Long-Term Concentrations and Loads of Four Dissolved Macronutrients from Two Agroforestry Catchments in NW Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Laboratory Determinations
2.3. Mass Balance Calculations
2.4. Relations between Concentration and Discharge
2.5. Data Analysis
2.5.1. Statistical Analysis
2.5.2. Time Series Analysis
3. Results
3.1. Magnitude
3.2. Monthly and Seasonal Evolution of Macronutrient Concentrations
3.3. Concentration-Discharge Relations
3.4. Loads of Macronutrients in Each Catchment
4. Discussion
4.1. Influence of Catchment Features on Macronutrient Concentrations and Loads
4.2. Human Activity Effects on Macronutrient Concentrations
4.3. Concentration-Discharge Relationships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meybeck, M.; Helmer, R. The quality of rivers: From pristine stage to global pollution. Palaeogeogr. Palaeoclim. Palaeoecol. 1989, 75, 283–309. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chinyama, S.R.; Togarepi, S. Concentration-discharge patterns in a small urban headwater stream in a seasonally dry water-limited tropical environment. J. Hydrol. 2017, 550, 12–25. [Google Scholar] [CrossRef]
- Musolff, A.; Fleckenstein, J.H.; Rao, P.S.C.; Jawitz, J.W. Catchment controls on solute export. Ad. Water Resour. 2015, 86, 133–146. [Google Scholar] [CrossRef]
- Moatar, F.; Abbott, B.W.; Minaudo, C.; Curie, F.; Pinay, G. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment and major ions. Water Resour. Res. 2017, 53, 1270–1287. [Google Scholar] [CrossRef]
- Hunsaker, C.T.; Johnson, D.W. Concentration-discharge relationships in headwater streams of the Sierra Nevada, California. Water Resour. Res. 2017, 53, 7869–7884. [Google Scholar] [CrossRef]
- Abbott, B.W.; Baranov, V.; Mendoza-Lera, C.; Nikolakopoulou, M.; Harjung, A.; Kolbe, T.; Balasubramanian, M.N.; Vaessen, T.N.; Ciocca, F.; Campeau, A.; et al. Using multi-tracer inference to move beyond single-catchment ecohydrology. Earth Sci. Rev. 2016, 160, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.E.; Rabalais, N.N. Changes in Mississippi River water quality this century. BioScience 1991, 41, 140–147. [Google Scholar] [CrossRef]
- Godsey, S.E.; Kirchner, J.W.; Clow, D.W. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrol. Process. 2009, 23, 1844–1864. [Google Scholar] [CrossRef]
- Brooks, P.D.; Chorover, J.; Fan, Y.; Godsey, S.E.; Maxwell, R.M.; McNamara, J.P.; Tague, C. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour. Res. 2015, 51, 6973–6987. [Google Scholar] [CrossRef] [Green Version]
- Baronas, J.; Torres, M.; Clark, K.; West, A. Mixing as a driver of temporal variations in river hydrochemistry: 2. Major and trace element concentration dynamics in the Andes-Amazon. Water Resour. Res. 2017, 53, 3120–3145. [Google Scholar] [CrossRef]
- Botter, M.; Burlando, P.; Fatichi, S. Anthropogenic and catchment characteristic signatures in the water quality of Swiss Rivers: A quantitative assessment. Hydrol. Earth Syst. Sci. 2019, 23, 1885–1904. [Google Scholar] [CrossRef] [Green Version]
- Zucca, C.; Canu, A.; Previtali, F. Soil degradation by land use change in an agropastoral area in Sardinia (Italy). Catena 2010, 83, 46–54. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Alonso-Rodríguez, E.; Moscoso-Pérez, C.; Blanco-Heras, G.; Turnes-Carou, I.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmos. Environ. 2014, 88, 30–38. [Google Scholar] [CrossRef]
