Permafrost Hydrology Research Domain: Process-Based Adjustment
Abstract
:1. Introduction
2. The Definition of Permafrost Hydrology and Linguistic Relativity
2.1. Permafrost
2.2. Hydrology
2.3. Permafrost Hydrology
3. Permafrost Hydrology: Process-Based Definition
3.1. Water Table Migration
3.2. Soil Water Migration
3.3. Transient Water Storage
4. Permafrost Hydrology: Spatial Domain
5. Hydrologies in the North: Definitions, Existing and Revised
5.1. Existing Definitions
5.2. Revised Definitions
6. Future Progress in Permafrost Hydrology Domain
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sorokina, S.A.; Li, C.; Wettstein, J.J.; Kvamstø, N.G. Observed atmospheric coupling between Barents Sea ice and the warm–Arctic cold–Siberian anomaly pattern. J. Clim. 2016, 29, 495–511. [Google Scholar] [CrossRef]
- Wijffels, S.; Roemmich, D.; Monselesan, D.; Church, J.; Gilson, J. Ocean temperatures chronicle the ongoing warming of Earth. Nat. Clim. Chang. 2016, 6, 116–118. [Google Scholar] [CrossRef]
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea–ice extent. Geophys. Res. Lett. 2009, 36, L07503. [Google Scholar] [CrossRef] [Green Version]
- Sturm, M.; Racine, C.; Tape, K. Increasing shrub abundance in the Arctic. Nature 2001, 411, 546–547. [Google Scholar] [CrossRef]
- Cronin, T.M.; Cronin, M.A. Biological response to climate change in the Arctic Ocean: The view from the past. Arctos 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dyn. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.M.; Holland, M.M. The emergence of surface-based Arctic amplification. Cryosphere 2009, 3, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Serreze, M.C.; Bromwich, D.H.; Clark, M.P.; Etringer, A.J.; Zhang, T.; Lammers, R. Large-scale hydro-climatology of the terrestrial Arctic drainage system. J. Geophys. Res. 2002, 108, 8160. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.A.; White, D.M.; Cassano, J.J.; Gutowski, W.J., Jr.; Hinzman, L.D.; Holland, M.M.; Steele, M.A.; Vörösmarty, C. An arctic hydrological system in transition: Feedbacks and impacts on terrestrial, marine and human life. J. Geophys. Res. 2009, 114, G04019. [Google Scholar] [CrossRef] [Green Version]
- Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S.H.; Prowse, T.; Semenova, O.; Stuefer, S.L.; Woo, M.K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges. J. Geophys. Res. Biogeosci. 2016, 121, 621–649. [Google Scholar] [CrossRef]
- Lammers, R.B.; Shiklomanov, A.I.; Vörösmarty, C.; Fekete, B.M.; Peterson, B.J. Assessment of contemporary Arctic river runoff based on observational discharge records. J. Geophys. Res. 2001, 106, 3321–3334. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Zlotnicki, V.; Rodell, M. Contemporary estimates of Pan–Arctic freshwater discharge from GRACE and reanalysis. Geophys. Res. Lett. 2007, 34, L19404. [Google Scholar] [CrossRef] [Green Version]
- Prowse, T.; Bring, A.; Mård, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F.J. Arctic Freshwater Synthesis: Summary of key emerging issues. J. Geophys. Res. Biogeosci. 2015, 120, 1887–1893. [Google Scholar] [CrossRef]
- Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.W.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 2013, 3, 1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nummelin, A.; IlIcak, M.; Li, C.; Smedsrud, L.H. Consequences of future increased Arctic runoff on Arctic ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Ocean. 2016, 121, 617–637. [Google Scholar] [CrossRef] [Green Version]
- Semiletov, I.; Pipko, I.; Gustaffson, Ö.; Anderson, L.G.; Sergienko, V.; Pugach, S.; Dudarev, O.; Charkin, A.; Gukov, A.; Bröder, L.; et al. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 2016, 9, 361–365. [Google Scholar] [CrossRef]
- Hinzman, L.; Kane, D.L.; Gieck, R.E.; Everett, K.R. Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg. Sci. Technol. 1991, 19, 95–110. [Google Scholar] [CrossRef]
