Applicability of ANN Model and CPSOCGSA Algorithm for Multi-Time Step Ahead River Streamflow Forecasting
Abstract
:1. Introduction
- (1)
- Applying the pre-processing data stage to enhance the data quality through the singular spectrum analysis (SSA) method and to select the best predictor (lags) scenario using the mutual information (MI) technique.
- (2)
- Integrating the ANN model with the coefficient-based particle swarm optimization and chaotic gravitational search algorithm (CPSOCGSA-ANN) to forecast the monthly water streamflow.
- (3)
- Examining the performance of the CPSOCGSA-ANN algorithm by applying a hybrid slim mold algorithm (SMA-ANN) and marine predator algorithm (MPA-ANN).
- (4)
- Applying the HPOH technique for simulating the monthly streamflow based on several lags.
- (5)
- Expanding the forecasting range and decreasing the uncertainty level of outcomes for monthly streamflow simulation by testing different recent metaheuristic algorithms (i.e., hybridization of two existing and two recent algorithms).
2. Study Area and Data Used
3. Methodology
3.1. Data Pre-Processing
3.2. Artificial Neural Network (ANN)
3.3. Hybridized Constriction Coefficient-Based Particle Swarm Optimization and Chaotic Gravitational Search Algorithm (CCPSOCGSA)
3.3.1. Constriction Coefficient-Based Particle Swarm Optimization (CCPSO)
3.3.2. Chaotic Gravitational Search Algorithm CGSA
3.3.3. Combination of CCPSO and CGSA
3.4. Model Validation
4. Results and Discussion
4.1. Preparation of the Target and Predictors Factors
4.2. Model Configuration
4.3. Performance Evaluation
- (1)
- These results highlight the potential utility of SSA and MI methods for enhancing raw data quality and choosing the best lags scenario without violating the multi-collinearity hypothesis.
- (2)
- CPSOCGSA has been proven to be a reliable algorithm that is applied for integrating the ANN technique for monthly forecast streamflow compared with the SMA and MPA algorithms.
- (3)
- Various statistical analyses have showed that the proposed methodology accurately predicted monthly medium-term streamflow data.
- (4)
- This study reveals the need for further investigation into additional hybrid forecast techniques in different time scales.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmadi, M.S.; Sušnik, J.; Veerbeek, W.; Zevenbergen, C. Towards a global day zero? Assessment of current and future water supply and demand in 12 rapidly developing megacities. Sustain. Cities Soc. 2020, 61, 102295. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, N.; Sheng, H.; Ip, C.; Yang, L.; Chen, Y.; Sang, Z.; Tadesse, T.; Lim, T.P.Y.; Rajabifard, A.; et al. Urban drought challenge to 2030 sustainable development goals. Sci. Total Environ. 2019, 693, 133536. [Google Scholar] [CrossRef] [PubMed]
- Rajarethinam, K.; Varuvel, D.; Bagodi, V. System dynamic modelling for assessing the vulnerability of water resources: A case of Chennai City, Tamil Nadu, India. Arab. J. Geosci. 2021, 14, 2008. [Google Scholar] [CrossRef]
- Ethaib, S.; Zubaidi, S.L.; Al-Ansari, N.; Fegade, S.L. Evaluation water scarcity based on GIS estimation and climate-change effects: A case study of Thi-Qar Governorate, Iraq. Cogent Eng. 2022, 9, 2075301. [Google Scholar] [CrossRef]
- Salman, S.A.; Shahid, S.; Ismail, T.; Chung, E.-S.; Al-Abadi, A.M. Long-term trends in daily temperature extremes in Iraq. Atmos. Res. 2017, 198, 97–107. [Google Scholar] [CrossRef]