- Silva, B.; Rivas, T.; García-Rodeja, E.; Prieto, B. Distribution of ions of marine origin in Galicia (NW Spain) as a function of distance from the sea. Atmos. Environ. 2007, 41, 4396–4407. [Google Scholar] [CrossRef]
- Skowron, P.; Skowrońska, M.; Bronowicka-Mielniczuk, U.; Filipek, T.; Igras, J.; Kowalczyk-Juśko, A.; Krzepiłko, A. Anthropogenic sources of potassium in surface water: The case study of the Bystrzyca river catchment, Poland. Agric. Ecosys. Environ. 2018, 265, 454–460. [Google Scholar] [CrossRef]
- Antelo-Cortizas, J.M.; Arce-Vázquez, F. Características fisicoquímicas das augas superficiais. In As Augas de Galicia; Díaz Fierros, F., Ed.; Consello da Cultura Galega: Xunta de Galicia, Santiago de Compostela, Spain, 1996; pp. 351–446. [Google Scholar]
- Makeyev, A.O.; Berkgaut, V.V. Weathering of silicates as a source of mineral nutrients for plants (as exemplified by soils with a texturally-differentiated profile of the Komi ASSR). Sov. Soil Sci. 1989, 21, 42–52. [Google Scholar]
- Calvo de Anta, R.; Macias, F. Influence of geological material in the composition of Surface waters in Galicia (NW Spain). Genesis of clay minerals. Clay Miner. 1993, 28, 285–296. [Google Scholar] [CrossRef]
- Sande-Fouz, P.; Mirás-Avalos, J.M.; Vidal-Vázquez, E. Temporal oscillations of calcium, magnesium, potassium, and sodium dissolved contents in an agroforestry catchment from the Atlantic Galicia. Comm. Soil Sci. Plant Anal. 2012, 43, 280–287. [Google Scholar] [CrossRef]
- Sande-Fouz, P.; Mirás-Avalos, J.M.; Vidal-Vázquez, E.; Paz-González, A. Phosphorus contents and loads at the outlet of an agroforestry catchment. Comm. Soil Sci. Plant Anal. 2009, 40, 660–671. [Google Scholar] [CrossRef]
- Mirás-Avalos, J.M.; Mestas-Valero, R.M.; Sande-Fouz, P.; Paz-González, A. Consistency analysis of pluviometric information in Galicia (NW Spain). Atmos. Res. 2009, 94, 629–640. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, J.A.; Soto, B.; Pérez, R.; Díaz-Fierros, F. Influence of Eucalyptus globulus plantation growth on water table levels and low flows in a small catchment. J. Hydrol. 2011, 396, 321–326. [Google Scholar] [CrossRef]
- Rodríguez-Suárez, J.A.; Díaz-Fierros, F.; Pérez, R.; Soto, B. Assessing the influence of afforestation with Eucalyptus globulus on hydrological response from a small catchment in northwestern Spain using the HBV hydrological model. Hydrol. Process. 2014, 28, 5561–5572. [Google Scholar] [CrossRef]
- Kronvang, B.; Bruhn, A.J. Choice of sampling strategy and estimation method for calculating nitrogen and phosphorus transport in small lowland streams. Hydrol. Proces. 1996, 10, 1483–1501. [Google Scholar] [CrossRef]
- Grismer, M.E. Stream sediment and nutrient loads in the Tahoe Basin: Estimated versus monitored loads for TMDL “crediting”. Environ. Monitor. Assess. 2013, 185, 7883–7894. [Google Scholar] [CrossRef]
- Cantarero, A.; López, M.B.; Mahía, J.; Maestro, M.A.; Paz, A. Determination of total and dissolved phosphorus in agricultural runoff samples by ICP-MS. Comm. Soil Sci. Plant Anal. 2002, 33, 3431–3436. [Google Scholar] [CrossRef]
- Samper, J.; Huguet, L.l.; Ares, J.; García Vera, M.A. Manual del Usuario del Programa VISUAL BALAN v.1.0: Código Interactivo Para la Realización de Balances Hidrológicos y la Estimación de la Recarga; Publicación Técnica de ENRESA nº 5/99: Madrid, Spain, 1999; p. 205. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/31/031/31031625.pdf (accessed on 5 April 2021).