- Woo, M.K. Permafrost Hydrology; Springer: Berlin/Heidelberg, Germany, 2012; 564p. [Google Scholar]
- Kane, D.L.; Yoshikawa, K.; McNamara, J.P. Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol. J. 2013, 21, 41–52. [Google Scholar] [CrossRef]
- Wright, R.K. Preliminary results of a study on active layer hydrology in the discontinuous zone at Schefferville, Nouveau–Québec. Géographie Phys. Quat. 1979, 33, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Boike, J.; Roth, K.; Overduin, P.P. Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour. Res. 1998, 34, 355–363. [Google Scholar] [CrossRef]
- Weismüller, J.; Wollschläger, U.; Boike, J.; Pan, X.; Yu, Q.; Roth, K. Modeling the thermal dynamics of the active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau. Cryosphere 2011, 5, 741–757. [Google Scholar] [CrossRef] [Green Version]
- Burt, T.P.; Williams, P.J. Hydraulic conductivity in frozen soil. Earth Surf Proc. 1976, 1, 349–360. [Google Scholar] [CrossRef]
- Woo, M.K. Permafrost hydrology in North America. Atmos. Ocean 1986, 24, 201–234. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.K.; Kane, D.L.; Carey, S.K.; Yang, D. Progress in permafrost hydrology in the new millennium. Permafr. Periglac. Process. 2008, 19, 237–254. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Koven, C.D.; Swenson, S.C.; Riley, W.J.; Slater, A.G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res Lett. 2015, 10, 094011. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.W.; Larouche, J.R.; Jones, J.B.; Bowden, W.B.; Balser, A.W. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J. Geophys. Res. Biogeosci. 2014, 119, 2049–2063. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Cory, R.M.; Ward, C.P.; Crumb, B.C.; Kling, G.W. Sunlight controls water column processing of carbon in arctic fresh waters. Science 2014, 345, 925–928. [Google Scholar] [CrossRef]
- Lessels, J.S.; Tetzlaff, D.; Carey, S.K.; Smith, P.; Soulsby, C. A coupled hydrology–biogeochemistry model to simulate dissolved organic carbon exports from a permafrost–influenced catchment. Hydrol. Process. 2015, 29, 5383–5396. [Google Scholar] [CrossRef] [Green Version]
- Woo, M.-K.; Marsh, P.; Pomeroy, J.W. Snow, frozen soils and permafrost hydrology in Canada, 1995–1998. Hydrol. Process. 2000, 14, 1591–1611. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Kane, D.L.; Woo, M.-K. Permafrost hydrology. In Encyclopedia of Hydrological Sciences; Anderson, M., Ed.; Wiley: West Sussex, UK, 2005; Volume 4, pp. 2679–2693. [Google Scholar]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15. [Google Scholar] [CrossRef]
- Ford, A.; Peat, F.D. The role of language in science. Found. Phys. 1988, 18, 1233–1242. [Google Scholar] [CrossRef]
- Einstein, A. The common language of science. In Out of My Later Years; Gramercy: London, UK, 1941; pp. 111–113. [Google Scholar]
- Whorf, B.L. Science and linguistics. Technol. Rev. 1940, 42, 229–231; 247–248. [Google Scholar]
- French, H. The development of periglacial geomorphology: 1—Up to 1965. Permafr. Periglac. Process. 2003, 14, 29–60. [Google Scholar] [CrossRef]
- National Research Council of Canada. Glossary of Permafrost and Related Ground-Ice Terms; Technical Memorandum No. 142; NERC: Ottawa, ON, Canada, 1988. [Google Scholar]
- Van Everdingen, R. (Ed.) Multi-Language Glossary of Permafrost and Related Ground-Ice Terms; IPA: Calgary, AB, Canada, 2005. [Google Scholar]
- Müller, S.W. Permafrost of perennially frozen ground and related engineering problems. In US Geological Survey Special Report, Strategic Engineering Study 62; Government Printing Office: Washinton, DC, USA, 1945. [Google Scholar]
- Romanovsky, V.; Smith, S.E.; Christiansen, H.H. Permafrost thermal state in the polar Northern Hemisphere during the International Polar Year 2007–2009: A synthesis. Permafr. Periglac. Process. 2010, 21, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Dobiński, W. Permafrost. Earth Sci. Rev. 2011, 108, 158–169. [Google Scholar] [CrossRef]