- Osman1, Y.; Abdellatif2, M.; Al-Ansari3, N.; Knutsson4, S.; Jawad, S. Climate Change And Future Precipitation In An Arid Environment Of The Middle East: Case Study Of Iraq. J. Environ. Hydrol. 2017, 25, 3. [Google Scholar]
- Han, K.; Wang, Y. A review of artificial neural network techniques for environmental issues prediction. J. Therm. Anal. Calorim. 2021, 145, 2191–2207. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, J.; Li, T. A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating. Water Resour. Manag. 2021, 35, 5119–5138. [Google Scholar] [CrossRef]
- Li, F.-F.; Wang, Z.-Y.; Zhao, X.; Xie, E.; Qiu, J. Decomposition-ANN Methods for Long-Term Discharge Prediction Based on Fisher’s Ordered Clustering with MESA. Water Resour. Manag. 2019, 33, 3095–3110. [Google Scholar] [CrossRef]
- Wegayehu, E.B.; Muluneh, F.B. Multivariate Streamflow Simulation Using Hybrid Deep Learning Models. Comput. Intell. Neurosci. 2021, 2021, 5172658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Singh, V.P. Univariate streamflow forecasting using commonly used data-driven models: Literature review and case study. Hydrol. Sci. J. 2018, 63, 1091–1111. [Google Scholar] [CrossRef]
- Meshram, S.G.; Meshram, C.; Santos, C.A.G.; Benzougagh, B.; Khedher, K.M. Streamflow Prediction Based on Artificial Intelligence Techniques. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 46, 2393–2403. [Google Scholar] [CrossRef]
- Deka, S.K.P.C. Performance enhancement of SVM model using discrete wavelet transform for daily streamflow forecasting. Environ. Earth Sci. 2021, 80, 101. [Google Scholar] [CrossRef]
- Vatanchi, S.M.; Etemadfard, H.; Maghrebi, M.F.; Shad, R. A Comparative Study on Forecasting of Long-term Daily Streamflow using ANN, ANFIS, BiLSTM, and CNN-GRU-LSTM. Search Life-Sci. Lit. 2022; preprint. [Google Scholar] [CrossRef]
- Peng, T.; Zhou, J.; Zhang, C.; Fu, W. Streamflow Forecasting Using Empirical Wavelet Transform and Artificial Neural Networks. Water 2017, 9, 406. [Google Scholar] [CrossRef]
- Kilinc, H.C.; Haznedar, B. A Hybrid Model for Streamflow Forecasting in the Basin of Euphrates. Water 2022, 14, 80. [Google Scholar] [CrossRef]
- Md. Munir Hayet Khan, N.S.M.; El-Shafie, A. Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. J. Hydrol. 2020, 590, 125380. [Google Scholar] [CrossRef]
- Fathian, F.; Mehdizadeh, S.; Kozekalani Sales, A.; Safari, M.J.S. Hybrid models to improve the monthly river flow prediction: Integrating artificial intelligence and non-linear time series models. J. Hydrol. 2019, 575, 1200–1213. [Google Scholar] [CrossRef]
- Wang, Z.; Fathollahzadeh Attar, N.; Khalili, K.; Behmanesh, J.; Band, S.S.; Mosavi, A.; Chau, K.-W. Monthly streamflow prediction using a hybrid stochastic-deterministic approach for parsimonious non-linear time series modeling. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1351–1372. [Google Scholar] [CrossRef]
- Zainab Abdulelah Al Sudani, S.Q.S.; Sharafati, A.; Mundher, Z.; Yaseen, Z.M. Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J. Hydrol. 2019, 573, 1–12. [Google Scholar] [CrossRef]