- Shaw, E.M.; Beven, K.J.; Cappell, N.A.; Lamb, R. Hydrology in Practice, 4th ed.; CRC Press: London, UK, 2011; p. 560. [Google Scholar] [CrossRef]
- Samper, J.; García Vera, M.A.; Pisani, B.; Alvares, D.; Varela, A.; Losada, J.A. Modelos Hidrológicos y Sistemas de Información Geográfica para la Estimación de los Recursos Hídricos: Aplicación de GIS-BALAN a Varias Cuencas Españolas. In Estudios de la Zona No Saturada del Suelo; Samper Calvete, F.J., Paz González, A., Eds.; Universidade da Coruña: La Coruña, Spain, 2005; Volume 7, pp. 269–274. Available online: http://zonanosaturada.com/zns05/publications_files/area_4/05.pdf (accessed on 5 April 2021).
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. An assessment of the recent evolution of the streamflow in a near-natural system: A case study in the headwaters of the Mero Basin (Galicia, Spain). Hydrology 2020, 7, 97. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J. Regional scale variability in sediment and nutrient delivery from small agricultural watersheds. J. Environ. Qual. 2002, 31, 870–879. [Google Scholar] [CrossRef]
- Meybeck, M.; Moatar, F. Daily variability of river concentrations and fluxes: Indicators based on segmentation of the rating curve. Hydrol. Process. 2012, 26, 1188–1207. [Google Scholar] [CrossRef] [Green Version]
- Mangin, A. Pour une meilleure connaissance des systèmes hydrologiques à partir des analyses corrélatoire et spectrale. J. Hydrol. 1984, 67, 25–43. [Google Scholar] [CrossRef]
- Mayaud, C.; Wagner, T.; Benischke, R.; Birk, S. Single event time series analysis in a binary karst catchment evaluated using a groundwater model (Lurbach system, Austria). J. Hydrol. 2014, 511, 628–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepeda Cuervo, E.; Achcar, J.A.; Andrade, M.G. Seasonal hydrological and meteorological time series. Erath Sci. Res. J. 2018, 22, 83–90. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org/ (accessed on 5 April 2021).
- Membiela, P.; Montes, C.; Martínez-Ansemil, E. Hydro-chemical characteristics of Galicia rivers (NW Iberian Peninsula). Limnetica 1991, 7, 163–174. [Google Scholar]
- Taboada-Castro, M.M.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.T. Assessing the influence of catchment land-use patterns on the nutrients and major ions chemistry of drainage water. Comm. Soil Sci. Plant Anal. 2013, 44, 422–428. [Google Scholar] [CrossRef]
- Rial Rivas, M.E. Investigación dos Procesos que Regulan o Caudal e a Calidade das Augas na Bacía do Río Anllóns. Ph.D. Thesis, Universidade de Santiago de Compostela, La Coruña, Spain, 2007. [Google Scholar]
- Diéguez, A.; Rodríguez-Blanco, M.L.; Taboada-Castro, M.; Taboada-Castro, M.T. Interrelationships of water quality, nutrients, and major ions in a stream draining a mixed-use catchment, NW Spain. Comm. Soil Sci. Plant Anal. 2012, 43, 95–101. [Google Scholar] [CrossRef]