- Dostovalov, B.N.; Kudryavtsev, V.A. Obschee Merzlotovedenie (General Permafrost Science); Moscow State University Publ.: Moscow, Russia, 1967; 403p. (In Russian) [Google Scholar]
- Dobrowolski, A.B. Historia Naturalna Lodu (Natural History of Ice); Kasa Pomocy im. Mianowskiego: Warsaw, Poland, 1923. (In Polish) [Google Scholar]
- Shumsky, P.A. Principles of Structural Glaciology; Dover: New York, NY, USA, 1964. [Google Scholar]
- Sokolov, B.L. Hydrology of rivers of the cryolithic zone in the U.S.S.R. Nord. Hydrol. 1991, 22, 211–226. [Google Scholar] [CrossRef]
- ACIA. Arctic Climate Impact Assessment; Symon, C., Arris, L., Heal, B., Eds.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Ottesen, D.; Stokes, C.R.; Bøe, R.; Rise, L.; Longwa, O.; Thorsnes, T.; Olesen, O.; Bugge, T.; Lepland, A.; Hestvik, O.B. Landform assemblages and sedimentary processes along the Norwegian Channel Ice Stream. Sediment Geol. 2016, 338, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Slaymaker, O. Criteria to discriminate between proglacial and paraglacial environments. Landf. Anal. 2007, 5, 72–74. [Google Scholar]
- Bartsch, A. Monitoring of terrestrial hydrology at high latitudes with scatterometer data. In Geoscience and Remote Sensing: New Achievements; Imperatore, P., Riccio, D., Eds.; Intech: London, UK, 2010; pp. 247–262. [Google Scholar]
- French, H.; Thorne, C.E. The changing nature of periglacial geomorphology. Géomorphol. Relief. Process. Environ. 2006, 3, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Fotiev, S.M. Underground waters of cryogenic area of Russia. Earth Cryosphere 2013, XVII, 41–59, (In Russian, with English abstract). [Google Scholar]
- Konrad, J.M.; Duquennoi, C. A model for water transport and ice lensing in freezing soils. Water Resour. Res. 1993, 29, 3109–3124. [Google Scholar] [CrossRef]
- Boytsov, A.V. Usloviya Formirovaniya i Rezhim Podzemnykh vod Nadmerzlotnogo i Mezhmerzlotnogo Stoka v Tsentral’noy YAKUTII (Formation Conditions and Groundwater Regime of Supra-Permafrost and Permafrost Runoff in Central Yakutia). PhD Thesis, P.I. Melnikov Permafrost Institute, Yakutsk, Russia, 2002. (In Russian). [Google Scholar]
- Fel’dman, G.M. Peredvizheniye Vlagi v Talykh i Promerzayushchikh Gruntakh (Water Migration in Thawed and Freezing Soils); Nauka: Novosibirsk, Russia, 1988. (In Russian) [Google Scholar]
- Quinton, W.L.; Shirazi, T.; Carey, S.K.; Pomeroy, J.W. Soil ware storage and active layer development in a sub–alpine tundra hillslope, Southern Yukon Territory, Canada. Permafr. Periglac. Process. 2005, 16, 369–382. [Google Scholar] [CrossRef]
- O’Neill, A.D.J.; Gray, D.M. Solar radiation penetration through snow. IAHS Publ. 1973, 107, 227–241. [Google Scholar]
- Shur, Y.; Hinkel, K.M.; Nelson, F.E. The transient layer: Implications for geocryology and climate–change science. Permafr. Periglac. Process. 2005, 16, 5–17. [Google Scholar] [CrossRef]
- Streletsky, D.; Tananaev, N.; Opel, T.; Shiklomanov, N.I.; Nyland, K.E.; Streletskaya, I.D.; Tokarev, I.; Shiklomanov, A.I. Permafrost hydrology in changing climatic conditions: Seasonal variability of stable isotope composition in rivers in discontinuous permafrost. Environ. Res Lett. 2015, 10, 095003. [Google Scholar] [CrossRef]
- Iwata, K. Driving force for water migration in frozen clayey soil. Soil Sci. Plant Nutr. 1980, 26, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Effects of freezing on soil temperature, freezing front propagation and moisture redistribution in peat: Laboratory investigations. Hydrol. Earth Syst. Sci. 2012, 16, 501–515. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhny, I.L.; Lavrov, S.A. Hydrophysical Processes in Drainage Basins: Experimental Studies and Modeling; Nestor–Istoriya: St. Petersburg, Russia, 2012. [Google Scholar]
