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Abstract: Flash floods occur frequently and distribute widely in mountainous areas because of complex
geographic and geomorphic conditions and various climate types. Effective flash flood forecasting
with useful lead times remains a challenge due to its high burstiness and short response time. Recently,
machine learning has led to substantial changes across many areas of study. In hydrology, the advent
of novel machine learning methods has started to encourage novel applications or substantially
improve old ones. This study aims to establish a discharge forecasting model based on Long
Short-Term Memory (LSTM) networks for flash flood forecasting in mountainous catchments. The
proposed LSTM flood forecasting (LSTM-FF) model is composed of T multivariate single-step LSTM
networks and takes spatial and temporal dynamics information of observed and forecast rainfall and
early discharge as inputs. The case study in Anhe revealed that the proposed models can effectively
predict flash floods, especially the qualified rates (the ratio of the number of qualified events to the
total number of flood events) of large flood events are above 94.7% at 1–5 h lead time and range from
84.2% to 89.5% at 6–10 h lead-time. For the large flood simulation, the small flood events can help the
LSTM-FF model to explore a better rainfall-runoff relationship. The impact analysis of weights in
the LSTM network structures shows that the discharge input plays a more obvious role in the 1-h
LSTM network and the effect decreases with the lead-time. Meanwhile, in the adjacent lead-time,
the LSTM networks explored a similar relationship between input and output. The study provides a
new approach for flash flood forecasting and the highly accurate forecast contributes to prepare for
and mitigate disasters.
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1. Introduction

Flash floods are among the most destructive natural disasters in many countries of the world and
are characterized by widespread distribution, large quantities, and rapid occurrence. From 2005 to
2015, China had an average of one hundred flash flood events which caused casualties each year [1].
Distinguished from regular floods, flash floods often occur in mountainous catchments of a few
hundred square kilometers with a few hours of evacuation time. Short lead time is largely attributed
to the quick response of the rainfall-runoff relationship, which is impacted by not only complex
geographic and geomorphic conditions but also rainfall intensity and spatial-temporal distribution [2].
In practice, numerous catchments are facing a tough challenge of flash flood forecasting around the
world [3]. Accurate and reliable short-term discharge forecasting is of great significance to preventing
or mitigating a flash flood disaster.

Establishing a practical real-time forecasting model is one of the major tasks in flash flood
prevention. Hapuarachchi et al. [4] provided an extensive review of flash flood forecasting and
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concluded no model could make reliable flash flood forecasts in spite of the plausible results of
physically-based distributed hydrological models. Many studies showed that distributed hydrological
models have advantages over lumped hydrological models and data-driven models, but they are
computationally inefficient and need high-resolution sophisticated input data (e.g., DEM, land-use and
soil maps, and soil characteristics) [5]. Hence, their applicability is limited in mountainous catchments.
The expected benefits of using high-resolution distributed models might be masked by the increasing
uncertainties at small scales [6]. Lumped hydrological models for flash flood forecasting are limited by
their coarse resolution and inadequate description of rainfall spatial distribution, which has a great
impact on the catchment response [2]. In addition, physically-based hydrological models depend
heavily on their boundary conditions, which are often poorly defined [7]. It is difficult to describe
flash flood generation and propagation by a deterministic approach due to the complexity of its
processes. Numerous studies indicate the gap of physically-based hydrological models in short-term
flood prediction [8].

With the advancements in system theory and computer technology, Machine Learning (ML) has
been widely used in hydrology, such as Artificial Neural Networks (ANN) [9], Adaptive Network-Based
Fuzzy Inference System [10], Extreme Learning Machines [11], and so on [8,12]. Compared with
hydrological models, data-driven models are able to obtain better or comparable forecasting results.
Besides, they have fewer restrictions and assumptions on modeling, small computational costs and
fast computation times [8,12]. However, the time series characteristic of hydrological forecasting is
seldom considered by the internal structure of these models. Recurrent neural networks (RNNs) are
specifically designed to deal with time series problems. Chang et al. [13] applied RNNs for urban flood
control and found RNNs had higher applicability than ANNs. The most successful and widely used
RNNs is the Long Short-Term Memory (LSTM) network. As a special type of RNN, the LSTM network
is designed to overcome the drawback of the traditional RNN of learning long-term dependencies. It is
regarded as a milestone in dealing with time series problems in machine learning.

