A Gap-Filling Tool: Predicting Daily Sediment Loads Based on Sparse Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method Description
2.2. Study Sites and Data Acquisition
2.3. Example of Method Application
2.4. Method Validation
3. Results
3.1. Correlation between Measured Seasonal Stream Discharge and Sediment Load
3.2. Method Prediction vs. Field Measurement
3.3. Daily Sediment Load Prediction
4. Discussion
5. Summary
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Ouyang, Y.; Higman, J.; Campbell, D.; Davis, J. Three-dimensional kriging analysis of sediment mercury distribution: A case study. J. Am. Water Resour. Assoc. 2003, 39, 689–702. [Google Scholar] [CrossRef]
- Simon, A.; Darby, S.E. Effectiveness of grade-control structures in reducing erosion along incised river channels: The case of Hotophia Creek, Mississippi. Geomorphology 2002, 42, 229–254. [Google Scholar] [CrossRef]
- Almasalmeh, O.; Saleh, A.A.; Mourad, K.A. Soil erosion and sediment transport modelling using hydrological models and remote sensing techniques in Wadi Billi, Egypt. Model. Earth Syst. Environ. 2022, 8, 1215–1226. [Google Scholar] [CrossRef]
- Noe, G.B.; Cashman, M.J.; Skalak, K.; Gellis, A.; Hopkins, K.G.; Moyer, D.; Webber, J.; Benthem, A.; Maloney, K.; Brakebill, J.; et al. Sediment dynamics and implications for management: State of the science from long-term research in the Chesapeake Bay watershed, USA. Wires Water 2020, 7, 1454. [Google Scholar] [CrossRef]
- Ouyang, Y.; Leininger, T.D.; Moran, M. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi. Ecol. Eng. 2013, 61, 394–406. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil degradation in the European Mediterranean region: Processes, status and consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, 11, 911. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.M.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of Suspended Sediment Load Using Data-Driven Models. Water 2019, 11, 2060. [Google Scholar] [CrossRef] [Green Version]
- Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Teo, F.Y.; Ebrahimi, M.; Fai, C.M.; Huang, Y.F.; El-Shafie, A. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm. Environ. Sci. Pollut. Res. 2020, 27, 38094–38116. [Google Scholar] [CrossRef]
- Chiang, L.C.; Liao, C.J.; Lu, C.M.; Wang, Y.C. Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environ. Monit. Assess. 2021, 193, 520. [Google Scholar] [CrossRef]
- Van Campenhout, J.; Petit, F.; Peeters, A.; Houbrechts, G. Estimation of the area-specific suspended sediment yield from discrete samples in different regions of Belgium. J. Soil Sediment 2022, 22, 704–729. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Jobes, T.H.; Donigian, A.S., Jr.; Johanson, R. Hydrological Simulation Program-Fortran: HSPF Version 12 User’s Manual; AQUA TERRA Consultants: Mountain View, CA, USA, 2001; p. 845. [Google Scholar]
- Bingner, R.; Theurer, F. AnnAGNPS Technical Processes (Version 2); National Sedimentation Laboratory: Oxford, MS, USA, 2001.
- Schwarz, G.E.; Hoos, A.B.; Alexander, R.; Smith, R. The SPARROW Surface Water-Quality Model: Theory, Application and User Documentation; US Geological Survey: Drive Reston, VA, USA, 2006.
- Williams, J.R.; Harman, W.L.; Magre, M.; Kizil, U.; Lindley, J.A.; Padmanabhan, G.; Wang, E. Apex feedlot water quality simulation. Trans. ASABE 2006, 49, 61–73. [Google Scholar] [CrossRef]
- USEPA. Clean Water Act Section 303(d): Impaired Waters and Total Maximum Daily Loads (TMDLs). Available online: https://www.epa.gov/tmdl (accessed on 11 October 2022).
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. 2004 Load Estimator(LOADEST)—A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers. In US Geological Survey Techniques and Methods; Book 4; Chapter A5; 75p. Available online: http://pubs.er.usgs.gov/publication/tm4A5 (accessed on 11 October 2022).
