Mathematical Treatment of Saturated Macroscopic Flow in Heterogeneous Porous Medium: Evaluating Darcy’s Law
Abstract
:1. Introduction
1.1. Darcy’ Law for Flow in a Homogeneous Saturated Porous Medium
1.2. Heterogeneous Porous Material Defined
1.3. A Commonly Used but Questionable Law for Flow in a Heterogeneous Saturated Porous Medium
2. A Proposed Law for Flow in a Heterogeneous Saturated Porous Medium
3. An Extended Fluid Pore Velocity Expression in Heterogeneous Porous Materials
4. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Gupta, V.K.; Sposito, G.; Bhattacharya, R. Toward an analytical theory of water flow through inhomogeneous porous media. Water Resour. Res. 1977, 13, 208–210. [Google Scholar] [CrossRef]
- Narasimhan, T. Maxwell, electromagnetism, and fluid flow in resistive media. Eos Trans. Am. Geophys. Union 2003, 84, 469–474. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon: Exposition et Application; Victor Dalmont: Paris, France, 1856. [Google Scholar]
- Chakraborty, P. Particle Tracking Using Stochastic Differential Equation Driven by Pure Jump Lévy Processes; Michigan State University: East Lansing, MI, USA, 2009. [Google Scholar]
- Chakraborty, P. A stochastic differential equation model with jumps for fractional advection and dispersion. J. Stat. Phys. 2009, 136, 527–551. [Google Scholar] [CrossRef]
- Sposito, G.; Barry, D.; Kabala, Z. Stochastic differential equations in theory of solute transport through inhomogeneous porous media. Adv. Porous Med. 1991, 1, 295–309. [Google Scholar]
- Sposito, G. The statistical mechanical theory of water transport through unsaturated soil: 1. The conservation laws. Water Resour. Res. 1978, 14, 474–478. [Google Scholar] [CrossRef]
- Makinde, O.; Osalusi, E. Second law analysis of laminar flow in a channel filled with saturated porous media. Entropy 2005, 7, 148–160. [Google Scholar] [CrossRef]
- Bear, J.; Bachmat, Y. Transport phenomena in porous media—Basic equations. In Fundamentals of Transport Phenomena in Porous Media; Bear, J., Corapcioglu, M.Y., Eds.; Springer: Newark, DC, USA, 1984; pp. 3–61. [Google Scholar]
- Bachmat, Y.; Bear, J. The general equations of hydrodynamic dispersion in homogeneous, isotropie, porous mediums. J. Geophys. Res. 1964, 69, 2561–2567. [Google Scholar] [CrossRef]
- Bear, J.; Verruijt, A. Theory and Applications of Transport in Porous Media. Modeling of Groundwater Flow and Pollution, Dordrecht: Reidel; Springer: Dordrecht, The Netherlands, 1987. [Google Scholar]
- Zhou, Q.; Bensabat, J.; Bear, J. Accurate calculation of specific discharge in heterogeneous porous media. Water Resour. Res. 2001, 37, 3057–3069. [Google Scholar] [CrossRef] [Green Version]
- Barak, A.Z.; Bear, J. Flow at high reynolds numbers through anisotropic porous media. Adv. Water Resour. 1981, 4, 54–66. [Google Scholar] [CrossRef]
- Fel, L.; Bear, J. Dispersion and dispersivity tensors in saturated porous media with uniaxial symmetry. Trans. Porous Med. 2010, 85, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.P.; Tomasko, D. Analytical solution to the advective-dispersive equation with a decaying source and contaminant. J. Hydrol. Eng. 2008, 13, 1193–1196. [Google Scholar] [CrossRef]
- Tomasko, D.; Williams, G.P.; Smith, K. An analytical model for simulating step-function injection in a radial geometry. Math. Geol. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Nelson, R.W.; Williams, G.P. Bounding of flow and transport analysis in heterogeneous saturated porous media: A minimum energy dissipation principle for the bounding and scale-up. Hydrology 2019, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Hubbert, M.K. The theory of ground-water motion. J. Geol. 1940, 48, 785–944. [Google Scholar] [CrossRef]
- Truesdell, C.; Toupin, R. The classical field theories. In Principles of Classical Mechanics and Field Theory/Prinzipien der Klassischen Mechanik und Feldtheorie; Flügge, S., Ed.; Springer: New York, NY, USA, 1960; pp. 226–858. [Google Scholar]
- Aris, R. Vectors, Tensors and the Basic Equations of Fluid Mechanics; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Nelson, R.W. Distinguishing Features of Flow in Heterogeneous Porous Media: 4, Is a More General Dynamic Description Required; Pacific Northwest Lab.: Richland, WA, USA, 1990. [Google Scholar]
- Nelson, R.W. Distinguishing Features of Flow in Heterogeneous Porous Media. 1. A Searching but less than Perfect Prologue for Research Direction. In Proceedings of the Twelfth Annual American Geophysical Union, Fort Collins, CO, USA, 31 March–3 April 1992; pp. 117–124. [Google Scholar]
- Nelson, R.W. Distinguishing Features of Flow in Heterogeneous Porous Media. 2. The Macroscopic Rotational Aspects of Flow. In Proceedings of the Twelfth Annual American Geophysical Union, Fort Collins, CO, USA, 31 March–3 April 1992; pp. 125–130. [Google Scholar]
- Hughes, W.F.; Gaylord, E.W.; Hughes, G.W. Basic Equations of Engineering Science; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Lass, H. Vector and tensor analysis. Am. J. Phys. 1950, 18, 583–584. [Google Scholar] [CrossRef]