LSTM was proposed by Hochreiter and Schmidhuber [14], later modified by Felix Gers in
2001 and promoted by Alex Graves in 2006. It has been widely used to analyze the time series in
many applications like natural language processing, speech recognition, handwriting recognition,
sentiment analysis as well as in disease diagnosis. Previous studies have shown that the LSTM model
outperformed the conceptual and physical-based models for simulating the rainfall-runoff process [15],
and is more stable than an ANN model in different lead-time modeling [16]. The LSTM model has an
advantage over other ML approaches in capturing the time-series dynamics of discharges and reducing
the time consumption and memory storage [17]. Moreover, LSTM also outperforms other neural
networks in predicting water table depth in agricultural areas [18], monitoring sewer overflow [19],
simulating the reservoir operation [17] and so on. To our knowledge, there has been no previous
attempt to deploy the LSTM network on discharge forecasting in small mountainous catchments to
assess its performance in flash flood forecasting.

The aim of this study is to propose a data-driven discharge forecasting model based on LSTM
networks for flash flood forecasting in mountainous catchments. The LSTM model composed of T
multivariate single-step LSTM networks with spatial and temporal dynamics information of rainfall
and early discharge as inputs is established. The Anhe catchment is taken as a case study to validate
the feasibility of the proposed model with the qualified rates of peak flow, lead-time, and the discharge
hydrograph as the evaluation indexes. Moreover, the effects of the inputs and structure on the forecasts
in different lead-times are analyzed through the parameter analysis.

2. Methodology

2.1. Long Short-Term Memory Network

LSTM is a special kind of RNN due to its structures called gates, which have the ability to remove
or add information to the cell state. The LSTM memory cell has three gates to control the cell state. The
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input gate can allow the input signal to alter the state of the memory cell or block it. The output gate
can allow or prevent the state of the memory cell to the output of the memory cell. The forget gate can
allow the memory cell to remember or forget how much information to its next state. Figure 1 shows
the internals of the LSTM memory cell and its relationship with adjacent time. The internal calculation
process of the LSTM memory cell is shown in Equations (1)–(6).

ft = σ
(
W f · [Xt, ht−1] + b f

)
(1)

it = σ(Wi·[Xt, ht−1] + bi) (2)

C̃t = tanh(Wc·[Xt, ht−1] + bc) (3)

Ct = ft ∗Ct−1 + it ∗ C̃t (4)

ot = σ(Wo·[Xt, ht−1] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

where Xt−1, Xt, Xt+1 and ht−1, ht, ht+1 are the input to the memory cell and hidden state at time t − 1,
t, t + 1; Ct−1 and Ct are the cell state at time t − 1 and t; ft, it, ot are the state of the forget gate, input
gate and output gate; W f , Wi, Wo, Wc and b f , bi, bo, bc are the weight matrices and bias vectors of the

forget gate, input gate, output gate and calculating candidate state value C̃t, respectively; ft, it, ot, ht

and C̃t have the same dimension as Ct. σ() and tanh() presents the activation function of sigmoid()
and tanh(), respectively. Sigmoid, with values in the range (0, 1), is used to express the switch state of
the gate. Tanh(), with values in the range (−1, 1), is used to update the cell state and hidden state.
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2.2. LSTM Flood Forecasting Model