- Park, Y.S.; Engel, B.A.; Frankenberger, J.; Hwang, H. A Web-Based Tool to Estimate Pollutant Loading Using LOADEST. Water 2015, 7, 4858–4868. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, R.M. Large Biases in Regression-Based Constituent Flux Estimates: Causes and Diagnostic Tools. J. Am. Water Resour. Assoc. 2014, 50, 1401–1424. [Google Scholar] [CrossRef]
- Ouyang, Y. A flow-weighted approach to generate daily total phosphorus loads in streams based on seasonal loads. Environ. Monit. Assess. 2021, 193, 422. [Google Scholar] [CrossRef]
- Taebi, A.; Mansy, H.A. Time-frequency distribution of seismocardiographic signals: A comparative study. Bioengineering 2017, 4, 32. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, T.; Beck, E.V.; Cherkaoui, R.; Germond, A.; Andersson, G.; Ernst, D. A comparison of Nash equilibria analysis and agent-based modelling for power markets. Int. J. Elec. Power 2006, 28, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J.; Ringle, C.M.; Sinkovics, R.R. New Challenges to International Marketing; Emerald Group Publishing Limited: Bingley, UK, 2009. [Google Scholar]
- Kastridis, A.; Theodosiou, G.; Fotiadis, G. Investigation of Flood Management and Mitigation Measures in Ungauged NATURA Protected Watersheds. Hydrology 2021, 8, 170. [Google Scholar] [CrossRef]
- Park, Y.S.; Engel, B.A. Identifying the Correlation between Water Quality Data and LOADEST Model Behavior in Annual Sediment Load Estimations. Water 2016, 8, 368. [Google Scholar] [CrossRef]
- Ellison, C.A.; Kiesling, R.L.; Fallon, J.D. Correlating streamflow, turbidity, and suspended-sediment concentration in Minnesota’s Wild Rice River. In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June–1 July 2010. [Google Scholar]
USGS #01358000 | USGS #02231000 | USGS #013342500 | |||
---|---|---|---|---|---|
Hudson River at Green Island, New York | St. Marys River near MacClenny, Florida | Clearwater River at Spalding, Idaho | |||
Date | Total Solid (mg/L) | Date | Dissolved Solid (mg/L) | Date | Dissolved Solid (mg/L) |
3/29/1971 | 173 | 3/16/1976 | 27 | 12/14/1977 | 47 |
4/26/1971 | 116 | 4/19/1976 | 38 | 1/26/1978 | 40 |
5/17/1971 | 102 | 5/11/1976 | 38 | 2/16/1978 | 42 |
6/22/1971 | 151 | 6/9/1976 | 25 | 3/22/1978 | 39 |
7/20/1971 | 150 | 7/12/1976 | 23 | 4/19/1978 | 30 |
8/25/1971 | 103 | 8/11/1976 | 26 | 5/25/1978 | 33 |
9/23/1971 | 155 | 9/7/1976 | 31 | 6/19/1978 | 26 |
10/21/1971 | 117 | 10/14/1976 | 26 | 7/20/1978 | 25 |
11/23/1971 | 141 | 11/11/1976 | 34 | 8/23/1978 | 32 |
12/21/1971 | 128 | 1/24/1977 | 33 | 9/21/1978 | 32 |
1/19/1972 | 168 | 2/9/1977 | 24 | 10/19/1978 | 43 |
2/23/1972 | 131 | 3/23/1977 | 30 | 11/15/1978 | 35 |
3/22/1972 | 136 | 4/26/1977 | 42 | 12/13/1978 | 35 |
