017. [Google Scholar]
- UN—United Nations. Report of the Open-Ended Intergovernmental Expert Working Group on Indicators and Terminology Relating to Disaster Risk Reduction; report A/71/644; United Nations: New York, NY, USA, 2016. [Google Scholar]
- Zahmatkesh, Z.; Kumar Jha, S.; Coulibaly, P.; Stadnyk, T. An Overview of River Flood Forecasting Procedures in Canadian Watersheds. Can. Water Resour. J. 2019, 44, 213–229. [Google Scholar] [CrossRef]
- Zanchetta, A.D.L.; Coulibaly, P. Recent Advances in Real-Time Pluvial Flash Flood Forecasting. Water 2020, 12, 570. [Google Scholar] [CrossRef] [Green Version]
- Minns, A.W.; Hall, M.J. Modélisation Pluie-Débit Par Des Réseaux Neuroneaux Artificiels. Hydrol. Sci. J. 1996, 41, 399–417. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Frame, J.M.; Kratzert, F.; Klotz, D.; Gauch, M.; Shalev, G.; Gilon, O.; Qualls, L.M.; Gupta, H.V.; Nearing, G.S. Deep Learning Rainfall–Runoff Predictions of Extreme Events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, J.H.; Lee, E.H.; Yoon, S.K. Development of a Revised Multi-Layer Perceptron Model for Dam Inflow Prediction. Water 2022, 14, 1878. [Google Scholar] [CrossRef]
- Dawson, C.W.; Wilby, R.L. Hydrological Modelling Using Artificial Neural Networks. Prog Phys. Geogr 2001, 25, 80–108. [Google Scholar] [CrossRef]
- Kilsdonk, R.A.H.; Bomers, A.; Wijnberg, K.M. Predicting Urban Flooding Due to Extreme Precipitation Using a Long Short-Term Memory Neural Network. Hydrology 2022, 9, 105. [Google Scholar] [CrossRef]
- Song, T.; Ding, W.; Wu, J.; Liu, H.; Zhou, H.; Chu, J. Flash Flood Forecasting Based on Long Short-Term Memory Networks. Water 2019, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.T.; Shoaib, M.; Hammad, M.; Salahudin, H.; Ahmad, F.; Ahmad, S. Application of Machine Learning Techniques in Rainfall–Runoff Modelling of the Soan River Basin, Pakistan. Water 2021, 13, 3528. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Ali, R.; Al-Ansari, N.; Vishwakarma, D.K.; Kushwaha, K.S.; Panda, K.C.; Sagar, A.; Mirzania, E.; Elbeltagi, A.; et al. An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability 2022, 14, 8209. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Wei, G.; Song, T.; Zhang, C.; Zhou, H. Flash Flood Forecasting Using Support Vector Regression Model in a Small Mountainous Catchment. Water 2019, 11, 1327. [Google Scholar] [CrossRef] [Green Version]
- Alquraish, M.M.; Khadr, M. Remote-Sensing-Based Streamflow Forecasting Using Artificial Neural Network and Support Vector Machine Models. Remote Sens. 2021, 13, 4147. [Google Scholar] [CrossRef]
- Atiquzzaman, M.; Kandasamy, J. Prediction of Hydrological Time-Series Using Extreme Learning Machine. J. Hydroinf. 2016, 18, 345–353. [Google Scholar] [CrossRef]