The LSTM flood forecasting (LSTM-FF) model, composed of T multivariate single-step LSTM
networks, is established to forecast discharge for 1 − T hour lead-time. As is shown in Figure 2,
each discharge is forecasted by using a separated LSTM network. The inputs include (1) observations:
a. current and previous (1 hour-lag, 2 hour-lag, . . . , H hour-lag) observed rainfall at each rain station, b.
previous discharge at the outlet; and (2) forecasts: short-term forecast rainfall with lead-time of T. The
observed inputs are represented by Xt−H, . . . , Xt−1, Xt, while the forecasting inputs are represented by
Xt+1, Xt+2, . . . , Xt+T. The outputs include forecast discharge qsim

t+1, qsim
t+2, . . . , qsim

t+T. Rectified Linear
Unit (ReLU) with values in the range (0, +∞) is used to output non-negative values.



Water 2020, 12, 109 4 of 15

Water 2020, 12, 109 4 of 16 

 

The observed inputs are represented by 
− − 1t H t t, ..., ,X X X , while the forecasting inputs are 

represented by 
+ + +1 2t t t T, , ...,X X X . The outputs include forecast discharge + + +1 2

sim sim sim
t t t Tq ,q , ...,q . 

Rectified Linear Unit (ReLU) with values in the range (0, +∞) is used to output non-negative values. 

 
Figure 2. Structure of the LSTM flood forecasting model. 

The model training steps are as follows. 

Step 1: Determine the discharge lead-time T according to the practical requirement for flash flood 
early warning in the specific catchment. 

Step 2: Establish and normalize the data set. Since rainfall and discharge have different physical 
significance and dimensions, the data is normalized with Equation (7). 

 −
=

−
min

max min

x x
x

x x
 (7) 

where x  is the normalized value; x is the observed value; 
m axx  and 

m inx  are the maximum and 
minimum observed values.  

Step 3: Divide the data set into the training set, validation set, and test set.  
Step 4: Give an initial value of hyperparameters (units, batch-size, and epoch) and train the 1-hour, 

2-hour, …, T-hour LSTM networks, respectively. Units represent the dimensions of 
tC  and 

th

. Batch-size defines the number of samples that will be propagated through the network. An 
epoch indicates the number of passes through the entire training dataset the machine learning 
algorithm has completed. If the batch-size is the whole training dataset, then batch size and 
epoch are equivalent. The initialization of weights is implemented by a random seed, which is 
determined by trial and error.  

Figure 2. Structure of the LSTM flood forecasting model.

The model training steps are as follows.

Step 1: Determine the discharge lead-time T according to the practical requirement for flash flood
early warning in the specific catchment.

Step 2: Establish and normalize the data set. Since rainfall and discharge have different physical
significance and dimensions, the data is normalized with Equation (7).

x̂ =
x− xmin

xmax − xmin
(7)

where x̂ is the normalized value; x is the observed value; xmax and xmin are the maximum and
minimum observed values.

Step 3: Divide the data set into the training set, validation set, and test set.
Step 4: Give an initial value of hyperparameters (units, batch-size, and epoch) and train the 1-h,

2-h, . . . , T-hour LSTM networks, respectively. Units represent the dimensions of Ct and ht.
Batch-size defines the number of samples that will be propagated through the network. An
epoch indicates the number of passes through the entire training dataset the machine learning
algorithm has completed. If the batch-size is the whole training dataset, then batch size and
epoch are equivalent. The initialization of weights is implemented by a random seed, which is
determined by trial and error.

Step 5: Repeat step 4 by trial and error, and determine the final value of hyperparameters for 1-h, 2-h,
. . . , T-hour LSTM networks, respectively. The learning curve is used to prevent overfitting
or underfitting.