- Wilkinson, J.; Reynolds, B.; Neal, C.; Hills, S.; Neal, M.; Harrow, M. Major, minor and trace element composition of cloudwater and rainwater at Plynlimon. Hydrol. Eartch. Syst. Sci. 1997, 1, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Goldich, S.S. A study in rock weathering. J. Geol. 1938, 46, 17–58. [Google Scholar] [CrossRef]
- Thompson, S.E.; Basu, N.B.; Lascurain, J.; Aubeneau, A.; Rao, P.S.C. Relative dominance of hydrological versus biogeochemical factors on solute export across impact gradients. Water Resour. Res. 2011, 47, W00J05. [Google Scholar] [CrossRef]
- Herdon, E.M.; Dere, A.L.; Sullivan, P.L.; Norris, D.; Reynolds, B.; Brantley, S.L. Landscape heterogeneity drives contrasting concentration-discharge relationships in shale headwater catchments. Hydrol. Earth Syst. Sci. 2015, 19, 3333–3347. [Google Scholar] [CrossRef] [Green Version]
- Shanley, J.B.; McDowell, W.H.; Stallard, R.F. Long-term patterns and short-term dynamics of stream solutes and suspended sediment in a rapidly weathering tropical watershed. Water Resour. Res. 2011, 47, W07515. [Google Scholar] [CrossRef]
- Thomas, Z.; Abbott, B.W.; Troccaz, O.; Baudry, J.; Pinay, G. Proximate and ultimate controls on carbon and nutrient dynamics of small agricultural catchments. Biogeosciences 2016, 13, 1863–1875. [Google Scholar] [CrossRef] [Green Version]
- Balerna, J.A.; Melone, J.C.; Knee, K.L. Using concentration-discharge relationships to identify influences on surface and subsurface water chemistry along a watershed urbanization gradient. Water 2021, 13, 662. [Google Scholar] [CrossRef]
- Holmes, R.M.; McClelland, J.W.; Peterson, B.J.; Tank, S.E.; Bulygina, E.; Eglinton, T.I.; Gordeev, V.V.; Gurtovaya, T.Y.; Raymond, P.A.; Repeta, D.J.; et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries Coasts 2012, 35, 369–382. [Google Scholar] [CrossRef]
- Botter, M.; Li, L.; Hartmann, J.; Burlando, P.; Fatichi, S. Depth of solute generation is a dominant control on concentration-discharge relations. Water Resour. Res. 2020, 56, e2019WR026695. [Google Scholar] [CrossRef]
- Diamond, J.S.; Cohen, M.J. Complex patterns of catchment solute-discharge relationships for coastal plain rivers. Hydrol. Process. 2018, 32, 388–401. [Google Scholar] [CrossRef]
- Creed, I.F.; McKnight, D.M.; Pellerin, B.A.; Green, M.B.; Bergamaschi, B.A.; Aiken, G.R.; Burns, D.A.; Findlay, S.E.G.; Shanley, J.B.; Striegl, R.G.; et al. The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Can. J. Fish. Aquat. Sci. 2015, 72, 1272–1285. [Google Scholar] [CrossRef] [Green Version]
- Hornberger, G.M.; Scanlon, T.M.; Raffensperger, J.P. Modelling transport of dissolved silica in a forested headwater catchment: The effect of hydrological and chemical time scales on hysteresis in the concentration-discharge relationship. Hydrol. Process. 2001, 15, 2029–2038. [Google Scholar] [CrossRef]