- Yeditha, P.K.; Rathinasamy, M.; Neelamsetty, S.S.; Bhattacharya, B.; Agarwal, A. Investigation of Satellite Precipitation Product Driven Rainfall-Runoff Model Using Deep Learning Approaches in Two Different Catchments of India. J. Hydroinf. 2022, 24, 16–37. [Google Scholar] [CrossRef]
- Muñoz, P.; Orellana-Alvear, J.; Bendix, J.; Feyen, J.; Célleri, R. Flood Early Warning Systems Using Machine Learning Techniques: The Case of the Tomebamba Catchment at the Southern Andes of Ecuador. Hydrology 2021, 8, 183. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Islam, A.; Bera, B.; Shit, P.K. A Comparison of Performance Measures of Three Machine Learning Algorithms for Flood Susceptibility Mapping of River Silabati (Tropical River, India). Phys. Chem. Earth 2022, 127, 103198. [Google Scholar] [CrossRef]
- Ke, Q.; Tian, X.; Bricker, J.; Tian, Z.; Guan, G.; Cai, H.; Huang, X.; Yang, H.; Liu, J. Urban Pluvial Flooding Prediction by Machine Learning Approaches—A Case Study of Shenzhen City, China. Adv. Water Resour 2020, 145, 103719. [Google Scholar] [CrossRef]
- Kumar, A.; Ramsankaran, R.A.A.J.; Brocca, L.; Muñoz-Arriola, F. A Simple Machine Learning Approach to Model Real-Time Streamflow Using Satellite Inputs: Demonstration in a Data Scarce Catchment. J. Hydrol. 2021, 595, 126046. [Google Scholar] [CrossRef]
- Bhusal, A.; Parajuli, U.; Regmi, S.; Kalra, A. Application of Machine Learning and Process-Based Models for Rainfall-Runoff Simulation in DuPage River Basin, Illinois. Hydrology 2022, 9, 117. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Chen, M.; Gao, S.; Hong, Z.; Tang, G.; Wen, Y.; Gourley, J.J.; Hong, Y. Cross-Examination of Similarity, Difference and Deficiency of Gauge, Radar and Satellite Precipitation Measuring Uncertainties for Extreme Events Using Conventional Metrics and Multiplicative Triple Collocation. Remote Sens. 2020, 12, 1258. [Google Scholar] [CrossRef] [Green Version]
- Gabriele, S.; Chiaravalloti, F.; Procopio, A. Radar-Rain-Gauge Rainfall Estimation for Hydrological Applications in Small Catchments. Adv. Geosci. 2017, 44, 61–66. [Google Scholar] [CrossRef]
- McKee, J.L.; Binns, A.D. A Review of Gauge–Radar Merging Methods for Quantitative Precipitation Estimation in Hydrology. Can. Water Resour. J. 2016, 41, 186–203. [Google Scholar] [CrossRef]
- Friedman, J.H. On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Data Min. Knowl. Discov. 1997, 1, 55–77. [Google Scholar] [CrossRef]
- NWS—National Weather Service. Glossary. Available online: https://w1.weather.gov/glossary/ (accessed on 10 July 2022).
- AECON Canada Ltd. Don River Hydrology Update; Report Prepared for the Toronto and Region Conservation Authority (TRCA); Richmond Hill, Canada, 2018. Available online: https://trca.ca/conservation/watershed-management/don-river/ (accessed on 2 February 2022).