Step 6: Save the optimal model on the basis of the trial-and-error results in step 6.
Step 7: Input test set to the saved LSTM-FF model and anti-normalize the output to simulated discharges.
Step 8: Evaluate the simulated results of the LSTM-FF model.
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2.3. Evaluation Criteria

The following error statistics and goodness of fit measures were adopted in this study.
(1) Relative Peak Error (RPE)

Forecasting the peak discharge (or rising stage) accurately is the primary task in flash flood
prevention. Due to the characteristic of a steep rise in flash floods, a high prediction accuracy of peak
discharge also means a relatively higher accuracy of peak time and flood hydrograph, especially for
floods with high peak discharge. In this paper, RPE, defined by the following Equation, is taken as the
main accuracy evaluation index.

RPE =
qsim

peak − qobs
peak

qobs
peak

× 100% (8)

where qobs
peak and qsim

peak are the observed and simulated peak discharge and the values of RPE closer to
zero indicate better estimation of peak discharge.
(2) Peak Time Error (PTE, unit is h)

PTE = tsim
peak − tobs

peak (9)

where tobs
peak and tsim

peak are the observed and simulated peak times.
(3) Nash-Sutcliffe coefficient of efficiency (NSE)

NSE = 1−

n∑
t=1

(
qobs

t − qsim
t

)2

n∑
t=1

(
qobs

t − qobs
)2

(10)

where qobs
t and qsim

t are the observed and simulated discharge; qobs is the average value of the observed
discharge; n is the total number of observations.
(4) Qualified Rate (QR)

QR is suggested by the Chinese flood forecasting guidelines and often used in flood forecasting
studies [20].

QR =
N
M
× 100% (11)

where N is the number of qualified flood events about RPE, PTE, NSE, and M is the total number of
flood events. If the PTE is within ±20%, the forecasted peak discharge is considered to be qualified.
If the PTE is within ±2 h, the forecasted peak time is considered to be qualified. If the NSE is larger
than 0.7, the forecasted flood process is considered to be qualified. The QR of peak discharge/peak
time/flood process is the ratio of the number of qualified events (RPE/PTE/NSE is qualified) to the total
number of flood events, respectively. The QR of all evaluation criteria (peak discharge, peak time,
and flood process) is the ratio of the number of qualified events (RPE, PTE, and NSE are all qualified)
to the total number of flood events.

3. Case Study

3.1. Study Area and Data

The Anhe catchment with a drainage area of 251 km2 is located in southeastern China in the
province of Jiangxi. It is characterized by mountain terrain with elevations ranging from 180 to 1302 m.
The climate is humid with the mean annual rainfall of 1425.6 mm, 70% of which comes from the flood
season. Due to the humid climate and mountain terrain, the Anhe catchment is prone to debris flow,
landslides, and other geologic hazards. It is urgent to carry out the forecast for hazards reduction.

The hydrologic data for the hydrometeorological network, as shown in Figure 3, is from 1984 to
2012 and the observed rainfall and discharge data are processed into hourly time series data. The
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1-year return period flows (67 m3/s) and 2-year return period flows (176 m3/s) are calculated by a
discharge frequency curve using Pearson Type III distribution. The threshold discharge has been
conventionally considered as the bankfull flow [21,22], which could be conservatively estimated by the
2-year return period flow [5,23]. Therefore, 176 m3/s is determined as the threshold discharge for flash
flood early-warning in this study. A total of 19 flood events whose peak discharge is greater than the
threshold discharge and 75 flood events whose peak discharge is greater than the 1-year return period
discharge are selected from the available historical records. The beginning and end of a flood event are
taken as the rising point from the base flow before the main rain and the recession point to the base
flow, respectively. According to the 75 flood events, the maximum time lag in the basin is 6 h. In this
paper, observed rainfall measurements are taken as the perfect forecast for a 1–10 h lead-time. Thus,
we take h as 5 h and T as 10 h in the LSTM-FF model (see Figure 2).
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3.2. Training Process