- Pham, Q.B.; Afan, H.A.; Mohammadi, B.; Ahmed, A.N.; Linh, N.T.T.; Vo, N.D.; Moazenzadeh, R.; Yu, P.-S.; El-Shafie, A. Hybrid model to improve the river streamflow forecasting utilising multi-layer perceptron-based intelligent water drop optimisation algorithm. Soft Comput. 2020, 24, 18039–18056. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Gharghan, S.K.; Dooley, J.; Alkhaddar, R.M.; Abdellatif, M. Short-Term Urban Water Demand Prediction Considering Weather Factors. Water Resour. Manag. 2018, 32, 4527–4542. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Kot, P.; Alkhaddar, R.M.; Abdellatif, M.; Al-Bugharbee, H. Short-Term Water Demand Prediction in Residential Complexes: Case Study in Columbia City, USA. In Proceedings of the 11th International Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK, 2–5 September 2018; pp. 31–35. [Google Scholar]
- Ouyang, Q.; Lu, W. Monthly Rainfall Forecasting Using Echo State Networks Coupled with Data Preprocessing Methods. Water Resour. Manag. 2017, 32, 659–674. [Google Scholar] [CrossRef]
- Zhao, X.; Lv, H.; Lv, S.; Sang, Y.; Wei, Y.; Zhu, X. Enhancing robustness of monthly streamflow forecasting model using gated recurrent unit based on improved grey wolf optimizer. J. Hydrol. 2021, 601, 126607. [Google Scholar] [CrossRef]
- Apaydin, H.; Sattari, M.T.; Falsafian, K.; Prasad, R. Artificial intelligence modelling integrated with Singular Spectral analysis and Seasonal-Trend decomposition using Loess approaches for streamflow predictions. J. Hydrol. 2021, 600, 126506. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Monthly streamflow prediction using modified EMD-based support vector machine. J. Hydrol. 2014, 511, 764–775. [Google Scholar] [CrossRef]
- Niu, W.-J.; Feng, Z.-K.; Yang, W.-F.; Zhang, J. Short-term streamflow time series prediction model by machine learning tool based on data preprocessing technique and swarm intelligence algorithm. Hydrol. Sci. J. 2020, 65, 2590–2603. [Google Scholar] [CrossRef]
- Jiang, Y.; Bao, X.; Hao, S.; Zhao, H.; Li, X.; Wu, X. Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction. Water Resour. Manag. 2020, 34, 3515–3531. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A review of the hybrid artificial intelligence and optimisation modelling of hydrological streamflow forecasting. Alex. Eng. J. 2021, 61, 279–303. [Google Scholar] [CrossRef]
- Şenel, F.A.; Gökçe, F.; Yüksel, A.S.; Yiğit, T. A novel hybrid PSO–GWO algorithm for optimization problems. Eng. Comput. 2018, 35, 1359–1373. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Candelieri, A. Clustering and Support Vector Regression for Water Demand Forecasting and Anomaly Detection. Water 2017, 9, 224. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimisation. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Kumar, C.; Raj, T.D.; Premkumar, M.; Raj, T.D. A new stochastic slime mould optimisation algorithm for the estimation of solar photovoltaic cell parameters. Optik 2020, 223, 165277. [Google Scholar] [CrossRef]
- Fan, Q.; Huang, H.; Chen, Q.; Yao, L.; Yang, K.; Huang, D. A modified self-adaptive marine predators algorithm: Framework and engineering applications. Eng. Comput. 2021, 38, 3269–3294. [Google Scholar] [CrossRef]
- Eid, A.; Kamel, S.; Abualigah, L. Marine predators algorithm for optimal allocation of active and reactive power resources in distribution networks. Neural Comput. Appl. 2021, 33, 14327–14355. [Google Scholar] [CrossRef]
- Rather, S.A.; Bala, P.S. Hybridization of Constriction Coefficient-Based Particle Swarm Optimization and Chaotic Gravitational Search Algorithm for Solving Engineering Design Problems. In Applied Soft Computing and Communication Networks; Springer: Singapore, 2020; Volume 125, pp. 95–115. [Google Scholar]