- Rincón, D.; Khan, U.T.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Wijayarathne, D.; Coulibaly, P.; Boodoo, S.; Sills, D. Evaluation of Radar-Gauge Merging Techniques to Be Used in Operational Flood Forecasting in Urban Watersheds. Water 2020, 12, 1494. [Google Scholar] [CrossRef]
- Fulton, R.A.; Breidenbach, J.P.; Seo, D.J.; Miller, D.A.; O’Bannon, T. The WSR-88D Rainfall Algorithm. Weather 1998, 13, 377–395. [Google Scholar] [CrossRef]
- Gasset, N.; Fortin, V.; Dimitrijevic, M.; Carrera, M.; Bilodeau, B.; Muncaster, R.; Gaborit, É.; Roy, G.; Pentcheva, N.; Bulat, M.; et al. A 10 Km North American Precipitation and Land-Surface Reanalysis Based on the GEM Atmospheric Model. Hydrol. Earth Syst. Sci. 2021, 25, 4917–4945. [Google Scholar] [CrossRef]
- Côté, J.; Gravel, S.; Méthot, A.; Patoine, A.; Roch, M.; Staniforth, A. The Operational CMC-MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation. Mon. Weather Rev. 1998, 126, 1373–1395. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation Averages for Large Areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Bin Huang, G.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Application of the Extreme Learning Machine Algorithm for the Prediction of Monthly Effective Drought Index in Eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Daily Reservoir Inflow Forecasting Using Artificial Neural Networks with Stopped Training Approach. J. Hydrol. 2000, 230, 244–257. [Google Scholar] [CrossRef]
- Liu, N.; Wang, H. Ensemble Based Extreme Learning Machine. IEEE Signal. Process. Lett. 2010, 17, 754–757. [Google Scholar] [CrossRef]
- Leach, J.M.; Coulibaly, P. An Extension of Data Assimilation into the Short-Term Hydrologic Forecast for Improved Prediction Reliability. Adv. Water Resour. 2019, 134, 103443. [Google Scholar] [CrossRef]
- Dahigamuwa, T.; Yu, Q.; Gunaratne, M. Feasibility Study of Land Cover Classification Based on Normalized Difference Vegetation Index for Landslide Risk Assessment. Geosciences 2016, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Ietto, F. Modeling Shallow Landslide Susceptibility and Assessment of the Relative Importance of Predisposing Factors, through a Gis-based Statistical Analysis. Geosciences 2021, 11, 333. [Google Scholar] [CrossRef]
- Kirch, W. (Ed.) Pearson’s Correlation Coefficient. In Encyclopedia of Public Health; Springer: Dordrecht, The Netherlands, 2008; pp. 1090–1091. ISBN 978-1-4020-5614-7. [Google Scholar]
- Meddage, D.P.P.; Ekanayake, I.U.; Herath, S.; Gobirahavan, R.; Muttil, N.; Rathnayake, U. Predicting Bulk Average Velocity with Rigid Vegetation in Open Channels Using Tree-Based Machine Learning: A Novel Approach Using Explainable Artificial Intelligence. Sensors 2022, 22, 4398. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Rochford, P.A. SkillMetrics: A Python Package for Calculating the Skill of Model Predictions against Observations. Available online: http://github.com/PeterRochford/SkillMetrics (accessed on 22 September 2022).
- Coulibaly, P.; Samuel, J.; Pietroniro, A.; Harvey, D. Evaluation of Canadian National Hydrometric Network Density Based on WMO 2008 Standards. Can. Water Resour. J. 2012, 38, 159–167. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree x 0.1 Degree V06; Goddard Earth Sciences Data and Information Services Center (GES DISC): Green Belt, MD, USA, 2019. [CrossRef]
