Analyzing the Effects of Short-Term Persistence and Shift in Sea Level Records along the US Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Trend Estimation Techniques
2.2.2. Shift Detection
3. Results
3.1. Sea Level Trend and Persistence
3.2. Shift Detection in Sea Level
4. Discussion
5. Conclusions
- The gradual trend analysis revealed the presence of STP in most of the stations and it is evident that most stations show a positive sea level trend, even after accounting autocorrelation. The maximum and minimum trend magnitude that was evaluated by using the entire dataset was found to be 0.85 cm/year for October and 0.62 cm/year for January, respectively.
- Previous studies focused on gradual trends while the current study is unprecedented as it considers the presence of both gradual and abrupt changes in sea level.
- The autocorrelation in sea level can significantly change the detection of a sea level trend and shift. However, the most of stations showed a positive trend before and after accounting for the autocorrelation. Accounting for autocorrelation yielded more reliable results.
- The number of stations showing significant shifts was similar after accounting for autocorrelation in sea level records. In the annual time series, 53 stations showed an increasing trend before autocorrelation, and 52 stations showed an increasing shift, even after the accounting of the autocorrelation in the shift.
- This study concludes that the presence of autocorrelation did not change the significance of trend and shift in most stations. Most stations showed increasing trend and shift after accounting for autocorrelation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change and the Ocean: Special Collection of Reprints from the Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovermental Panel of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1820. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/WGII-AR5_Oceans-Compendium.pdf (accessed on 19 July 2019).
- Titus, J.G.; Richman, C. Maps of lands vulnerable to sea level rise: Modeled elevations along the US Atlantic and Gulf coasts. Clim. Res. 2001, 18, 205–228. [Google Scholar] [CrossRef] [Green Version]
- Vecchio, A.; Anzidei, M.; Serpelloni, E.; Florindo, F. Natural Variability and Vertical Land Motion Contributions in the Mediterranean Sea-Level Records over the Last Two Centuries and Projections for 2100. Water 2019, 11, 1480. [Google Scholar] [CrossRef] [Green Version]
- Houston, J.R.; Dean, R.G. Sea-Level Acceleration Based on U.S. Tide Gauges and Extensions of Previous Global-Gauge Analyses. J. Coast. Res. 2011, 27, 409–417. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Vermeer, M. Discussion of: Houston, J.R.; Dean, R.G. Discussion of: Houston, J.R. and Dean, R.G., 2011. Sea-Level Acceleration Based on U.S. Tide Gauges and Extensions of Previous Global-Gauge Analyses. “Journal of Coastal Research”, 27(3), 409–417. J. Coast. Res. 2011, 27, 784–787. [Google Scholar] [CrossRef]
- Cohn, T.A.; Lins, H.F. Nature’s style: Naturally trendy. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Meyssignac, B.; Salas, D.; Becker, M.; Llovel, W.; Cazenave, A. Tropical Pacific spatial trend patterns in observed sea level: Internal variability and/or anthropogenic signature? Clim. Past Discuss. 2012, 8, 787–802. [Google Scholar] [CrossRef] [Green Version]
- Visser, H.; Dangendorf, S.; Petersen, A.C. A review of trend models applied to sea level data with reference to the “acceleration-deceleration debate”. J. Geophys. Res. Oceans 2015, 120, 3873–3895. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-Level Rise and Its Impact on Coastal Zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef]
- Epanchin-Niell, R.; Kousky, C.; Thompson, A.; Walls, M. Threatened protection: Sea level rise and coastal protected lands of the eastern United States. Ocean Coast. Manag. 2017, 137, 118–130. [Google Scholar] [CrossRef]
- Hausfather, Z. Explainer: How Climate Change Is Accelerating Sea Level Rise. CarbonBrief. 2019. Available online: https://www.carbonbrief.org/explainer-how-climate-change-is-accelerating-sea-level-rise (accessed on 31 October 2019).
