Climate Change Study via the Centennial Trend of Climate Factors
Abstract
:1. Introduction
2. Methods
3. Data Description
- Land Temperature anomalies
- Sea Surface Temperature anomalies
- Temperature Over Land Plus Ocean
- Carbon Dioxide concentration
- Northern Hemisphere Sea Ice Extent
4. Results
4.1. Land Temperature Anomalies
4.2. Analysis of the Sea Surface Temperature Anomalies
4.3. Analysis of Land and Ocean Anomalies
4.4. Carbon Dioxide Concentration Anomalies
4.5. Northern Hemisphere Sea Ice Extent
5. Summary and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kraaijenbrink, P.; Bierkens, M.; Lutz, A.; Immerzeel, W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Clark, P.U.; Mix, A.C.; Eby, M.; Levermann, A.; Rogelj, J.; Nauels, A.; Wrathall, D.J. Sea-level commitment as a gauge for climate policy. Nat. Clim. Chang. 2018, 8, 653–655. [Google Scholar] [CrossRef]
- Rasmussen, D.; Bittermann, K.; Buchanan, M.K.; Kulp, S.; Strauss, B.H.; Kopp, R.E.; Oppenheimer, M. Extreme sea level implications of 1.5 C, 2.0 C, and 2.5 C temperature stabilization targets in the 21st and 22nd centuries. Environ. Res. Lett. 2018, 13, 034040. [Google Scholar] [CrossRef]
- FutureEarth. 10 New Insights in Climate Science 2018. Available online: https://futureearth.org/publications/science-insights/10-new-insights-in-climate-science-2019/ (accessed on 5 March 2019).
- King, A.D. Attributing changing rates of temperature record breaking to anthropogenic influences. Earth Future 2017, 5, 1156–1168. [Google Scholar] [CrossRef]
- Levin, K. New Global CO2 Emissions Numbers Are In. 2018. Available online: https://www.wri.org/blog/2018/12/new-global-co2-emissions-numbers-are-they-re-not-good (accessed on 5 March 2019).
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2016, 6, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Muller, D.B.; Liu, G.; Løvik, A.N.; Modaresi, R.; Pauliuk, S.; Steinhoff, F.S.; Brattebø, H. Carbon emissions of infrastructure development. Environ. Sci. Technol. 2013, 47, 11739–11746. [Google Scholar] [CrossRef]
- Panagoulia, D.; Dimou, G. Sensitivity of flood events to global climate change. J. Hydrol. 1997, 191, 208–222. [Google Scholar] [CrossRef]
- Holland, G.; Bruyère, C.L. Recent intense hurricane response to global climate change. Clim. Dyn. 2014, 42, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Cheng, L.; Jacobs, P.; Zhang, Y.; Fasullo, J. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth Future 2018, 6, 730–744. [Google Scholar] [CrossRef]
- Patricola, C.M.; Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 2018, 563, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme heat waves under 1.5 C and 2 C global warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Schiermeier, Q. Droughts, heatwaves and floods: How to tell when climate change is to blame. Nature 2018, 560, 20–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutmann, E.D.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Bruyere, C.L.; Done, J.M.; Garrè, L.; Friis-Hansen, P.; Veldore, V. Changes in hurricanes from a 13-yr convection-permitting pseudo–global warming simulation. J. Clim. 2018, 31, 3643–3657. [Google Scholar] [CrossRef]
- Mimura, N. Sea-level rise caused by climate change and its implications for society. Proc. Jpn. Acad. Ser. 2013, 89, 281–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClimateGov. Sea Level Rise Since 1880, /Climate-Change-Global-Sea-Level. 2019. Available online: http://xxx.lanl.gov/abs/https://www.climate.gov/news-features/understanding-climate (accessed on 5 March 2019).
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 1–12. [Google Scholar]
- ClimateGov. Arctic Sea Ice Minimum in 2017, /2017-Arctic-Sea-Ice-Minimum-Comes-Eighth-Smallest- Record. 2017. Available online: http://xxx.lanl.gov/abs/https://www.climate.gov/news-features/featured-images (accessed on 10 June 2018).
- ClimateGov. Old Thick Ice Barely Survives Today’s Arctic in 2019, /2019-Arctic-Report-Card-Old- Thick-Ice-Barely-Survives-Today’s-Arctic. 2019. Available online: http://xxx.lanl.gov/abs/https://www.climate.gov/news-features/featured-images (accessed on 5 March 2019).
- NSIDC. Sea Ice. 2019. Available online: http://xxx.lanl.gov/abs/https://nsidc.org/cryosphere/sotc/sea_ice.html (accessed on 5 March 2019).