A common calibration strategy for machine learning models is to subdivide the sample set into the
training set, validation set and test set at a ratio of 6:2:2. The training set is used to fit the parameters;
the validation set is used to tune the parameters in order to prevent overfitting or underfitting; and the
test set is used only to assess the model performance for extrapolating [24]. According to the time
sequence, the sample set is divided into the training set, validation set and test set which include
45, 15, and 15 flood events, respectively. Considering the representativeness of the peak discharge,
we replaced one flood event of the validation set and two flood events of the test set to the training
set (see Figure 4). The data from 75 flood events is restructured to a supervised learning dataset by a
sliding window method [25]. The sample size of the training set, validation set and test set is 6595 (45
flood events), 2334 (15 flood events), and 2109 (15 flood events) for a 1 h lead-time, respectively. The
sample size varies slightly with a different lead-time.
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The programming language of Python 3.6 is chosen, and our study relies on open-source software
of the Deep-Learning framework TensorFlow as well as other libraries, such as Scikit-learn, Keras,
Pandas, Numpy and so on. Adaptive Moment Estimation is chosen as an optimization algorithm. The
structure of LSTM, i.e., the number of LSTM layers and hyper-parameters are determined by trial
and error. Firstly, we found one LSTM layer with 5 units is enough to get the best simulation results,
and adding more layers and units could no longer improve the simulation accuracy. Secondly, in
the range of 2 to 64, batch-size has little impact on the optimization results, so 64 is used due to its
higher computing speed. Thirdly, Mean Absolute Error (MAE) is determined as a loss function. This is
because the Mean Square Error (MSE) could cause several abnormal values for low-flow fitting.

4. Results and Discussion

In this paper, a benchmark model composed of 10 BP networks is established to forecast discharge
for a 1–10 h lead-time. The 1–10 BP networks have two hidden layers with 10 nodes, which are
determined by trial and error.

4.1. Model Evaluation

The QR of the training period and test period are compared in Figure 5, in which the solid line
represents the training period (training and validation set), and the dashed line represents the test
period (test set). As shown in Figure 5a, the QR values of peak discharge in both the training and
test period show a decreasing trend with the increase of lead-time and are all above 80.0%. The QR
values of the test period are superior to that of the training period until the 5-h lead-time and both
of them are above 86.7%. As shown in Figure 5b, the QR values of peak time at the 1–10 h lead-time
are relatively stable. The forecasting outcomes at all lead-times during the test period are superior
to the results during the training period. Except for the 3 h lead-time of the training period, the QR
values are all above 90.0%. The LSTM-FF model outperforms the benchmark model for the test period
at the 1–3 h lead-time. Figure 5b shows the lowest QR values of peak time is at the 3 h lead-time.
At the 3 h lead-time, all unqualified peak times are from small flood events (27 flood events whose
peak discharges are less than 100 m3/s), and most simulated discharge peaks lag 3 h, which is equal
to the lead-time of the LSTM network. Thus, we suspect that a relatively small amount of rainfall
leads to a major role of the discharge feature and a weaker role of the rainfall feature for small flood
events. As shown in Figure 2, at a longer lead-time, the time interval between current time (inputting
previous discharge) and forecast time (outputting simulated discharge) is much longer. It limits the
role of the discharge feature, so QR values of peak time increase at a 4–10 h lead-time. The LSTM-FF
model outperforms the benchmark model for the training period at a 4–9 h lead-time. As shown in
Figure 5c, the QR values of the flood process in the training period have a decreasing trend and are all