- Han, W.; Stammer, D.; Meehl, G.A.; Hu, A.; Sienz, F.; Zhang, L. Multi-Decadal Trend and Decadal Variability of the Regional Sea Level over the Indian Ocean since the 1960s: Roles of Climate Modes and External Forcing. Climate 2018, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.; Kalra, A.; Lamb, K.W. Land–Ocean–Atmosphere Influences on Groundwater Variability in the South Atlantic–Gulf Region. Hydrology 2020, 7, 71. [Google Scholar] [CrossRef]
- Tamaddun, K.; Kalra, A.; Ahmad, S. Identification of streamflow changes across the continental United States using variable record lengths. Hydrology 2016, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Zhou, W.; Fong, S.K.; Leong, K.C. Two Approaches for Statistical Prediction of Non-Gaussian Climate Extremes: A Case Study of Macao Hot Extremes during 1912–2012. J. Clim. 2015, 28, 623–636. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Kumar, D.N. Predictability of nonstationary time series using wavelet and EMD based ARMA models. J. Hydrol. 2013, 502, 103–119. [Google Scholar] [CrossRef]
- Thakur, B.; Kalra, A.; Joshi, N.; Jogineedi, R.; Thakali, R. Analyzing the Impacts of Serial Correlation and Shift on the Streamflow Variability within the Climate Regions of Contiguous United States. Hydrology 2020, 7, 91. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Bunde, A.; Havlin, S.; Koscielny-Bunde, E.; Schellnhuber, H.J. Long term persistence in the atmosphere: Global laws and tests of climate models. Phys. A Stat. Mech. Appl. 2001, 302, 255–267. [Google Scholar] [CrossRef]
- Teegavarapu, R.S.; Schmidt, A.R. Variations and Trends in Global and Regional Sea Levels. In Trends and Changes in Hydroclimatic Variables; Elsevier: Cambridge, MA, USA, 2019; pp. 361–401. [Google Scholar] [CrossRef]
- Boon, J.D.; Brubaker, J.M.; Forrest, D.R. Chesapeake Bay Land Subsidence and Sea Level Change: An Evaluation of Past and Present Trends and Future Outlook; Special Report in Applied Marine Science and Ocean Engineering; Virginia Institute of Marine Science: Gloucester Point, VA, USA, 2010. [Google Scholar] [CrossRef]
- Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S. Long-term sea level trends: Natural or anthropogenic? Geophys. Res. Lett. 2014, 41, 5571–5580. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, R.; Jia, S.; Zhu, W. Analysis of climate variability, trends, and prediction in the most active parts of the Lake Chad basin, Africa. Sci. Rep. 2019, 9, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R. The Pacific Decadal Oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Kerr, R.A. Unmasking a shifty climate system. Science 1992, 255, 1508. Available online: https://www.jstor.org/stable/2876764 (accessed on 18 September 2019). [CrossRef] [PubMed] [Green Version]
- Trenberth, K.E.; Hurrell, J.W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn. 1994, 9, 303–319. [Google Scholar] [CrossRef]
- Powell, A.M., Jr.; Xu, J. The 1977 Global Regime Shift: A Discussion of Its Dynamics and Impacts in the Eastern Pacific Ecosystem. Atmos. Ocean 2012, 50, 421–436. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- McCabe, G.J.; Wolock, D.M. A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 2002, 29, 38. [Google Scholar] [CrossRef]
- Kalra, A.; Piechota, T.; Davies, R.; Tootle, G.A. Changes in U.S. Streamflow and Western U.S. Snowpack. J. Hydrol. Eng. 2008, 13, 156–163. [Google Scholar] [CrossRef]
- Önöz, B.; Bayazit, M. The power of statistical tests for trend detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. [Google Scholar]
- Wahl, T.; Jensen, J.; Frank, T.; Haigh, I.D. Improved estimates of mean sea level changes in the German Bight over the last 166 years. Ocean Dyn. 2011, 61, 701–715. [Google Scholar] [CrossRef]
- Barbosa, S.M.; Silva, M.E.; Fernandes, M.J. Time series analysis of sea-level records: Characterising long-term variability. In Nonlinear Time Series Analysis in the Geosciences; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–173. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Kam, J.; Thurner, K. Streamflow trends in Indiana: Effects of long term persistence, precipitation and subsurface drains. J. Hydrol. 2009, 374, 171–183. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–26. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Thiel, H. A rank-invariant method of linear and polynomial regression analysis, Part 3. In Proceedings of the Koninalijke Neder-landse Akademie van Weinenschatpen A, 30 September 1950; Available online: https://www.dwc.knaw.nl/DL/publications/PU00018789.pdf (accessed on 11 December 2020).