- Strohmeier, S.; Knorr, K.H.; Reichert, M.; Frei, S.; Fleckenstein, J.H.; Peiffer, S.; Matzner, E. Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: Insights from high frequency measurements. Biogeosciences 2013, 10, 905–916. [Google Scholar] [CrossRef] [Green Version]
Solute | Mean | Median | Minimum | Maximum | Skewness | Kurtosis | Coefficient of Variation |
---|---|---|---|---|---|---|---|
mg L−1 | % | ||||||
Valiñas | |||||||
Sodium | 16.45 | 16.10 | 8.90 | 27.20 | 0.47 | −0.12 | 16.67 |
Potassium | 2.62 | 2.30 | 1.13 | 13.49 | 3.32 | 16.64 | 43.56 |
Calcium | 7.88 | 7.55 | 4.47 | 20.70 | 1.33 | 4.70 | 21.53 |
Magnesium | 4.11 | 3.98 | 2.15 | 7.30 | 0.67 | 0.05 | 19.42 |
Abelar | |||||||
Sodium | 8.15 | 8.28 | 3.65 | 23.20 | 5.18 | 75.20 | 14.13 |
Potassium | 0.91 | 0.57 | 0.21 | 104.00 | 19.63 | 387.24 | 576.53 |
Calcium | 2.85 | 2.76 | 1.34 | 9.40 | 3.00 | 26.48 | 22.84 |
Magnesium | 3.43 | 3.44 | 1.62 | 7.20 | 1.07 | 9.92 | 15.17 |
Pair | Valiñas 1 | Abelar | |
---|---|---|---|
Complete Dataset | Removing Outliers | ||
Discharge vs. Sodium | −0.58 *** | −0.25 *** | −0.31 *** |
Discharge vs. Potassium | −0.20 *** | 0.01 NS | 0.48 *** |
Discharge vs. Calcium | −0.44 *** | 0.47 *** | 0.56 *** |
Discharge vs. Magnesium | −0.60 *** | 0.01 NS | 0.02 NS |
Sodium vs. Potassium | 0.44 *** | 0.65 *** | −0.12 * |
Sodium vs. Calcium | 0.74 *** | 0.52 *** | 0.28 *** |
Sodium vs. Magnesium | 0.92 *** | 0.80 *** | 0.80 *** |
Potassium vs. Calcium | 0.64 *** | 0.53 *** | 0.46 *** |
Potassium vs. Magnesium | 0.44 *** | 0.37 *** | 0.12 * |
Calcium vs. Magnesium | 0.77 *** | 0.68 *** | 0.61 *** |
Solute | Season | |||
---|---|---|---|---|
Spring | Summer | Autumn | Winter | |
Valiñas | ||||
Sodium | 15.92 | 19.07 | 16.44 | 15.19 |
Potassium | 2.26 | 3.31 | 3.01 | 2.13 |
Calcium | 7.53 | 9.03 | 8.41 | 6.92 |
Magnesium | 3.91 | 4.93 | 4.16 | 3.67 |
Abelar | ||||
Sodium | 8.28 | 8.05 | 8.19 | 8.08 |
Potassium | 0.61 | 0.45 | 2.12 | 0.84 |
Calcium | 2.94 | 2.37 | 3.03 | 3.20 |
Magnesium | 3.59 | 3.18 | 3.39 | 3.59 |
Catchment | Year | Sodium | Potassium | Calcium | Magnesium | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring Summer | Autumn Winter | Annual | Spring Summer | Autumn Winter | Annual | Spring Summer | Autumn Winter | Annual | Spring Summer | Autumn Winter | Annual | ||
Valiñas | 2003 | 24.03 | 69.31 | 93,33 | 3.44 | 10.30 | 13.74 | 11.39 | 31.42 | 42.81 | 5.98 | 16.95 | 22.93 |
2004 | 17.41 | 47.34 | 64,74 | 2.56 | 6.10 | 8.71 | 7.76 | 22.65 | 30.41 | 4.25 | 11.45 | 15.70 | |
2005 | 16.64 | 49.51 | 66,15 | 2.40 | 7.44 | 9.83 | 7.59 | 23.36 | 30.95 | 4.06 | 12.43 | 16.49 | |
2006 | 18.39 | 80.89 | 99,28 | 2.31 | 13.38 | 15.69 | 8.84 | 39.63 | 48.47 | 4.76 | 19.63 | 24.39 | |
2007 | 22.95 | 39.02 | 61,97 | 3.14 | 5.78 | 8.92 | 10.47 | 18.60 | 29.07 | 5.95 | 9.93 | 15.88 | |
2008 | 29.18 | 53.15 | 82,32 | 5.46 | 10.19 | 15.65 | 15.27 | 29.31 | 44.58 | 6.77 | 12.97 | 19.74 | |
2009 | 19.62 | 57.32 | 76,94 | 3.13 | 9.50 | 12.64 | 9.61 | 28.09 | 37.70 | 5.02 | 13.97 | 18.99 | |