Water 2020, 12, 109 8 of 15

above 80.0%. The QR values of the flood process in the test period keep stable and range from 93.3% to
100%. The LSTM-FF model outperforms the benchmark model for the test period at a 5–10 h lead-time,
whereas the training period is the opposite. Figure 5d indicates the QR of all evaluation criteria in the
test period are all better than that of the training period. It can be seen from the above analysis that the
LSTM-FF model has a good generalization ability (extrapolating ability), and overall outperforms the
benchmark model.
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The QR values of large flood events (19 flood events whose peak discharge is greater than the
threshold discharge) and all 75 flood events for a 1–10 h lead-time are compared in Figure 6. It indicates
the QR (peak discharge, peak time, flood process or all of them) of large flood events are superior to
that of 75 flood events all at a 1–10 h lead-time, and both show a decreasing trend with the increase of
lead-time except peak time. As shown in Figure 6a, the peak discharge QR values of all flood events
and large flood events get closer with the increase of lead-time, which is above 82.7%. Specifically, the
LSTM-FF model performs exceptionally well at a 1–5 h lead time for the peak discharge QR values of
large flood events, which are above 94.7%. In addition, both the peak time and NSE keep high QR,
which are above 82.7% and 89.3% at a 1–10 h lead-time in Figure 6b,c. Figure 6a–d illustrates that
the LSTM-FF model achieved better-simulated results of peak time and NSE, and simulated peak
discharge has a great influence on the overall QR. This confirms that peak discharge is the most critical
forecast target in flash flood forecasting. Above all, Figure 6 indicates the LSTM-FF model has more
stable and better statistical performances in the simulation of large flood events, which is very crucial
for flash flood early warning.

Figure 7 shows the scatter plots of the simulated and observed peak discharge. A few conclusions
can be drawn from Figure 7. Firstly, comparing the results of the training, validation, and test set,
it shows that the LSTM-FF model has a strong extrapolating ability for large flood events. Secondly, for
large flood events, the distribution of scatter plots of a 4–8 h lead-time is close and that of a 9–10 h
lead-time is close. It indicates that the RPE of each event changes a little at adjacent lead-times (4–8 h
and 9–10 h). The LSTM-FF model explored a similar relation between input and output, although we
adopted the strategy of training separately for different lead-times. This will be further confirmed in
Section 4.3 later. Thirdly, the LSTM-FF model tends to underestimate the peak discharge (lower than
100 m3/s) in the 4–10 h lead-time.
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Figure 8 shows QR of large flood events by different sample sets, in which the red solid line has
the same meaning as the one in Figure 6, and the red dash-dotted line represents the simulated results
of the small sample set. In this sample set, large flood events are divided into 13 training samples,
3 validation samples, and 3 test samples. Figure 8 indicates no better-simulated results were obtained
using only 19 large flood events as the sample set. It is quite different from the LSTM-FF model to the
hydrological models. Though the QR in Figure 8 is reduced by small flood events, the contribution
of the low discharge process cannot be neglected for the LSTM-FF model. It also suggests that the
LSTM-FF model explored the rainfall-runoff relationship from large datasets rather than arbitrary
input-output relationships of small datasets.Water 2020, 12, 109 11 of 16 
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4.2. Model Application

In this section, we choose a multi-peak flood event (20120622) from the test set to show the forecast
results as a typical example in discharge real-time forecast. Figure 9 shows the observed and simulated
discharge at a 1–10 h lead-time. The black line represents the observed flood hydrograph, and the
red dots represent simulated discharges at each lead-time. Obviously, the conclusions drawn in the
previous section can be confirmed in Figure 9.

Figure 10 displays the application of the LSTM-FF model at the beginning of four main rainfalls.
Four current moments and forecasting periods are marked by green. At each current time, the last 6 h
observed rainfall from 8 rainfall stations (part of blue columns), observed discharge (part of black solid
line) and the next 10 h short-term precipitation forecast information (red columns) are used to forecast
discharges in the 1–10 h lead-time (red dots). Figure 10 indicates that the predicted hydrographs could
fit the general trends of the hydrograph well and the LSTM-FF model is a practical tool for discharge
forecasting in flash flood prevention.
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d

Figure 10. Discharge forecast of 20120622 flood event.