4/19/1972 | 207 | 5/24/1977 | 49 | 1/18/1979 | 38 |
5/23/1972 | 109 | 6/30/1977 | 44 | 2/14/1979 | 67 |
6/15/1972 | 145 | 7/19/1977 | 45 | 3/21/1979 | 44 |
7/25/1972 | 134 | 8/31/1977 | 26 | 4/18/1979 | 43 |
9/21/1972 | 114 | 10/3/1977 | 29 | 5/22/1979 | 25 |
10/26/1972 | 117 | 11/2/1977 | 42 | 6/27/1979 | 21 |
11/21/1972 | 126 | 11/29/1977 | 32 | 7/25/1979 | 32 |
12/19/1972 | 92 | 12/29/1977 | 27 | 8/22/1979 | 29 |
1/16/1973 | 146 | 1/30/1978 | 26 | 9/12/1979 | 29 |
2/20/1973 | 80 | 2/22/1978 | 21 | 10/24/1979 | 33 |
3/23/1973 | 85 | 3/21/1978 | 19 | 11/19/1979 | 40 |
4/24/1973 | 80 | 4/18/1978 | 25 | 12/18/1979 | 33 |
5/22/1973 | 137 | 5/16/1978 | 27 | 1/23/1980 | 34 |
6/18/1973 | 127 | 7/11/1978 | 38 | 3/17/1980 | 53 |
7/24/1973 | 104 | 8/16/1978 | 28 | 4/22/1980 | 26 |
8/22/1973 | 116 | 9/8/1978 | 30 | 5/21/1980 | 22 |
9/18/1973 | 109 | 10/4/1978 | 52 | 6/18/1980 | 26 |
11/14/1973 | 134 | 11/3/1978 | 61 | 7/21/1980 | 27 |
12/18/1973 | 125 | 12/5/1978 | 61 | 8/14/1980 | 27 |
1/24/1974 | 95 | 1/3/1979 | 60 | 9/23/1980 | 34 |
2/20/1974 | 75 | 2/6/1979 | 48 | 10/23/1980 | 36 |
3/22/1974 | 120 | 3/14/1979 | 32 | 11/18/1980 | 27 |
4/25/1974 | 129 | 4/3/1979 | 41 | 12/18/1980 | 29 |
5/24/1974 | 121 | 5/15/1979 | 26 | 1/23/1981 | 34 |
6/20/1974 | 119 | 6/13/1979 | 31 | 3/17/1981 | 34 |
7/17/1974 | 131 | 7/17/1979 | 23 | 5/2/1981 | 27 |
8/8/1974 | 108 | 8/14/1979 | 25 | 5/26/1981 | 44 |
9/5/1974 | 165 | 9/11/1979 | 24 | 6/23/1981 | 30 |
10/11/1974 | 116 | 10/16/1979 | 27 | 7/23/1981 | 30 |
11/11/1974 | 115 | 11/14/1979 | 36 | 8/26/1981 | 30 |
12/3/1974 | 101 | 12/12/1979 | 30 | 9/24/1981 | 35 |
1/7/1975 | 100 | 1/16/1980 | 37 | 11/19/1981 | 49 |
2/11/1975 | 79 | 2/20/1980 | 29 | 1/27/1982 | 48 |
3/7/1975 | 84 | 3/18/1980 | 20 | 3/11/1982 | 47 |
4/2/1975 | 103 | 4/15/1980 | 21 | 5/25/1982 | 27 |
5/6/1975 | 88 | 5/7/1980 | 28 | 7/21/1982 | 31 |
6/4/1980 | 25 | 9/24/1982 | 33 | ||
7/8/1980 | 26 | 11/18/1982 | 36 | ||
8/11/1980 | 30 | ||||
9/3/1980 | 30 | ||||
10/28/1980 | 41 | ||||
11/19/1980 | 40 | ||||
12/9/1980 | 32 | ||||
1/20/1981 | 41 | ||||
2/12/1981 | 35 | ||||
3/17/1981 | 26 | ||||
4/21/1981 | 32 | ||||
5/21/1981 | 57 |
A | B | C | D | E | F |
---|---|---|---|---|---|
Date | Total Solid (mg/L) | Average Seasonal Total Solid Concentration (mg/L) | Season Streamflow Volume (m3/Season) | Season Total Solid Load (g/Season) | Season |
3/29/1971 | 173 | ||||
4/26/1971 | 116 | ||||
5/17/1971 | 102 | 130.33 | 6.94 × 109 | 9.05 × 1011 | spring |
6/22/1971 | 151 | ||||
7/20/1971 | 150 | ||||
8/25/1971 | 103 | 134.67 | 1.69 × 109 | 2.27 × 1011 | summer |
9/23/1971 | 155 | ||||
10/21/1971 | 117 | ||||
11/23/1971 | 141 | 137.67 | 1.81× 109 | 2.49 × 1011 | fall |
12/21/1971 | 128 | ||||
1/19/1972 | 168 | ||||