- Chamberlain, E.J.; Gow, A.J. Effect of freezing and thawing on the permeability and structure of soils. Eng. Geol. 1979, 13, 73–92. [Google Scholar] [CrossRef]
- Sterpi, D. Effect of freeze–thaw cycles on the hydraulic conductivity of a compacted clayey silt and influence of the compaction energy. Soils Found. 2015, 55, 1326–1332. [Google Scholar] [CrossRef] [Green Version]
- Bantzekina, T.V. Ice content variations in coarse talus during spring snow melting. Kolyma 2001, 2, 28–31. [Google Scholar]
- Sokolov, B.L. Certain features in structure and mechanical break-down of naleds, their significance in estimates of naled runoff. In Siberian Naleds; Alekseev, V.R., Ed.; U.S. Army CRREL: Hanover, NH, USA, 1973; pp. 140–154. [Google Scholar]
- Alekseev, V.R. Naledevedeniye (Icing Studies); Siberian Branch RAS Publ.: Novosibirsk, Russia, 2007. (In Russian) [Google Scholar]
- Clark, I.D.; Lauriol, B. Aufeis of the Firth River basin, Northern Yukon, Canada: Insights into permafrost hydrogeology and karst. Arct. Alp. Res. 1997, 29, 240–252. [Google Scholar] [CrossRef]
- Murton, J.B.; Edwards, M.E.; Lozhkin, A.V.; Anderson, P.M.; Savvinov, G.M.; Bakulina, N.; Bondarenko, O.V.; Cherepanova, M.V.; Danilov, P.P.; Boeskorov, V.; et al. Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quat. Res. 2017, 87, 314–330. [Google Scholar] [CrossRef] [Green Version]
- Opel, T.; Wetterich, S.; Meyer, H.; Dereviagin, A.Y.; Fuchs, M.C.; Schirrmeister, L. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait). Clim. Past 2017, 13, 587–611. [Google Scholar] [CrossRef] [Green Version]
- Carey, S.K.; Woo, M.K. Hydrology of two slopes in subarctic Yukon, Canada. Hydrol. Process. 1999, 13, 2549–2562. [Google Scholar] [CrossRef]
- Heginbottom, J.A. Permafrost mapping: A review. Prog. Phys. Geogr. 2000, 26, 623–642. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Voss, C.I.; Wellman, T.P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour Res. 2012, 48, W07524. [Google Scholar] [CrossRef]
- Reggiani, P.; Rientjes, T.H.M. Flux parametrization in the representative elementary watershed approach: Application to a natural basin. Water. Resour. Res. 2005, 41, W04013. [Google Scholar] [CrossRef] [Green Version]
- Flügel, W.-A. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrol. Process. 1995, 9, 423–436. [Google Scholar] [CrossRef]
- Woo, M.-K. Cryohydrology in Canada: A brief history. Hydrol. Process. 2019, 33, 3407–3411. [Google Scholar] [CrossRef]
- Prowse, T. Northern hydrology: An overview. In Northern Hydrology: Canadian Perspectives; Prowse, T., Ommanney, C., Eds.; NHRI Science Report No. 1; National Hydrology Research Institute, Environment Canada: Saskatoon, SK, Canada, 1990; pp. 1–36. [Google Scholar]
- Duguay, C.R.; Pietroniro, A. Introduction. In Remote Sensing in Northern Hydrology: Measuring Environmental Change; Duguay, C.R., Pietroniro, A., Eds.; Geophysical Monograph Series 163; American Geophysical Union: Washington, DC, USA, 2005; pp. 1–5. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Buttle, J.; Carey, S.K.; McGuire, K.; Laudon, H.; Soulsby, C. Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: A review. Hydrol. Process. 2014, 29, 3475–3490. [Google Scholar] [CrossRef]
- Flowers, G.E.; Björnsson, H.; Pállson, F. New insights into the subglacial and periglacial hydrology of Vatnajökull, Iceland, from a distributed physical model. J. Glaciol. 2003, 49, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Gustafsson, L.-G.; Berglund, S.; Lindborg, T.; Selroos, J.-O.; Claesson Liljedahl, L.; Destouni, G. Data evaluation and numerical modeling of hydrological interactions between active layer, lake and talik in a permafrost catchment, Western Greenland. J. Hydrol. 2015, 527, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Sund, M. Polar Hydrology; Report 2–2008; Norwegian Water Resources and Energy Directorate: Oslo, Norway, 2008.