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 126. [Google Scholar] [CrossRef]
- Serinaldi, F.; Kilsby, C.G. The importance of prewhitening in change point analysis under persistence. Stoch. Environ. Res. Risk Assess. 2015, 30, 763–777. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.P.; Piechota, T.C. Regional Analysis of Trend and Step Changes Observed in Hydroclimatic Variables around the Colorado River Basin. J. Hydrometeorol. 2008, 9, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Kalra, A.; Sagarika, S.; Pathak, P.; Ahmad, S. Hydro-climatological changes in the Colorado River Basin over a century. Hydrol. Sci. J. 2017, 62, 2280–2296. [Google Scholar] [CrossRef]
- Teegavarapu, R.S. Methods for Analysis of Trends and Changes in Hydroclimatological Time-Series. In Trends and Changes in Hydroclimatic Variables; Elsevier: Cambridge, MA, USA, 2019; pp. 1–89. [Google Scholar] [CrossRef]
- Lehmann, A.D.; Getzlaff, K.; Harlaß, J. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 2011, 46, 185–196. [Google Scholar] [CrossRef]
- Woodworth, P.L.; White, N.J.; Jevrejeva, S.; Holgate, S.J.; Church, J.A.; Gehrels, W.R. Evidence for the accelerations of sea level on multi-decade and century timescales. Int. J. Clim. 2008, 29, 777–789. [Google Scholar] [CrossRef]
- WMO. Climate 2001–2010: A Decade of Climate Extremes—Summary Report; WMO No. 1119; World Meteorological Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Shrestha, A.; Rahaman, M.; Kalra, A.; Jogineedi, R.; Maheshwari, P. Climatological Drought Forecasting Using Bias Corrected CMIP6 Climate Data: A Case Study for India. Forecasting 2020, 2, 4. [Google Scholar] [CrossRef]
- Thakur, B.; Kalra, A.; Lakshmi, V.; Lamb, K.W.; Miller, W.P.; Tootle, G. Linkage between ENSO phases and western US snow water equivalent. Atmos. Res. 2020, 236, 104827. [Google Scholar] [CrossRef]
- Reager, J.T.; Gardner, A.S.; Famiglietti, J.S.; Wiese, D.N.; Eicker, A.; Lo, M.-H. A decade of sea level rise slowed by climate-driven hydrology. Science 2016, 351, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, B.F.; Wu, Y.H.; Li, Y.S. Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science 2008, 320, 212–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Months | Trend | Shift | |||
---|---|---|---|---|---|
MK1/MK2 | MK1/MK2 | MK1/MK2 | Before Autocorrelation | After Autocorrelation | |
(+) | (−) | (o) | (+/−/o) | (+/−/o) | |
Annual | 52/52 | 1/1 | 6/6 | 53/1/5 | 52/1/6 |
Jan | 38/32 | 0/0 | 21/27 | 38/0/21 | 39/0/20 |
Feb | 33/28 | 1/1 | 25/30 | 32/1/26 | 32/1/26 |
Mar | 42/32 | 0/0 | 17/27 | 38/0/21 | 37/0/22 |
Apr | 42/35 | 0/0 | 17/24 | 42/0/17 | 41/0/18 |
May | 50/48 | 1/0 | 8/11 | 52/3/4 | 51/3/5 |
Jun | 48/41 | 0/0 | 9/17 | 49/2/8 | 49/2/8 |
Jul | 52/45 | 2/0 | 5/14 | 49/2/8 | 49/2/8 |
Aug | 51/46 | 1/0 | 7/13 | 52/1/6 | 52/1/6 |
Sep | 50/49 | 4/2 | 5/8 | 51/4/4 | 48/4/7 |
Oct | 49/49 | 0/0 | 10/10 | 46/0/13 | 46/0/13 |
Nov | 46/39 | 0/0 | 13/20 | 41/0/18 | 42/0/17 |
Dec | 38/33 | 0/0 | 21/26 | 40/0/19 | 40/0/19 |
Shift Years | 1963–1970 | 1971–1980 | 1981–1990 | 1991–2000 | 2001–2010 | 2010–2017 |
---|---|---|---|---|---|---|
Annual | 5 | 7 | 19 | 25 | 3 | 0 |
Jan | 4 | 7 | 4 | 15 | 4 | 1 |
Feb | 3 | 11 | 3 | 16 | 2 | 2 |
Mar | 3 | 11 | 3 | 5 | 7 | 1 |
Apr | 4 | 7 | 4 | 7 | 11 | 0 |
May | 4 | 11 | 4 | 4 | 2 | 0 |
Jun | 8 | 11 | 8 | 17 | 3 | 0 |
Jul | 5 | 10 | 5 | 11 | 5 | 0 |
Aug | 7 | 6 | 7 | 12 | 5 | 0 |
Sep | 3 | 4 | 3 | 22 | 6 | 2 |
Oct | 4 | 5 | 4 | 7 | 6 | 3 |
Nov | 6 | 8 | 6 | 17 | 4 | 0 |
Dec | 7 | 4 | 7 | 10 | 0 | 0 |
Spring | 3 | 11 | 3 | 5 | 7 | 1 |
Summer | 20 | 27 | 20 | 40 | 13 | 0 |
Fall | 13 | 17 | 13 | 46 | 16 | 5 |
Winter | 14 | 22 | 14 | 41 | 6 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, N.; Kalra, A.; Thakur, B.; Lamb, K.W.; Bhandari, S. Analyzing the Effects of Short-Term Persistence and Shift in Sea Level Records along the US Coast. Hydrology 2021, 8, 17. https://doi.org/10.3390/hydrology8010017
Joshi N, Kalra A, Thakur B, Lamb KW, Bhandari S. Analyzing the Effects of Short-Term Persistence and Shift in Sea Level Records along the US Coast. Hydrology. 2021; 8(1):17. https://doi.org/10.3390/hydrology8010017
Chicago/Turabian StyleJoshi, Neekita, Ajay Kalra, Balbhadra Thakur, Kenneth W. Lamb, and Swastik Bhandari. 2021. "Analyzing the Effects of Short-Term Persistence and Shift in Sea Level Records along the US Coast" Hydrology 8, no. 1: 17. https://doi.org/10.3390/hydrology8010017
APA StyleJoshi, N., Kalra, A., Thakur, B., Lamb, K. W., & Bhandari, S. (2021). Analyzing the Effects of Short-Term Persistence and Shift in Sea Level Records along the US Coast. Hydrology, 8(1), 17. https://doi.org/10.3390/hydrology8010017