Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic
Abstract
:1. Introduction
2. Methods and Methodology
2.1. Remote Sensing of Shallow Marine Areas
2.2. Atmospheric Correction
2.3. Log Band Ratio Algorithm
2.4. Switch Model
3. Results
3.1. Study Area
3.2. Dataset
3.2.1. Multibeam Bathymetry Data
3.2.2. Sentinel-2 Multispectral Images
3.3. Atmospheric Correction
3.4. Switch Model
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IMO–International Maritime Organization. International Convention for the Safety of Life at Sea. Available online: https://www.refworld.org/docid/46920bf32.html (accessed on 29 January 2022).
- International Hydrographic Organization (IHO). Publication M-2: The Need for National Hydrographic Services, IHO, Monaco, 2018. Available online: https://iho.int/iho_pubs/misc/M-2_3.0.7_E_06142018.pdf (accessed on 20 October 2022).
- Makowski, C.; Finkl, C.W. Seafloor Mapping along Continental Shelves: Research and Techniques for Visualizing Benthic Enviroments; Springer: Cham, Switzerland, 2016. [Google Scholar]
- UN Environment Programme. Coastal Zone Management. Available online: https://www.unep.org/explore-topics/oceans-seas/what-we-do/working-regional-seas/coastal-zone-management (accessed on 29 January 2022).
- Lichter, M.; Vafeidis, A.T.; Nicholls, R.J.; Kaiser, G. Exploring Data-Related Uncertainties in Analyses of Land Area and Population in the “Low-Elevation Coastal Zone” (LECZ). J. Coast. Res. 2011, 27, 757–768. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Vilibić, I.; Denamiel, C.; Zemunik, P.; Monserrat, S. The Mediterranean and Black Sea meteotsunamis: An overview. Nat. Hazards 2021, 106, 1223–1267. [Google Scholar] [CrossRef]
- International Hydrographic Organization (IHO). Publication C-55: Status of Hydrographic Surveying and Charting Worldwide. IHO, Monaco, 2022. Available online: https://iho.int/uploads/user/pubs/cb/c-55/c55.pdf (accessed on 29 January 2022).
- International Hydrographic Organization (IHO). Standard S-44: IHO Standards for Hydrographic Surveys. IHO, Monako, 2020. Available online: https://iho.int/uploads/user/pubs/standards/s-44/S-44_Edition_6.0.0_EN.pdf (accessed on 29 January 2022).
- De Jong, C.D.; Lachapelle, G.; Skone, S.; Elema, I.A. Hydrography; VSSD: Delft, The Netherlands, 2012. [Google Scholar]
- Irish, J.L.; White, T.E. Coastal engineering applications of high-resolution lidar bathymetry. Coast. Eng. 1997, 35, 47–71. [Google Scholar] [CrossRef]
- Argans. Sentinel Coastal Charting Worldwide—Final Report. 2019. Available online: https://eo4society.esa.int/wp-content/uploads/2020/01/FinalReportCoastalCharting.pdf (accessed on 20 October 2022).
- Robinson, I.S. Discovering the Ocean from Space: The Unique Applications of Satellite Oceanography; Springer/Praxis Publishing: Berlin, Germany, 2010. [Google Scholar]
- European Space Agency. Sen2Cor Configuration and User Manual. 2021. Available online: http://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-PDGS-MPC-L2A-SUM-V2.10.0.pdf (accessed on 20 October 2022).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 30 January 2022).
- Casal, G.; Monteys, X.; Hedley, J.; Harris, P.; Cahalane, C.; McCarthy, T. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data. Int. J. Remote Sens. 2019, 40, 1–25. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R. Atmospheric correction for satellite-derived bathymetry in the Caribbean waters: From a single image to multi-temporal approaches using Sentinel-2A/B. Optics Express 2020, 28, 11742–11766. [Google Scholar] [CrossRef]
- Renosh, P.R.; Doxaran, D.; Keukelaere, L.D.; Gossn, J.I. Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Chu, S.; Cheng, L.; Ji, C.; Li, M.; Shen, W. Satellite-derived bathymetry from Landsat-8 and Sentinel-2A images: Assessment of atmospheric correction and depth derivation models for shallow waters. Opt. Express 2022, 30, 3238–3261. [Google Scholar] [CrossRef]
- Vrdoljak, L.J.; Režić, M.; Petričević, I. Bathymetric and geological properties of the Adriatic Sea. Rud. -Geološko Naft. Zb. 2021, 36, 2. [Google Scholar] [CrossRef]
- GeoAdriatic-Official Hydrographic Survey Browser. Available online: https://geoadriatic.hhi.hr/en/ (accessed on 20 October 2022).