- Neal, E.G.; Todd Walter, M.; Coffeen, C. Linking the pacific decadal oscillation to seasonal stream discharge patterns in Southeast Alaska. J. Hydrol. 2002, 263, 188–197. [Google Scholar] [CrossRef]
- Kelman, I. (Ed.) Arcticness: Power and Voice from the North; UCL Press: London, UK, 2017; 204p. [Google Scholar] [CrossRef]
- Kliskey, A.; Williams, P.; Abatzoglou, J.T.; Lammers, R.B. Enhancing a community-based water resource tool for assessing environmental change: The arctic water resources vulnetability index. Environ. Syst. Decis. 2019, 39, 183–197. [Google Scholar] [CrossRef]
- Krogh, S.A.; Pomeroy, J.W. Recent changes to the hydrological cycle of an Arctic basin at the tundra-taiga transition. Hydrol. Earth Syst. Sci. 2018, 22, 3993–4014. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, D.; Piovano, T.; Ala-Aho, P.; Smith, A.; Carey, S.; Marsh, P.; Wookey, P.A.; Street, L.E.; Soulsby, C. Using stable isotopes to estimate travel times in a data-sparse Arctic catchment: Challenges and possible solutions. Hydrol. Process. 2018, 32, 1936–1952. [Google Scholar] [CrossRef]
- Bagard, M.L.; Chabaux, F.; Pokrovsky, O.S.; Viers, J.; Prokushkin, A.S.; Stille, P.; Rihs, S.; Schmitt, A.D.; Dupré, B. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim. Cosmochim. Acta 2011, 75, 3335–3357. [Google Scholar] [CrossRef]
- Taupp, M.; Constan, L.; Hallam, S.J. The biogeochemistry of anaerobic methane oxidation. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 887–907. [Google Scholar] [CrossRef]
- Mann, P.J.; Eglinton, T.I.; McIntyre, C.P.; Zimov, N.; Davydova, A.; Vonk, J.E.; Holmes, R.M.; Spencer, R.G.M. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. Nat. Commun. 2015, 6, 7856. [Google Scholar] [CrossRef] [PubMed]
- Frey, K.E.; Sobczak, W.V.; Mann, P.J.; Holmes, R.M. Optical properties and bioavailability of dissolved organic matter along a flow–path continuum from soil pore waters to the Kolyma River mainstem, East Siberia. Biogeosciences 2016, 13, 2279–2290. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S. Global warming and fluvial geomorphology. Geomorphology 2006, 79, 384–394. [Google Scholar] [CrossRef]
- Lafrenière, M.J.; Lamoureux, S.F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 2019, 191, 212–223. [Google Scholar] [CrossRef]
- Karra, S.; Painter, S.L.; Lichtner, P.C. Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN–ICE v.1.0). Cryosphere 2014, 8, 1935–1950. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, J.M.; Voss, C.I.; Siegel, D.I. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs. Adv. Water Resour. 2007, 30, 966–983. [Google Scholar] [CrossRef]
- Orgogozo, L.; Prokushkin, A.S.; Pokrovsky, O.; Grenier, C.; Quintard, M.; Viers, J.; Audry, S. Water and energy transfer modeling in a permafrost-dominated, forested basin catchment of Central Siberia: The key role of rooting depth. Permafr. Periglac. Process. 2019, 30, 75–89. [Google Scholar] [CrossRef]
- Semenova, O.; Vinogradov, Y.; Vinogradova, T.; Lebedeva, L. Simulation of soil profile heat dynamics and their integration into hydrological modelling in a permafrost zone. Permafr. Periglac. Process. 2014, 25, 257–269. [Google Scholar] [CrossRef]
- Hülsmann, L.; Geyer, T.; Schweitzer, C.; Priess, J.; Karthe, D. The effect of subarctic conditions on water resources: Initial results and limitations of the SWAT model applied to the Kharaa River basin in Northern Mongolia. Environ. Earth Sci. 2015, 73, 581–592. [Google Scholar] [CrossRef]
