A New Automatic Monitoring Network of Surface Waters in Greece: Preliminary Data Quality Checks and Visualization
Abstract
:1. Introduction
2. Methodology
2.1. The HCMR Network: Stations Selection, Locations and Technical Specifications
2.2. Stations Maintenance and Data Checks
3. Results
3.1. Application of Quality Checks on Real-Time Data and Flagging
3.1.1. Evaluation Based on pH Data Quality Checks
3.1.2. Evaluation Based on Temperature (T) Data Quality Checks
3.1.3. Evaluation Based on Electrical Conductivity (EC) Data Quality Check
3.1.4. Evaluation Based on Dissolved Oxygen (DO) Quality Check
3.1.5. Evaluation of Water Level Measurements
3.2. Statistical Analyses of the Deviations of Stations Recordings from in Situ Measurements
3.3. Data Publication
4. Discussion and Conclusions
Author Contributions
Funding
- (a)
- The first implementation phase (2018–2020) of the National Research Infrastructure (RI) “Hellenic Integrated Marine-Inland waters Observing Forecasting and offshore Technology System, HIMIOFoTS” (MIS 5002739), funded by Special Secretary for Management of European Regional Development Fund (ERDF) & Cohesion Fund (CF).
- (b)
- The implementation phase (2018–2021) of the “Open Internet of Things infrastructure for online environmental services, OpenELIoT”, co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: Τ1EDK-01613).
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Thomas, S.; Mitsch, W.J. Design of real-time and long-term hydrologic and water quality wetland monitoring stations in South Florida, USA. Ecol. Eng. 2017, 108, 446–455. [Google Scholar] [CrossRef]
- Meyer, A.M.; Klein, C.; Fünfrocken, E.; Kautenburger, R.; Beck, H.P. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. Sci. Total Environ. 2019, 651, 2323–2333. [Google Scholar] [CrossRef] [PubMed]
- Gujral, A.; Bhalla, A.; Biswas, D.K. Automatic water level and water quality monitoring. In Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Sydney, Australia, 9–11 September 2015; Dight, P.M., Ed.; Australian Centre for Geomechanics: Perth, Australia, 2015; pp. 511–523. [Google Scholar]
- Shore, M.; Murphy, S.; Mellander, P.E.; Shortle, G.; Melland, A.R.; Crockford, L.; O′Flaherty, V.; Williams, L.; Morgan, G.; Jordan, P. Influence of stormflow and baseflow phosphorus pressures on stream ecology in agricultural catchments. Sci. Total Environ. 2017, 590–591, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Bowes, M.J.; Loewenthal, M.; Read, D.S.; Hutchins, M.G.; Prudhomme, C.; Armstrong, L.K.; Harman, S.A.; Wickham, H.D.; Gozzard, E.; Carvalho, L. Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data. Sci. Total Environ. 2016, 569–570, 1489–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szewczyk, R.; Osterweil, E.; Polastre, J.; Hamilton, M.; Mainwaring, A.; Estrin, D. Habitat monitoring with sensor networks. Commun. ACM 2004, 47, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.; Arzberger, P.; Braun, H.-W.; Bryant, P.; Gage, S.; Hansen, T.; Hanson, P.; Lin, C.-C.; Lin, F.P.; Kratz, T.; et al. Wireless sensor networks for ecology. BioScience 2005, 55, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.L.; Bettencourt, L.M.A.; Hagberg, A.; Brown, R.F.; Moore, D.I.; Bonito, G.; Delin, K.A.; Jackson, S.P.; Johnson, D.W.; Burleigh, S.C.; et al. New opportunities in ecological sensing using wireless sensor networks. Front. Ecol. Environ. 2006, 4, 402–407. [Google Scholar] [CrossRef]
- Benson, B.J.; Bond, B.J.; Hamilton, M.P.; Monson, R.K.; Han, R. Perspectives on next-generation technology for environmental sensor networks. Front. Ecol. Environ. 2009, 8, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Wong, B.P.; Kerkez, B. Real-time environmental sensor data: An application to water quality using web services. Environ. Model. Softw. 2016, 84, 505–517. [Google Scholar] [CrossRef]
- Chen, Y.; Han, D. Water quality monitoring in smart city: A pilot project. Autom. Constr. 2018, 89, 307–316. [Google Scholar] [CrossRef] [Green Version]
- USGS (United States Geological Survey). National Water Information System: Web Interface. Current Conditions for the Nation—Water Quality. Available online: https://waterdata.usgs.gov/nwis/current/?type=quality (accessed on 31 January 2021).