- Kachouie, N.N.; Gerke, T.; Huybers, P.; Schwartzman, A. Nonparametric regression for estimation of spatiotemporal mountain glacier retreat from satellite images. IEEE Trans. Geosci. Remote. Sens. 2014, 53, 1135–1149. [Google Scholar] [CrossRef]
- Onyejekwe, O.; Holman, B.; Kachouie, N.N. Multivariate models for predicting glacier termini. Environ. Earth Sci. 2017, 76, 807. [Google Scholar] [CrossRef]
- Kachouie, N.N.; Huybers, P.; Schwartzman, A. Localization of mountain glacier termini in Landsat multi-spectral images. Pattern Recognit. Lett. 2013, 34, 94–106. [Google Scholar] [CrossRef]
- Takeda, H.; Farsiu, S.; Milanfar, P. Kernel Regression for Image Processing and Reconstruction. IEEE Trans. Image Process. 2007, 16, 349–366. [Google Scholar] [CrossRef] [Green Version]
- Lin, E.B.; Ling, Y. Image Compression and Denoising via Nonseparable Wavelet Approximation. J. Comput. Appl. Math. 2003, 155, 131–152. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, L. All of Nonparametric Statistics, 1st ed.; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Rencher, A. Methods of Multivariate Analysis; Wiley Series in Probability and Statistics; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kachouie, N.N.; Lin, X.; Schwartzman, A. FDR control of detected regions by multiscale matched filtering. Commun. Stat. Simul. Comput. 2017, 46, 127–144. [Google Scholar] [CrossRef] [PubMed]
- Pirón, M.A.C.; Pasalodos, J.A.C. Nueva serie de extension del hielo marino ártico en septiembre entre 1935 y 2014. Rev. Climatol. 2016, 16, 1–19. [Google Scholar]
- NSIDC. National Snow and Ice Data Center. 2019. Available online: http://xxx.lanl.gov/abs/https://nsidc.org/data (accessed on 5 March 2019).
- Met Office Hadley Centre Observations Datasets. HadISST1 Data. Available online: https://www.metoffice.gov.uk/hadobs/hadisst/ (accessed on 5 March 2019).
- NASA. Five-Year Global Temperature Anomalies from 1880 to 2016, 2017. Available online: http://xxx.lanl.gov/abs/https://nsidc.org/data (accessed on 10 June 2018).
Positive Inflection Points | |
---|---|
1902 | −0.376 |
1924 | −0.266 |
1953 | −0.024 |
2010 | 1.317 |
Negative Inflection Points | |
1889 | −0.374 |
1906 | −0.376 |
1942 | −0.011 |
1959 | −0.070 |
Positive Inflection Points | |
---|---|
1884 | −0.328 |
1926 | −0.308 |
1987 | 0.136 |
2012 | 0.294 |
Negative Inflection Points | |
1891 | −0.367 |
1957 | −0.124 |
1999 | 0.094 |
2013 | 0.325 |
Positive Inflection Points | |
---|---|
1881 | −0.11 |
1927 | −0.2 |
2010 | 0.71 |
Negative Inflection Points | |
1891 | −0.24 |
1955 | −0.15 |
2011 | 0.6 |
Positive Inflection Points | |
---|---|
1891 | 293.576 |
1906 | 297.864 |
1915 | 301.113 |
1928 | 305.800 |
1937 | 309.189 |
1955 | 313.464 |
1985 | 343.237 |
2004 | 375.795 |
Negative Inflection Points | |
1898 | 295.999 |
1910 | 299.287 |
1922 | 303.900 |
1932 | 307.300 |
1944 | 310.949 |
1959 | 315.676 |
1991 | 352.187 |
2008 | 385.681 |
Positive Inflection Points | |
---|---|
1961 | 0.999 |
1982 | 1.510 |
2004 | −0.870 |
2013 | −1.247 |
Negative Inflection Points | |
1977 | 1.228 |
2001 | −0.065 |
2007 | −1.868 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kachouie, N.N.; Onyejekwe, O.E. Climate Change Study via the Centennial Trend of Climate Factors. Hydrology 2020, 7, 25. https://doi.org/10.3390/hydrology7020025
Kachouie NN, Onyejekwe OE. Climate Change Study via the Centennial Trend of Climate Factors. Hydrology. 2020; 7(2):25. https://doi.org/10.3390/hydrology7020025
Chicago/Turabian StyleKachouie, Nezamoddin N., and Osita E. Onyejekwe. 2020. "Climate Change Study via the Centennial Trend of Climate Factors" Hydrology 7, no. 2: 25. https://doi.org/10.3390/hydrology7020025
APA StyleKachouie, N. N., & Onyejekwe, O. E. (2020). Climate Change Study via the Centennial Trend of Climate Factors. Hydrology, 7(2), 25. https://doi.org/10.3390/hydrology7020025