- Lapwood, E. Convection of a Fluid in a Porous Medium. Math. Proc. Camb. Philos. Soc. 1948, 44, 508–521. [Google Scholar]
- Yih, C.S. A transformation for free-surface flow in porous media. Phys. Fluids 1964, 7, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Yih, C.S. Velocity of a fluid mass imbedded in another fluid flowing in a porous medium. Phys. Fluids 1963, 6, 1403–1407. [Google Scholar] [CrossRef] [Green Version]
- Wooding, R. Steady state free thermal convection of liquid in a saturated permeable medium. J. Fluid Mech. 1957, 2, 273–285. [Google Scholar] [CrossRef]
- Wooding, R. The stability of a viscous liquid in a vertical tube containing porous material. Proc. R. Soc. Lond. A 1959, 252, 120–134. [Google Scholar]
- Wooding, R. Rayleigh instability of a thermal boundary layer in flow through a porous medium. J. Fluid Mech. 1960, 9, 183–192. [Google Scholar] [CrossRef]
- Wooding, R. Convection in a saturated porous medium at large rayleigh number or peclet number. J. Fluid Mech. 1963, 15, 527–544. [Google Scholar] [CrossRef]
- Combarnous, M.; Bories, S. Hydrothermal convection in saturated porous media. In Advances in Hydroscience; Elsevier: Amsterdam, The Netherlands, 1975; Volume 10, pp. 231–307. [Google Scholar]
- Bejan, A.; Poulikakos, D. The nondarcy regime for vertical boundary layer natural convection in a porous medium. Int. J. Heat Mass Transf. 1984, 27, 717–722. [Google Scholar] [CrossRef]
- Choudhary, M.; Propster, M.; Szekely, J. On the importance of the inertial terms in the modeling of flow maldistribution in packed beds. AIChE J. 1976, 22, 600–603. [Google Scholar] [CrossRef]
- Hayes, R. Forced convection heat transfer at the boundary layer of a packed bed. Transp. Porous Med. 1990, 5, 231–245. [Google Scholar] [CrossRef]
- Islam, R.M.; Nandakumar, K. Multiple solutions for buoyancy-induced flow in saturated porous media for large peclet numbers. J. Heat Transf. 1986, 108, 866–871. [Google Scholar] [CrossRef]
- Patil, P.R.; Vaidyanathan, G. Effect of variable viscosity on the setting up of convection currents in a porous medium. Int. J. Eng. Sci. 1981, 19, 421–426. [Google Scholar] [CrossRef]
- Patil, P.R.; Vaidyanathan, G. Effect of variable viscosity on thermohaline convection in a porous medium. J. Hydrol. 1982, 57, 147–161. [Google Scholar] [CrossRef]
- Patil, P.R.; Vaidyanathan, G. On setting up of convection currents in a rotating porous medium under the influence of variable viscosity. Int. J. Eng. Sci. 1983, 21, 123–130. [Google Scholar] [CrossRef]
- Tong, T.; Subramanian, E. A boundary-layer analysis for natural convection in vertical porous enclosures—Use of the brinkman-extended darcy model. Int. J. Heat Mass Transf. 1985, 28, 563–571. [Google Scholar] [CrossRef]
- Tong, T.; Subramanian, E. Natural convection in rectangular enclosures partially filled with a porous medium. Int. J. Heat Fluid Flow 1986, 7, 3–10. [Google Scholar] [CrossRef]
- Vafai, K.; Tien, C. Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 1981, 24, 195–203. [Google Scholar] [CrossRef]
- Vortmeyer, D.; Rudraiah, N.; Sasikumar, T. Effect of radiative transfer on the onset of convection in a porous medium. Int. J. Heat Mass Transf. 1989, 32, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Vincourt, M. Influence of an heterogeneity on the selection of convective patterns in a porous layer. Int. J. Engi. Sci. 1989, 27, 377–391. [Google Scholar] [CrossRef]
- Strack, O.D. Groundwater Mechanics; Prentice Hall: New Jersey, NJ, USA, 1989. [Google Scholar]
- Lamb, H. A Treatise on the Mathematical Theory of the Motion of Fluids; The University Press: Cambridge, UK, 1879. [Google Scholar]
- Truesdell, C. The Kinematics of Vorticity; Indiana University Press Bloomington: Bloomington, IN, USA, 1954; Volume 954. [Google Scholar]
- De Marsily, G. Quantitative Hydrogeology: Groundwater Hydrology for Engineers; Academic Press: San Diego, CA, USA, 1986. [Google Scholar]
- Muskat, M.; Meres, M.W. The flow of heterogeneous fluids through porous media. Physics 1936, 7, 346–363. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, R.W.; Williams, G.P. Mathematical Treatment of Saturated Macroscopic Flow in Heterogeneous Porous Medium: Evaluating Darcy’s Law. Hydrology 2020, 7, 4. https://doi.org/10.3390/hydrology7010004
Nelson RW, Williams GP. Mathematical Treatment of Saturated Macroscopic Flow in Heterogeneous Porous Medium: Evaluating Darcy’s Law. Hydrology. 2020; 7(1):4. https://doi.org/10.3390/hydrology7010004
Chicago/Turabian StyleNelson, R. William, and Gustavious P. Williams. 2020. "Mathematical Treatment of Saturated Macroscopic Flow in Heterogeneous Porous Medium: Evaluating Darcy’s Law" Hydrology 7, no. 1: 4. https://doi.org/10.3390/hydrology7010004
APA StyleNelson, R. W., & Williams, G. P. (2020). Mathematical Treatment of Saturated Macroscopic Flow in Heterogeneous Porous Medium: Evaluating Darcy’s Law. Hydrology, 7(1), 4. https://doi.org/10.3390/hydrology7010004