- WFD 2000/60/EC. European Parliament & Council. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 Establishing a framework for community action in the field of water policy. Off. J. Eur. Communities 2000, 327, 1–73. [Google Scholar]
- EEA (European Environmental Agency). Water Quality Monitoring Stations. Available online: https://www.eea.europa.eu/data-and-maps/explore-interactive-maps/overview-of-soe-monitoring-stations (accessed on 31 January 2021).
- Ministry of Environment and Energy. Special Secretariat for Water National Water Monitoring Network. Available online: http://nmwn.ypeka.gr/?q=en (accessed on 1 October 2020).
- Mentzafou, A.; Panagopoulos, Υ.; Dimitriou, Ε. Designing the National Network for Automatic Monitoring of Water Quality Parameters in Greece. Water 2019, 11, 1310. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.L.; Rustad, L.E.; Porter, J.H.; Taylor, J.R.; Dereszynski, E.W.; Shanley, J.B.; Gries, C.; Henshaw, D.L.; Martin, M.E.; Sheldon, W.M.; et al. Quantity is Nothing without Quality: Automated QA/QC for Streaming Environmental Sensor Data. BioScience 2013, 63, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.J.; Minsker, B.S. Automated fault detection for in-situ environmental sensors. In Proceedings of the Seventh International Conference on Hydroinformatics 2006, Nice, France, 4–8 September 2006; Gourbesville, P., Cunge, J., Guinot, V., Liong, S.Y., Eds.; Research Publications: Chennai, India, 2007. Available online: http://dhill.sites.tru.ca/files/2019/04/FaultDetection-HIC2006.pdf (accessed on 1 October 2020).
- Horsburgh, J.S.; Reeder, S.L.; Spackman Jones, A.; Meline, J. Open source software for visualization and quality control of continuous hydrologic and water quality sensor data. Environ. Model. Softw. 2015, 70, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Peppler, R.A.; Long, C.N.; Sisterson, D.D.; Turner, D.L.; Bahrmann, C.P.; Christensen, S.W.; Doty, K.J.; Eagan, R.C.; Halter, T.; Ivey, M.D.; et al. An Overview of ARM Program Climate Research Facility Data Quality Assurance. Open Atmos. Sci. J. 2008, 2, 192–216. [Google Scholar] [CrossRef]
- Hamilton, M.P.; Graham, E.A.; Rundel, P.W.; Allen, M.F.; Kaiser, W.; Hansen, M.H.; Estrin, D.L. New approaches in embedded networked sensing for terrestrial ecological observatories. Environ. Eng. Sci. 2007, 24, 192–204. [Google Scholar] [CrossRef]
- Lynch, C. Big data: How do your data grow? Nature 2008, 455, 28–29. [Google Scholar] [CrossRef]
- Porter, J.H.; Hanson, P.C.; Lin, C.-C. Staying afloat in the sensor data deluge. Trends Ecol. Evol. 2012, 27, 121–129. [Google Scholar] [CrossRef]
- Schimel, D. The era of continental-scale ecology. Front. Ecol. Environ. 2011, 9, 311. [Google Scholar] [CrossRef]
- Strobl, R.O.; Robillard, P.D. Network design for water quality monitoring of surface freshwaters: A review. J. Environ. Manag. 2008, 87, 639–648. [Google Scholar] [CrossRef]
- WMO (World Meteorological Organization). Planning of Water Quality Monitoring Systems. Technical Report Series No. 3.; World Meteorological Organization: Geneva, Switzerland, 2013. [Google Scholar]
- HIMIOFoTS. An integrated Marine Inland Water Observing, Forecasting and Offshore Technology System. A Large Scale Integrated Infrastructure for the Management of the National Water Resources. Available online: https://www.himiofots.gr/en (accessed on 1 October 2020).
- OpenELIoT. Integrated & Economic Sustainable Solution Internet of Things for the Monitoring and Analysis of Environmental Parameters Related to Surface Water. Available online: https://www.openeliot.com/en/ (accessed on 1 October 2020).
- Wagner, R.J.; Boulger, R.W., Jr.; Oblinger, C.J.; Smith, B.A. Guidelines and standard procedures for continuous water-quality monitors-Station operation, record computation and data reporting: U.S. Geological Survey. Tech. Methods 2006, 1–D3, 51. [Google Scholar] [CrossRef]
- In-Situ Inc. In-Situ Aqua TROLL 400 Multiparameter Probe Spec Sheet Jan. 2020. Available online: https://in-situ.com/ (accessed on 1 November 2020).