- Kubota, T.; Aonashi, K.; Ushio, T.; Shige, S.; Takayabu, Y.N.; Kachi, M.; Arai, Y.; Tashima, T.; Masaki, T.; Kawamoto, N.; et al. Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era. In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer: Cham, Switzerland, 2020; pp. 355–373. [Google Scholar]
- Hong, Y.; Hsu, K.L.; Sorooshian, S.; Gao, X. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. J. Appl. Meteorol. 2004, 43, 1834–1852. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
Original Resolution | |||||
---|---|---|---|---|---|
Variable | Data Type | Data Source | Acronym | Temporal (hour) | Spatial (km) |
Precipitation | Observation | Rain gauges | G | 0.25 | Point |
Precipitation | Observation | Weather radar | R | 1 | ~2 km |
Precipitation | Modelling | NWM (CaPA) | C | 1 | ~10 km |
Discharge | Observation | River gauge | Q | 0.25 | Point |
Rain Gauge | Aerial Representativity (km2) | Weight |
---|---|---|
HY016 | 59.2 | 0.17 |
HY021 | 114.9 | 0.33 |
HY027 | 107.9 | 0.31 |
HY036 | 66.2 | 0.19 |
Best Single QPE | 3 QPEs | ||||
---|---|---|---|---|---|
Metric | Lead Time | QPE | Value | Value | Δ (%) |
KGE | 1 | R | 0.94 | 0.94 | 0.00 |
2 | G | 0.82 | 0.84 | 2.44 | |
3 | R | 0.63 | 0.68 | 4.76 | |
4 | R | 0.43 | 0.50 | 16.28 | |
5 | G | 0.18 | 0.31 | 72.22 | |
1 | R | 8.44 | 8.47 | −0.35 | |
2 | G | 14.69 | 13.61 | 7.35 | |
3 | R | 20.37 | 19.30 | 5.25 | |
4 | G | 25.49 | 23.28 | 8.67 | |
5 | C | 28.26 | 27.07 | 4.21 | |
1 | R | 0.96 | 0.96 | 0.00 | |
2 | G | 0.87 | 0.89 | 2.30 | |
3 | R | 0.74 | 0.77 | 4.05 | |
4 | G | 0.56 | 0.66 | 17.86 | |
5 | C | 0.43 | 0.50 | 16.28 |
Lead Time (h) | |||||
---|---|---|---|---|---|
Feature Set | 1 | 2 | 3 | 4 | 5 |
G | −0.06 | −0.10 | −0.17 | −0.22 | −0.22 |
R | −0.05 | −0.08 | −0.15 | −0.19 | −0.20 |
C | −0.07 | −0.13 | −0.18 | −0.23 | −0.22 |
G,R,C | −0.03 | −0.06 | −0.12 | −0.18 | −0.19 |
Best Single QPE | 3 QPEs | ||||
---|---|---|---|---|---|
Metric | Lead Time | QPE | Value | Value | Δ (%) |
CSI | 1 | G | 0.72 | 0.73 | 1.38 |
2 | G | 0.59 | 0.58 | −1.69 | |
3 | R | 0.43 | 0.45 | 4.65 | |
4 | R | 0.30 | 0.32 | 6.67 | |
5 | R | 0.16 | 0.19 | 18.75 | |
Sensitivity | 1 | G | 0.86 | 0.86 | 0.00 |
2 | G | 0.78 | 0.74 | −5.12 | |
3 | R | 0.65 | 0.64 | −1.54 | |
4 | G | 0.56 | 0.56 | 0.00 | |
5 | G | 0.50 | 0.45 | −10.0 | |
Precision | 1 | R | 0.82 | 0.83 | 1.22 |
2 | G | 0.70 | 0.72 | 2.86 | |
3 | R | 0.55 | 0.59 | 7.27 | |
4 | R | 0.38 | 0.41 | 7.89 | |
5 | R | 0.20 | 0.24 | 20.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanchetta, A.D.L.; Coulibaly, P.; Fortin, V. Forecasting High-Flow Discharges in a Flashy Catchment Using Multiple Precipitation Estimates as Predictors in Machine Learning Models. Hydrology 2022, 9, 216. https://doi.org/10.3390/hydrology9120216
Zanchetta ADL, Coulibaly P, Fortin V. Forecasting High-Flow Discharges in a Flashy Catchment Using Multiple Precipitation Estimates as Predictors in Machine Learning Models. Hydrology. 2022; 9(12):216. https://doi.org/10.3390/hydrology9120216
Chicago/Turabian StyleZanchetta, Andre D. L., Paulin Coulibaly, and Vincent Fortin. 2022. "Forecasting High-Flow Discharges in a Flashy Catchment Using Multiple Precipitation Estimates as Predictors in Machine Learning Models" Hydrology 9, no. 12: 216. https://doi.org/10.3390/hydrology9120216
APA StyleZanchetta, A. D. L., Coulibaly, P., & Fortin, V. (2022). Forecasting High-Flow Discharges in a Flashy Catchment Using Multiple Precipitation Estimates as Predictors in Machine Learning Models. Hydrology, 9(12), 216. https://doi.org/10.3390/hydrology9120216