- Eiben, A.E.; Schippers, C.A. On evolutionary exploration and exploitation. Fundam. Inform. 1998, 35, 35–50. [Google Scholar] [CrossRef]
- Hajirahimi, Z.; Khashei, M. Hybridization of hybrid structures for time series forecasting: A review. Artif. Intell. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Magali Troin, R.A.; Andrew, W. Wood, François Brissette, and; Martel, J.-L. Generating Ensemble Streamflow Forecasts: A Review of Methods and Approaches Over the Past 40 Years. Water Resour. Res. 2021, 57, 1–48. [Google Scholar] [CrossRef]
- Tao, H.; Al-Sulttani, A.O.; Salih Ameen, A.M.; Ali, Z.H.; Al-Ansari, N.; Salih, S.Q.; Mostafa, R.R.; Shahid, S. Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting. Complexity 2020, 2020, 8844367. [Google Scholar] [CrossRef]
- Abood, R.H.; Mahmoud, R.R. Drought Assessment Using Gis And Meteorological Data In Maysan Province /Iraq. Int. J. Civ. Eng. Technol. 2018, 9, 516–524. [Google Scholar]
- Saleh, A.M. Improving the Accuracy of Land Cover Classification using Sentinel 2 Data and Knowledge Based Classification System in the West of Amara City, Iraq. J. Indian Soc. Soil Sci. 2022, 70, 1–9. [Google Scholar] [CrossRef]
- Zubaidi, S.L.; Ortega-Martorell, S.; Al-Bugharbee, H.; Olier, I.; Hashim, K.S.; Gharghan, S.K.; Kot, P.; Alkhaddar, R.M. Urban Water Demand Prediction for a City That Suffers from Climate Change and Population Growth: Gauteng Province Case Study. Water 2020, 12, 1885. [Google Scholar] [CrossRef]
- Hassani, H. Singular spectrum analysis: Methodology and comparison. J. Data Sci. 2007, 5, 239–257. [Google Scholar] [CrossRef]
- Pham, Q.B.; Yang, T.-C.; Kuo, C.-M.; Tseng, H.-W.; Yu, P.-S. Coupling Singular Spectrum Analysis with Least Square Support Vector Machine to Improve Accuracy of SPI Drought Forecasting. Water Resour. Manag. 2021, 35, 847–868. [Google Scholar] [CrossRef]
- Al-Bugharbee, H.; Trendafilova, I. A Fault Diagnosis Methodology for Rolling Element Bearings Based on Advanced Signal Pretreatment And Autoregressive Modelling. J. Sound Vib. 2016, 369, 246–265. [Google Scholar] [CrossRef]
- Zhigljavsky, A. Singular spectrum analysis for time series: Introduction to this special issue. Stat. Its Interface 2010, 3, 255–258. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Ghadimi, S.; Marttila, H.; Torabi Haghighi, A. A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theor. Appl. Climatol. 2022, 148, 255–268. [Google Scholar] [CrossRef]
- Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 1797–1819. [Google Scholar] [CrossRef]
- Abbaa, S.I.; Hadia, S.J.; Abdullahi, J. River water modelling prediction using multi-linear regression, artificial neural network, and adaptive neuro-fuzzy inference system techniques. Procedia Comput. Sci. 2017, 120, 75–82. [Google Scholar] [CrossRef]
- Tiu, E.S.K.; Huang, Y.F.; Ng, J.L.; AlDahoul, N.; Ahmed, A.N.; Elshafie, A. An evaluation of various data pre-processing techniques with machine learning models for water level prediction. Nat. Hazards 2021, 110, 121–153. [Google Scholar] [CrossRef]
- Bayatvarkeshi, M.; Mohammadi, K.; Kisi, O.; Fasihi, R. A new wavelet conjunction approach for estimation of relative humidity: Wavelet principal component analysis combined with ANN. Neural Comput. Appl. 2018, 32, 4989–5000. [Google Scholar] [CrossRef]