- Durre, I.; Menne, M.J.; Vose, R.S. Strategies for evaluating quality assurance procedures. J. Appl. Meteorol. Clim. 2008, 47, 1785–1791. [Google Scholar] [CrossRef]
- Taylor, J.R.; Loescher, H.L. Automated quality control methods for sensor data: A novel observatory approach. Biogeosciences 2013, 10, 4957–4971. [Google Scholar] [CrossRef] [Green Version]
- HCMR Online Hydro-Stations Platform. Available online: https://hydro-stations.hcmr.gr/ (accessed on 1 December 2020).
- Fiebrich, C.A.; Morgan, C.R.; McCombs, A.G.; Hall, P.K., Jr.; McPherson, R.A. Quality assurance procedures for mesoscale meteorological data. J. Atmos. Ocean. Tech. 2010, 27, 1565–1582. [Google Scholar] [CrossRef]
- World Meteorological Organization. Guide to Hydrological Practices. Volume I Hydrology—From Measurement to Hydrological Information, WMO-No. 168; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Karaouzas, I.; Kapetanaki, N.; Mentzafou, A.; Kanellopoulos, T.D.; Skoulikidis, N. Heavy Metal Contamination Status in Greek Surface Waters; a review with application and evaluation of pollution indices. Chemosphere 2021, 263, 128192. [Google Scholar] [CrossRef] [PubMed]
- Stefanidis, K.; Papaioannou, G.; Markogianni, V.; Dimitriou, E. Water quality and hydromorphological variability in Greek rivers: A nationwide assessment with implications for management. Water 2019, 11, 1680. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, K.; Christopoulou, A.; Poulos, S.; Dassenakis, E.; Dimitriou, E. Nitrogen and Phosphorus Loads in Greek Rivers: Implications for Management in Compliance with the Water Framework Directive. Water 2020, 12, 1531. [Google Scholar] [CrossRef]
- Pellerin, B.A.; Stauffer, B.A.; Young, D.A.; Sullivan, D.J.; Bricker, S.B.; Walbridge, M.R.; Clyde, G.A.; Shaw, D.M. Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection. J. Am. Water Resour. Assoc. 2016, 52, 993–1008. [Google Scholar] [CrossRef]
- Blaen, P.J.; Khamis, K.; Lloyd, C.E.M.; Bradley, C.; Hannah, D.; Krause, S. Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions. Sci. Total Environ. 2016, 569–570, 647–660. [Google Scholar] [CrossRef] [Green Version]
- Patil, P.N.; Sawant, D.V.; Deshmukh, R.N. Physico-chemical parameters for testing of water—A review. Int. J. Environ. Sci. 2012, 3, 1194–1207. [Google Scholar]
- WHO. World Health Organization Guidelines for Drinking-Water Quality, Incorporating the First Addendum, Licence: CC BY-NC-SA 3.0 IGO, 4th ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Christensen, V.G.; Rasmussen, P.P.; Ziegler, A.C. Real-time water quality monitoring and regression analysis to estimate nutrient and bacteria concentrations in Kansas streams. Water Sci. Technol. 2002, 45, 205–219. [Google Scholar] [CrossRef] [PubMed]
Parameter | Accuraccy | Range | Resolution |
---|---|---|---|
Water level | Typical ± 0.1% FS @ 15 °C; ±0.3% FS max. from 0 to 50 °C | 76 m | ±0.01% FS or better |
Electrical Conductivity (EC) | Typical ± 0.5% + 1 μS/cm; ±1% max. | 5 to 100,000 μS/cm | 0.1 μS/cm |
Dissolved Oxygen (DO) | ±0.1 mg/L from 0 to 20 mg/L; ±2% of reading from 20–60 mg/L | 0–60 mg/L | 0.01 mg/L |
pH | ±0.1 pH unit from 0 to 12 pH units | 0 to 14 pH units | 0.01 pH unit |
Temperature (T) | ±0.1 °C | −5 to 50 °C (23 to 122 °F)’ | 0.01 °C or better |
Water District | River | Site Name | Coordinates (φ, λ) | Started from | Research Project |
---|---|---|---|---|---|
Eastern Central Greece | Spercheios | Alamana | 38.81250, 22.49520 | 3/7/2014 | HIMIOFoTS |
Eastern Central Greece | Spercheios | Anthili | 38.85611, 22.46685 | 4/7/2014 | HIMIOFoTS |
Eastern Central Greece | Spercheios | Loutra Ypatis | 38.907822, 22.283958 | 27/11/2019 | OpenELIoT |
Western Central Greece | Acheloos | Mesochora | 39.42010, 21.26261 | 29/7/2016 | HIMIOFoTS |