2/23/1972 | 131 | 142.33 | 3.08 × 109 | 4.39 × 1011 | winter |
3/22/1972 | 136 | ||||
4/19/1972 | 207 | ||||
5/23/1972 | 109 | 150.67 | 7.90 × 109 | 1.19 × 1011 | spring |
6/15/1972 | 145 | ||||
7/25/1972 | 134 | 139.50 | 4.15 × 109 | 5.78 × 1011 | summer |
9/21/1972 | 114 | ||||
10/26/1972 | 117 | ||||
11/21/1972 | 126 | 119.00 | 2.94 × 109 | 3.49 × 1011 | fall |
12/19/1972 | 92 | ||||
1/16/1973 | 146 | ||||
2/20/1973 | 80 | 106.00 | winter | ||
… | … | ||||
… | … | ||||
… | … | ||||
3/7/1975 | 84 | ||||
4/2/1975 | 103 | ||||
5/6/1975 | 88 | 91.67 | 5.19 × 109 | 4.76 × 1011 | Spring |
A | B | C | D | E | F | G | H |
---|---|---|---|---|---|---|---|
Date | Measured Daily Discharge (m3/s) | Measured Daily Discharge (m3/day) | Measured Seasonal Discharge Volume (m3/season) | Measured Seasonal Total Solid Load (g/season) | Daily Flow-Weighted Partitioning Coefficient | Predicted Daily Total Solid Load (g/day) | Season |
3/1/1971 | 832.52 | 7.19 × 107 | 6.94 × 109 | 9.05 × 1011 | 0.01036 | 9.37 × 109 | Spring |
3/2/1971 | 809.86 | 7.00 × 107 | 0.01008 | 9.12 × 109 | |||
3/3/1971 | 733.41 | 6.34 × 107 | 0.00913 | 8.26 × 109 | |||
3/4/1971 | 637.13 | 5.50 × 107 | 0.00793 | 7.17 × 109 | |||
3/5/1971 | 543.68 | 4.70 × 107 | 0.00677 | 6.12 × 109 | |||
… | … | … | … | … | |||
… | … | … | … | … | |||
5/28/1971 | 538.02 | 4.65 × 107 | 0.00670 | 6.06 × 109 | |||
5/29/1971 | 399.27 | 3.45 × 107 | 0.00497 | 4.50 × 109 | |||
5/30/1971 | 396.44 | 3.43 × 107 | 0.00493 | 4.46 × 109 | |||
5/31/1971 | 353.96 | 3.06 × 107 | 0.00441 | 3.99 × 109 | |||
6/1/1971 | 351.13 | 3.03 × 107 | 1.69 × 109 | 2.27 × 1011 | 0.01797 | 4.09 × 109 | Summer |
6/2/1971 | 300.16 | 2.59 × 107 | 0.01536 | 3.49 × 109 | |||
6/3/1971 | 286.00 | 2.47 × 107 | 0.01464 | 3.33 × 109 | |||
6/4/1971 | 294.50 | 2.54 × 107 | 0.01507 | 3.43 × 109 | |||
6/5/1971 | 243.81 | 2.11 × 107 | 0.01248 | 2.84 × 109 | |||
6/6/1971 | 239.28 | 2.07 × 107 | 0.01225 | 2.78 × 109 | |||
6/7/1971 | 223.42 | 1.93 × 107 | 0.01143 | 2.60 × 109 | |||
… | … | … | … | … | |||
… | … | … | … | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Y. A Gap-Filling Tool: Predicting Daily Sediment Loads Based on Sparse Measurements. Hydrology 2022, 9, 181. https://doi.org/10.3390/hydrology9100181
Ouyang Y. A Gap-Filling Tool: Predicting Daily Sediment Loads Based on Sparse Measurements. Hydrology. 2022; 9(10):181. https://doi.org/10.3390/hydrology9100181
Chicago/Turabian StyleOuyang, Ying. 2022. "A Gap-Filling Tool: Predicting Daily Sediment Loads Based on Sparse Measurements" Hydrology 9, no. 10: 181. https://doi.org/10.3390/hydrology9100181
APA StyleOuyang, Y. (2022). A Gap-Filling Tool: Predicting Daily Sediment Loads Based on Sparse Measurements. Hydrology, 9(10), 181. https://doi.org/10.3390/hydrology9100181