- Thomas, A.J.; Petridis, M.; Walters, S.D.; Gheytassi, S.M.; Morgan, R.E. Two Hidden Layers are Usually Better than One. In Engineering Applications of Neural Networks; Springer: Berlin/Heidelberg, Germany, 2017; Volume 744, pp. 279–290. [Google Scholar]
- Farzad, F.; El-Shafie, A.H. Performance enhancement of rainfall pattern–water level prediction model utilizing self-organizing-map clustering method. Water Resour. Manag. 2017, 31, 945–959. [Google Scholar] [CrossRef]
- González Perea, R.; Camacho Poyato, E.; Montesinos, P.; Rodríguez Díaz, J.A. Optimisation of water demand forecasting by artificial intelligence with short data sets. Biosyst. Eng. 2019, 177, 59–66. [Google Scholar] [CrossRef]
- Maurice Clerc, J.K. The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Khajehzadeh, M.; Taha, M.R.; Eslami, M. Efficient gravitational search algorithm for optimum design of retaining walls. Struct. Eng. Mech. 2013, 45, 111–127. [Google Scholar] [CrossRef]
- Rather, S.A.; Bala, P.S. Hybridisation of constriction coefficient based particle swarm optimisation and gravitational search algorithm for function optimisation. In Proceedings of the International Conference on Advances in Electronics, Electrical & Computational Intelligence (ICAEEC), Prayagraj, India, 31 May–1 June 2019. [Google Scholar]
- Stergiou, N. Nonlinear Analysis for Human Movement Variability; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Aldrich, C.; Auret, L. Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dawson, C.W.; Abrahart, R.J.; See, L.M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. [Google Scholar]
- Valentini, M.; Dos Santos, G.B.; Vieira, B.M. Multiple linear regression analysis (MLR) applied for modeling a new WQI equation for monitoring the water quality of Mirim Lagoon, in the state of Rio Grande do Sul—Brazil. SN Appl. Sci. 2021, 3, 70. [Google Scholar] [CrossRef]
Model | Lr | N1 | N2 |
---|---|---|---|
CPSOCGSA-ANN | 0.2101 | 5 | 4 |
MPA-ANN | 0.1150 | 4 | 1 |
SMA-ANN | 0.9427 | 19 | 15 |
Model | R2 | RMSE (m3/s) | MAE (m3/s) | MARE |
---|---|---|---|---|
CPSOCGSA-ANN | 0.91 | 1.07 | 1.07 | 1.01 |
MPA-ANN | 0.86 | 1.095 | 1.088 | 1.02 |
SMA-ANN | 0.85 | 1.45 | 1.3 | 1.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul Kareem, B.; Zubaidi, S.L.; Ridha, H.M.; Al-Ansari, N.; Al-Bdairi, N.S.S. Applicability of ANN Model and CPSOCGSA Algorithm for Multi-Time Step Ahead River Streamflow Forecasting. Hydrology 2022, 9, 171. https://doi.org/10.3390/hydrology9100171
Abdul Kareem B, Zubaidi SL, Ridha HM, Al-Ansari N, Al-Bdairi NSS. Applicability of ANN Model and CPSOCGSA Algorithm for Multi-Time Step Ahead River Streamflow Forecasting. Hydrology. 2022; 9(10):171. https://doi.org/10.3390/hydrology9100171
Chicago/Turabian StyleAbdul Kareem, Baydaa, Salah L. Zubaidi, Hussein Mohammed Ridha, Nadhir Al-Ansari, and Nabeel Saleem Saad Al-Bdairi. 2022. "Applicability of ANN Model and CPSOCGSA Algorithm for Multi-Time Step Ahead River Streamflow Forecasting" Hydrology 9, no. 10: 171. https://doi.org/10.3390/hydrology9100171
APA StyleAbdul Kareem, B., Zubaidi, S. L., Ridha, H. M., Al-Ansari, N., & Al-Bdairi, N. S. S. (2022). Applicability of ANN Model and CPSOCGSA Algorithm for Multi-Time Step Ahead River Streamflow Forecasting. Hydrology, 9(10), 171. https://doi.org/10.3390/hydrology9100171