- Fabre, C.; Sauvage, S.; Tananaev, N.; Srinivasan, R.; Teisserenc, R.; Sánchez Pérez, J.M. Using modeling tools to better understand permafrost hydrology. Water 2017, 9, 418. [Google Scholar] [CrossRef]
- Payne, C.; Panda, S.; Prakash, A. Remote sensing of river erosion on the Colville river, North Slope Alaska. Remote Sens. 2018, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Tananaev, N. Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia. Geomorphology 2016, 253, 524–533. [Google Scholar] [CrossRef]
- Walker, H.J.; Hudson, P.F. Hydrologic and geomorphic processes in the Colville River delta, Alaska. Geomorphology 2003, 56, 291–303. [Google Scholar] [CrossRef]
- Tananaev, N. Seasonal and long-term within-channel permafrost and its effects on northern river navigation. In Cold Regions Engineering 2012: Sustainable Infrastructure Development in a Changing Cold Environment; Morse, B., Doré, G., Eds.; American Society of Civil Engineers: Reston, VA, USA. [CrossRef]
- Sukhodrovsky, V.L. Ekzogennoye Rel’efoobrazovaniye v Kriolitozone (Exogenous Morphogenesis in Permafrost); Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Godin, E.; Fortier, D.; Coulombe, S. Effects of thermo-erosional gullying on hydrologic flow networks, discharge and soil loss. Environ. Res. Lett. 2014, 9, 105010. [Google Scholar] [CrossRef]
- Linhardt, T.; Levy, J.S.; Thomas, C.K. Water tracks intensify surface energy and mass exchange in the Antarctic McMurdo Dry Valleys. Cryosphere 2019, 13, 2203–2219. [Google Scholar] [CrossRef] [Green Version]
- Irvine-Fynn, T.D.L.; Moorman, B.J.; Willis, I.C.; Sjogren, D.B.; Hodson, A.J.; Mumford, P.N.; Walter, F.S.A.; Williams, J.L.M. Geocryological processes linked to High Arctic proglacial stream suspended sediment dynamics: Examples from Bylot Island, Nunavut, and Spitsbergen, Svalbard. Hydrol. Process. 2005, 19, 115–135. [Google Scholar] [CrossRef]
- Fernàndez, J.-R.; Oliva, M.; Hughes, P. Permafrost and periglacial processes in mid-and low-latitude mountain rivers. Permafr. Periglac. Process. 2019, 30, 245–248. [Google Scholar] [CrossRef]
Study Area Extent | Area | Permafrost Extent | |||
---|---|---|---|---|---|
Patchy <10% | Sporadic 10–50% | Discontinuous 51–90% | Continuous >90% | ||
Stand plot | point | Yes | Yes | Yes | Yes |
Slope; representative elementary watershed (REW) [76] | <10 km2 | No | Yes | Yes | Yes |
Mesoscale watershed; hydrological response unit (HRU) [77] | <2500 km2 | No | No | Yes | Yes |
Macroscale watershed and global basins | >2500 km2 | Permafrost-affected HRUs should be explicitly described or modelled as such |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tananaev, N.; Teisserenc, R.; Debolskiy, M. Permafrost Hydrology Research Domain: Process-Based Adjustment. Hydrology 2020, 7, 6. https://doi.org/10.3390/hydrology7010006
Tananaev N, Teisserenc R, Debolskiy M. Permafrost Hydrology Research Domain: Process-Based Adjustment. Hydrology. 2020; 7(1):6. https://doi.org/10.3390/hydrology7010006
Chicago/Turabian StyleTananaev, Nikita, Roman Teisserenc, and Matvey Debolskiy. 2020. "Permafrost Hydrology Research Domain: Process-Based Adjustment" Hydrology 7, no. 1: 6. https://doi.org/10.3390/hydrology7010006
APA StyleTananaev, N., Teisserenc, R., & Debolskiy, M. (2020). Permafrost Hydrology Research Domain: Process-Based Adjustment. Hydrology, 7(1), 6. https://doi.org/10.3390/hydrology7010006