4.3. LSTM Visualization

Ten trained LSTM networks have the same structure with different time steps. If the parameters
of these ten LSTM networks are also the same (or similar), it indicates these ten LSTM networks have
to find the same (or similar) relationship between input and output. Weight matrices and bias vectors
are all parameters in the LSTM-FF model. Therefore, we try to briefly compare and analyze the weight
matrices of the input gate, forget gate, candidate state C̃t and output gate from ten trained LSTM
networks by visualization (see Figure 11). Although it is hard to give a hydrological interpretation
of data-driven models, we want to preliminary discuss the effect of the input feature on the weight
matrix at different lead times.

As can be seen from Equations (1)–(6) and Section 3, W f , Wi, Wc, Wo are 5 × (9 + 5) matrixes,

where the first 5 refers to the dimensions of the input gate, forget gate and candidate state C̃t (the
number of units), 9 is the number input features (1 discharge and 8 rainfall), and the second five refers
to the dimension of ht (the number of units). In every weight matrix of Figure 11, the 1–9 and 10–14
columns represent the weight of input and hidden state, respectively. White indicates the values of
weight are close to 0, and the darker the color represents the greater the absolute values of weight.
The following conclusions can be drawn: firstly, the first column of the 1 h weight matrix shows a
darker color in the input gate, forget gate and candidate state C̃t. This phenomenon becomes less
obvious as the lead-time increases. It indicates the discharge feature plays a more obvious role in the 1
h LSTM network, and its effect is diminishing with the increase of lead-time. Secondly, the weight
matrixes of 4–8 h LSTM networks are alike in each gate, and the 9–10 h LSTM networks also show
the same phenomenon. It indicates that in the adjacent lead-time, LSTM networks explored a similar
relationship between input and output rather than arbitrary laws. Thirdly, the 10–14 columns of the
weight matrix show considerable color variation. It indicates the hidden state also exerts a considerable
effect. This is in line with the hydrological process that the discharge of each step is affected by both
the previous state (discharge and soil moisture) and the current rainfall.
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5. Conclusions

In this paper, the LSTM-FF model, composed of T multivariate single-step LSTM networks, is
established to forecast flash floods for a 1−T lead-time. Rainfall distribution, basin time lag, and
short-term precipitation forecast are considered in the model structure design. The Anhe catchment
located in southeastern China was taken as a case study with qualified rates (QRs) of peak discharge,
peak time, and flood process as the evaluation index. The simulated results for different lead-times are
analyzed. Moreover, the relationship between simulated results and the weights of the LSTM network
are revealed by visualization. The major conclusions can be summarized as follows.
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(1) The LSTM-FF model exhibited good performance for flash flood forecasting, and the QR decreases
with the increase of lead-time. The QR values of peak discharge, peak time, and flood process
are above 82.7%, 89.3%, and 84.0% at a 1–10 h lead time. In addition, the LSTM-FF model has a
strong extrapolating ability as the ML model. The LSTM-FF model can be used as a practical tool
for flash flood forecasting in mountainous catchments.

(2) The LSTM-FF model has more stable and better statistical performances in the simulation of large
flood events. The QR values of large flood events are above 94.7% at a 1–5 h lead time and range
from 84.2% to 89.5% at a 6–10 h lead-time. It is practical and significant for the LSTM-FF model to
forecast threshold discharge accurately in flash flood protection.

(3) Though the QR of small flood events is relatively low, their contribution to training the LSTM-FF
model cannot be neglected. No better-simulated results were obtained using only 19 large flood
events as a sample set. Flood events with a small discharge-peak can help the LSTM-FF model to
explore the rainfall-runoff relationship better.

(4) The discharge feature plays a more obvious role in the 1 h LSTM network, and its effect is
diminishing with the increase of lead-time. In the adjacent lead-time (4–8 h and 9–10 h), LSTM
networks explored a similar relationship between input and output.

Further research should focus on the integration of hydrological knowledge and model structure
and the interpretation of evolution of LSTM cell state. LSTM networks are also suited for a
multivariate multi-step time-series problem and have great potential in the hydrological field.
In addition, the influence of rainfall forecast uncertainty on flash flood forecasting results should be
further considered.
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