2010 | 25.61 | 73.55 | 99,16 | 3.70 | 10.88 | 14.59 | 12.18 | 33.89 | 46.07 | 6.50 | 17.53 | 24.03 | |
2011 | 15.49 | 46.43 | 61,92 | 2.13 | 7.72 | 9.84 | 6.93 | 21.95 | 28.88 | 3.91 | 11.16 | 15.07 | |
2012 | 19.27 | 41.31 | 60,58 | 2.75 | 6.70 | 9.45 | 9.11 | 19.34 | 28.45 | 4.75 | 10.30 | 15.05 | |
2013 | 23.90 | 68.46 | 92,36 | 3.35 | 12.74 | 16.09 | 11.06 | 33.28 | 44.34 | 6.05 | 16.95 | 23.00 | |
2014 | 18.40 | 48.40 | 66,80 | 2.58 | 7.65 | 10.22 | 8.08 | 22.37 | 30.45 | 4.66 | 11.43 | 16.09 | |
2015 | 16.00 | 41.17 | 57,17 | 2.56 | 6.02 | 8.58 | 7.62 | 18.72 | 26.34 | 4.00 | 9.70 | 13.70 | |
2016 | 27.78 | 69.51 | 97,29 | 3.78 | 10.36 | 14.14 | 11.97 | 30.56 | 42.53 | 6.90 | 17.58 | 24.48 | |
Avg. | 21.05 | 56.10 | 77,14 | 3.09 | 8.91 | 12.01 | 9.85 | 26.66 | 36.50 | 5.25 | 13.71 | 18.97 | |
Abelar | 2007 | 10.03 | 32.80 | 42.83 | 1.04 | 3.98 | 5.02 | 3.42 | 14.19 | 17.61 | 4.36 | 15.45 | 19.80 |
2008 | 18.51 | 22.23 | 40.75 | 1.41 | 19.40 | 20.81 | 6.80 | 8.85 | 15.65 | 8.11 | 9.40 | 17.50 | |
2009 | 14.10 | 65.43 | 79.53 | 0.84 | 9.35 | 10.19 | 4.69 | 28.58 | 33.27 | 6.27 | 30.15 | 36.41 | |
2010 | 17.07 | 68.09 | 85.16 | 1.65 | 8.63 | 10.28 | 7.63 | 32.67 | 40.30 | 7.86 | 31.33 | 39.19 | |
2011 | 6.66 | 42.73 | 49.40 | 0.43 | 5.23 | 5.66 | 2.24 | 17.55 | 19.79 | 2.83 | 18.56 | 21.39 | |
2012 | 12.41 | 26.81 | 39.23 | 1.08 | 2.33 | 3.41 | 4.37 | 10.45 | 14.82 | 5.32 | 11.74 | 17.07 | |
2013 | 18.57 | 70.49 | 89.06 | 1.98 | 8.16 | 10.14 | 7.52 | 31.39 | 38.91 | 7.65 | 30.00 | 37.65 | |
2014 | 9.99 | 66.67 | 76.66 | 0.73 | 7.77 | 8.50 | 3.25 | 28.81 | 32.05 | 4.13 | 26.98 | 31.10 | |
2015 | 9.84 | 41.23 | 51.08 | 0.68 | 3.59 | 4.27 | 3.18 | 15.85 | 19.03 | 3.78 | 16.51 | 20.29 | |
2016 | 21.18 | 57.68 | 78.86 | 1.77 | 4.89 | 6.66 | 7.63 | 20.63 | 28.26 | 8.32 | 22.79 | 31.11 | |
Avg. | 13.84 | 49.42 | 63.25 | 1.16 | 7.33 | 8.49 | 5.07 | 20.90 | 25.97 | 5.86 | 21.29 | 27.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Dias, R.; Mirás-Avalos, J.M.; Paz-González, A. Long-Term Concentrations and Loads of Four Dissolved Macronutrients from Two Agroforestry Catchments in NW Spain. Hydrology 2021, 8, 96. https://doi.org/10.3390/hydrology8030096
da Silva Dias R, Mirás-Avalos JM, Paz-González A. Long-Term Concentrations and Loads of Four Dissolved Macronutrients from Two Agroforestry Catchments in NW Spain. Hydrology. 2021; 8(3):96. https://doi.org/10.3390/hydrology8030096
Chicago/Turabian Styleda Silva Dias, Rosane, José Manuel Mirás-Avalos, and Antonio Paz-González. 2021. "Long-Term Concentrations and Loads of Four Dissolved Macronutrients from Two Agroforestry Catchments in NW Spain" Hydrology 8, no. 3: 96. https://doi.org/10.3390/hydrology8030096
APA Styleda Silva Dias, R., Mirás-Avalos, J. M., & Paz-González, A. (2021). Long-Term Concentrations and Loads of Four Dissolved Macronutrients from Two Agroforestry Catchments in NW Spain. Hydrology, 8(3), 96. https://doi.org/10.3390/hydrology8030096