- CDI Data Discovery and Access Service—EMODnet Bathymetry. Available online: https://www.emodnet-bathymetry.eu/search (accessed on 20 October 2022).
- Morović, M.; Grbec, B.; Matić, F.; Bone, M.; Matijević, S. Optical Characterization of the Eastern Adriatic Waters. Fresenius Environ. Bull. 2008, 17, 1679–1687. [Google Scholar]
- Leder, N.; Duplančić Leder, T. Optimal Conditions for Satellite Derived Bathymetry (SDB)—Case Study of the Adriatic Sea. In Proceedings of the FIG Working Week, Amsterdam, The Netherlands, 10–14 May 2020. [Google Scholar]
- Sextant Catalogue Service–Satellite Derived Bathymetry Central Dalmatia–Croatia. Available online: https://www.emodnet-bathymetry.eu/metadata-amp-data/composite-dtms-catalogue-service#/metadata/SDN_CPRD_4667_croatia2004 (accessed on 20 October 2022).
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters. Remote Sens. Environ. 2021, 256, 112284. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. ACOLITE For Sentinel-2: Aquatic Applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; ESA Special Publication SP-740: Noordwijk, The Netherland, 2016; pp. 9–13. [Google Scholar]
- Doerffer, R.; Schiller, H. The MERIS case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Sterckx, S.; Knaeps, E.; Adriaensen, S.; Reusen, I.; De Keukelaere, L.; Hunter, P. Opera: An Atmospheric Correction for Land and Water. In Proceeding of the ESA Sentinel-3 for Science Workshop, Venice, Italy, 2–5 June 2015. [Google Scholar]
- Sterckx, S.; Knaeps, S.; Kratzer, S.; Ruddick, K. SIMilarity Environment Correction (SIMEC) applied to MERIS data over inland and coastal waters. Remote Sens. Environ. 2014, 157, 96–110. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclai, M. Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Evagorou, E.; Mettas, C.; Agapiou, A.; Themistocleous, K.; Hadjimitsis, D. Bathymetric maps from multi-temporal analysis of Sentinel-2 data: The case study of Limassol, Cyprus. Adv. Geosci. 2019, 45, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Duplančić Leder, T.; Leder, N.; Peroš, J. Satellite Derived Bathymetry Survey Method-Example of Hramina Bay. Trans. Marit. Sci. 2019, 8, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Traganos, D.; Poursanidis, D.; Aggarwal, B.; Chrysoulakis, N.; Reinartz, P. Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2. Remote Sens. 2018, 10, 859. [Google Scholar] [CrossRef] [Green Version]
- Westley, K. Satellite Derived Bathymetry for maritime archeology: Testing its effectiveness at two ancient harbours in the Eastern Mediterranean. J. Archaeol. Sci. Rep. 2021, 38, 103030. [Google Scholar]
- Caballero, I.; Stumpf, R. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuar. Coast. Shelf Sci. 2019, 226, 106277. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Towards Routine Mapping of Shallow Bathymetry in Environments with Variable Turbidity: Contribution of Sentinel-2A/B Satellites Mission. Remote Sens. 2020, 12, 451. [Google Scholar] [CrossRef]
- Muzirafuti, A.; Barreca, G.; Crupi, A.; Faina, G.; Paltrinieri, D.; Lanza, S.; Randazzo, G. The Contribution of Multispectral Satellite Image to Shallow Water Bathymetry Mapping on the Coast of Misano Adriatico, Italy. J. Mar. Sci. Eng. 2020, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Lamb, D.; Verlinde, J. Physics and Chemistry of Clouds; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Platt, U.; Pfeilsticker, K.; Vollmer, M. Radiation and Optics in the Atmosphere; Springer: New York, NY, USA, 2007. [Google Scholar]
- Hedley, J.; Harborne, A.; Mumby, P. Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Liang, S.; Xiaowen, L.; Wang, J. Advanced Remote Sensing; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Conference: Image and Signal Processing for Remote Sensing, Warsaw, Poland, 11–13 September 2017. [Google Scholar]
- Richter, R. A fast atmospheric correction algorithm applied to Landsat TM images. Remote Sens. 1990, 11, 159–166. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Sendra, C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. Int. J. Remote Sens. 1988, 9, 1357–1381. [Google Scholar] [CrossRef]
- Royal Belgian Institute of Natural Sciences: Operational Directorate Natural Environment-Scientific Web Sites and Applications. Available online: https://odnature.naturalsciences.be/remsem/software-and-data/acolite (accessed on 7 February 2022).