Thessaly | Pinios | Giannouli | 39.65246, 22.40780 | 25/8/2019 | HIMIOFoTS |
Thessaly | Pinios | Nomi | 39.52657, 21.93833 | 26/8/2019 | HIMIOFoTS |
Thessaly | Pinios | Tempi | 39.89675, 22.61520 | 25/8/2019 | HIMIOFoTS |
Western Peloponnese | Alfeios | Aspra Spitia | 37.58641, 21.79087 | 1/8/2019 | HIMIOFoTS |
Western Peloponnese | Alfeios | Epitalio | 37.64256, 21.47648 | 1/8/2019 | HIMIOFoTS |
Western Peloponnese | Pamisos | Agios Floros | 37.168887, 22.024621 | 25/9/2020 | OpenELIoT |
Eastern Peloponnese | Evrotas | Vrontamas | 36.973848, 22.580371 | 21/7/2020 | OpenELIoT |
Eastern Peloponnese | Evrotas | Leimonas | 36.828865, 22.691026 | 21/7/2020 | OpenELIoT |
Attica | Kifissos | Kifissos MD | 38.091799, 23.781160 | 8/7/2020 | OpenELIoT |
Attica | Kifissos | Kifissos EKV | 37.947538, 23.672446 | 15/7/2020 | OpenELIoT |
Attica | Pikrodafni | Pikrodafni | 37.922411, 23.700816 | 1/10/2019 | OpenELIoT |
Eastern Central Greece | Asopos | Chalkoutsi | 38.324726, 23.753182 | 3/7/2020 | OpenELIoT |
Thessaly | Lithaios | Trikala | 39.552411, 21.770816 | 21/11/2019 | OpenELIoT |
Western Macedonia | Ag. Germanos (Prespa Lake) | Ag. Germanos | 40.836957, 21.140266 | 13/7/2020 | OpenELIoT |
Water Parameter | Unit | Min | Max |
---|---|---|---|
Temperature (T) | (°C) | 0 | 30 |
Electrical Conductivity (EC) | (μS/cm) | 30 | 5000 |
pH | (-) | 5 | 10 |
Dissolved Oxygen (DO) | (mg/L) | 4 | 11 |
Problem | Reliability Check | Type of Data | Definition |
---|---|---|---|
Empty record Multiple empty records | Null test Gap test | Missing data or long time period with missing data | Leave empty records |
Implausible values | Range test | Extreme values | Min and Max limits of Table 3 |
Extreme values (within plausible range of observations) | Extreme value test | Extreme values | 2.5% smallest and 2.5% largest observations |
Extreme value differences (within plausible range of observations) | Extreme difference test | Differences (absolute) of consecutive pairs of values | 2.5% smallest and 2.5% largest absolute consecutive differences of the observations |
Persistent values (within plausible range of observations) | Stuck value test | Consecutive differences (absolute) of consecutive pairs of values | Zero change of the last 48 1 h or 96 half-hour recorded values |
Deviations (%) | |||||||
---|---|---|---|---|---|---|---|
Parameter | N | Mean | Minimum | Q1 | Median | Q3 | Maximum |
EC | 47 | −3.4 | −89.7 | −12.4 | −2.3 | 9.1 | 133.09 |
DO | 43 | −20.3 | −100 | −69.8 | −8.8 | 11.5 | 172 |
pH | 53 | −0.2 | −26.8 | −7.2 | −1.2 | 6.2 | 43.58 |
T | 52 | −3.1 | −36.5 | −4 | −1.2 | 0.9 | 29.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagopoulos, Y.; Konstantinidou, A.; Lazogiannis, K.; Papadopoulos, A.; Dimitriou, E. A New Automatic Monitoring Network of Surface Waters in Greece: Preliminary Data Quality Checks and Visualization. Hydrology 2021, 8, 33. https://doi.org/10.3390/hydrology8010033
Panagopoulos Y, Konstantinidou A, Lazogiannis K, Papadopoulos A, Dimitriou E. A New Automatic Monitoring Network of Surface Waters in Greece: Preliminary Data Quality Checks and Visualization. Hydrology. 2021; 8(1):33. https://doi.org/10.3390/hydrology8010033
Chicago/Turabian StylePanagopoulos, Yiannis, Anna Konstantinidou, Konstantinos Lazogiannis, Anastasios Papadopoulos, and Elias Dimitriou. 2021. "A New Automatic Monitoring Network of Surface Waters in Greece: Preliminary Data Quality Checks and Visualization" Hydrology 8, no. 1: 33. https://doi.org/10.3390/hydrology8010033
APA StylePanagopoulos, Y., Konstantinidou, A., Lazogiannis, K., Papadopoulos, A., & Dimitriou, E. (2021). A New Automatic Monitoring Network of Surface Waters in Greece: Preliminary Data Quality Checks and Visualization. Hydrology, 8(1), 33. https://doi.org/10.3390/hydrology8010033