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral (MSI) data processing for aquatic science applications: Demonstration and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Guanter, L. New Algorithms for Atmospheric Correction and Retrieval of Biophysical Parameters in Earth Observation. Application to ENVISAT/MERIS Data. Doctoral Thesis, University of Valencia, Valencia, Spain, 2007. [Google Scholar]
- Pe’eri, S.; Parrish, C.; Azuike, C.; Lee, A.; Armstrong, A. Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness. Mar. Geod. 2014, 37, 293–314. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- European Marine Observation and Data Network: EMODnet Geology. Available online: https://www.emodnet-geology.eu/ (accessed on 10 December 2021).
- European Space Agency ESA. Sentinel-2 User Handbook, 2015. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook (accessed on 31 January 2022.).
- The European Space Agency ESA. Data Products. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/data-products (accessed on 7 February 2022).
- Gao, J. Bathymetric mapping by means of remote sensing: Methods, accuracy, and limitations. Prog. Phys. Geogr. Earth Environ. 2009, 33, 103–116. [Google Scholar] [CrossRef]
- Bramante, J.F.; Raju, D.K.; Sin, T.M. Multispectral Derivation of Bathymetry in Singapore’s Shallow, Turbid Waters. Int. J. Remote Sens. 2013, 34, 2070–2088. [Google Scholar] [CrossRef]
- Poppenga, S.K.; Palaseanu-Lovejoy, M.; Gesch, D.B.; Danielson, J.J.; Tyler, D.J. Evaluating the potential for near-shore bathymetry on the Majuro Atoll, Republic of the Marshall Islands, using Landsat 8 and WorldView-3 imagery. U.S. Geol. Surv. Sci. Investig. Rep. 2018, 5024, 14. [Google Scholar]
AC | Sen2Cor | Acolite EXP | Acolite DSF | iCOR | C2RCC |
---|---|---|---|---|---|
Intended for: | Sentinel-2 MSI over land | Sentinel-2 and Landsat MSI over turbid waters | Metre-resolution MSI for aquatic application | Inland, coastal or transitional waters and land | All past and current ocean sensors over normal and extreme optically complex waters |
AOT—retrieval algorithm | Dark dense vegetation algorithm | Extrapolation from SWIR to VIS and IR using an exponential function | Automatic selection of band with the lowest estimate of atmospheric path reflectance | Adaptation of Self-Contained Atmospheric Parameters Estimation from Meris data (SCAPE -M) method | Trained neural network and coastal aerosol model |
Adjacency effect | - | - | - | SIMEC module | - |
Sunglint | - | - | Yes | - | Yes |
Turbidity | - | - | - | - | 5-component bio-optical model |
References | [14,47,48] | [26,27] | [28,29] | [32,33] | [30,31] |
Band | λ [nm] | |
---|---|---|
G | B2 blue | 490 |
B3 green | 560 | |
R | B2 blue | 490 |
B4 red | 665 |
Band | Spectral Region | Centre Wavelength/Band Width [nm] | Spatial Resolution [m] | |
---|---|---|---|---|
S2A | S2B | |||
B1 | Coastal Aerosol (CB) | 442.7/21 | 442.2/21 | 60 |
B2 | Blue (B) | 492.4/66 | 492.1/66 | 10 |
B3 | Green (G) | 559.8/36 | 559.0/36 | 10 |
B4 | Red(R) | 664.6/31 | 664.9/31 | 10 |
B5 | Red edge 1 | 704.1/15 | 703.8/16 | 20 |
B6 | Red edge 2 | 740.5/15 | 739.1/15 | 20 |
B7 | Red edge | 782.8/20 | 779.7/20 | 20 |
B8 | Near-infrared (NIR) | 832.8/106 | 832.9/106 | 10 |
B8A | Near-infrared narrow (NIR) | 864.7/21 | 864.0/22 | 20 |
B9 | Water vapour | 945.1/20 | 943.2/21 | 60 |
B10 | Shortwave infrared/cirrus | 1373.5/31 | 1376.9/30 | 60 |
B11 | Shortwave infrared 1(SWIR1) | 1613.7/91 | 1610.4/94 | 20 |
B12 | Shortwave infrared 2(SWIR2) | 2202.4/175 | 2185.7/185 | 20 |
No. | Satellite | Date | Time [UTC] | Azimuth (Sun) | Zenith (Sun) | Cloud % | MLLW [m] |
---|---|---|---|---|---|---|---|
1 | 2A | 9 March 2017 | 9:50 | 157.39 | 50.57 | 1.21 | 0.08 |
2 | 2A | 29 March 2017 | 9:50 | 156.23 | 42.61 | 0.00 | 0.10 |
3 | 2A | 18 May 2017 | 9:50 | 150.13 | 26.73 | 0.14 | −0.17 |
4 | 2A | 28 May 2017 | 9:50 | 147.98 | 25.08 | 2.42 | 0.03 |
5 | 2B | 12 July 2017 | 9:50 | 143.48 | 25.59 | 0.06 | 0.14 |
6 | 2A | 6 August 2017 | 9:50 | 148.27 | 30.42 | 0.04 | 0.20 |
7 | 2B | 30 September 2017 | 9:30 | 163.47 | 47.98 | 0.00 | −0.23 |
8 | 2A | 15 October 2017 | 9:50 | 166.27 | 53.38 | 0.01 | −0.16 |
9 | 2A | 04 November 2017 | 9:52 | 168.23 | 60.03 | 0.00 | 0.07 |
10 | 2B | 19 December 2017 | 9:54 | 166.18 | 68.39 | 0.43 | 0.00 |
11 | 2B | 18 January 2018 | 9:53 | 162.28 | 66.20 | 0.03 | −0.04 |
12 | 2B | 27 February 2018 | 9:50 | 158.09 | 54.51 | 6.68 | 0.18 |
AC | MSI L2A Sen2Cor | Acolite DSF | Acolite EXP | C2RCC | iCOR |
---|---|---|---|---|---|
MSI | rp [%] | rp [%] | rp [%] | rp [%] | rp [%] |
1 | - | 90.35 | 91.40 | 85.42 | 91.35 |
2 | - | 93.66 | 94.41 | 90.23 | 91.64 |
3 | 80.41 | 93.02 | 86.31 | 86.29 | 95.04 |
4 | 84.18 | 91.35 | 88.11 | 74.10 | 92.25 |
5 | 87.55 | - | - | 79.00 | 92.98 |
6 | - | - | - | 66.77 | 90.67 |
7 | 94.03 | 93.94 | 95.22 | 79.99 | 94.98 |
8 | - | 92.53 | 92.89 | 84.52 | - |
9 | 83.29 | 91.53 | 88.44 | 81.17 | - |
10 | 86.49 | 86.93 | 85.91 | 80.02 | 86.66 |
11 | - | 91.72 | - | 80.01 | 91.01 |
12 | 86.48 | 90.35 | 89.09 | 81.75 | - |
N | 7 | 10 | 9 | 12 | 9 |
Mean1 rp [%] | 86.06 | 91.54 | 90.20 | 80.77 | 91.84 |
Mean2 rp [%] | 86.28 | 91.31 | 88.89 | 80.10 | 92.23 |
AC | MSI L2A | Acolite | Acolite EXP | C2RCC | iCOR |
---|---|---|---|---|---|
Sen2Cor | DSF | ||||
Min RMSE [m] | 1.76 | 1.72 | 1.53 | 1.98 | 1.50 |
Max RMSE [m] | 2.67 | 2.54 | 2.54 | 3.74 | 2.46 |
Mean RMSE [m] | 2.40 | 2.02 | 2.10 | 2.61 | 1.91 |
Mean AE [m] | 1.92 | 1.51 | 1.58 | 2.03 | 1.39 |
Median AE [m] | 1.65 | 1.08 | 1.15 | 1.63 | 1.00 |
SDB G | SDB R | |
---|---|---|
Blue (B2) and Green (B3) | Blue (B2) and Red (B4) | |
Depth range [m] | 0–20 | 0–5 |
RMSE [m] | 2.14 | 0.66 |
MedAE [m] | 1.23 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrdoljak, L.; Kilić Pamuković, J. Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic. Hydrology 2022, 9, 215. https://doi.org/10.3390/hydrology9120215
Vrdoljak L, Kilić Pamuković J. Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic. Hydrology. 2022; 9(12):215. https://doi.org/10.3390/hydrology9120215
Chicago/Turabian StyleVrdoljak, Ljerka, and Jelena Kilić Pamuković. 2022. "Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic" Hydrology 9, no. 12: 215. https://doi.org/10.3390/hydrology9120215
APA StyleVrdoljak, L., & Kilić Pamuković, J. (2022). Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic. Hydrology, 9(12), 215. https://doi.org/10.3390/hydrology9120215