Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir
Abstract
:1. Introduction
2. Collection and Analysis
2.1. Sample Collection
2.2. Geochemical Fractionation
- Fr.W: water soluble and interstitial water P
- Fr.KCl: anion exchange sites, loosely sorbed P
- Fr.NaOH: Al- and Fe-bound or adsorbed P
- Fr.HCl: Ca-bound (apatite) P
- Fr.K2S2O8: residual (mostly organic) P
2.3. Measurement
2.4. Sediment Concentration Conversion
3. Results
3.1. Fr.W (Water Soluable Fraction)
3.2. Complete Fractionation
3.3. Comparison with Previous Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Smith, V.; Tilman, G.; Nekola, J. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Sas, H. Lake Restoration by Reduction of Nutrient Loading; Academia Verlag: New York, NY, USA, 1989. [Google Scholar]
- Sigua, G.; Kang, W.; Coleman, S. Soil profile distribution of phosphorus and other nutrients following wetland conversion to beef cattle pasture. J. Environ. Qual. 2006, 35, 2374. [Google Scholar] [CrossRef] [PubMed]
- Suberkropp, K.; Chauvet, E. Regulation of leaf breakdown by fungi in streams: Influences of water chemistry. Ecology 1995, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.; Caraco, N.; Correll, D.; Howarth, R.; Sharpley, A.; Smith, V. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Olsen, J.; Williams, G.; Miller, A.; Merritt, L. Measuring and calculating current atmospheric phosphorous and nitrogen loadings to utah lake using field samples and geostatistical analysis. Hydrology 2018, 5, 45. [Google Scholar] [CrossRef]
- Sharma, S.; Nalley, D.; Subedi, N. Characterization of temporal and spatial variability of phosphorus loading to lake erie from the western basin using wavelet transform methods. Hydrology 2018, 5, 50. [Google Scholar] [CrossRef]
- Rossi, G.; Premazzi, G. Delay in lake recovery caused by internal loading. Water Res. 1991, 25, 567–575. [Google Scholar] [CrossRef]
- Granéli, W. Internal phosphorus loading in lake ringsjön. Hydrobiologia 1999, 404, 19–26. [Google Scholar] [CrossRef]
- Mayer, T.; Ptacek, C.; Zanini, L. Sediments as a source of nutrients to hypereutrophic marshes of point pelee, ontario, canada. Water Res. 1999, 33, 1460–1470. [Google Scholar] [CrossRef]
- Surridge, B.; Heathwaite, A.; Baird, A. The release of phosphorus to porewater and surface water from river riparian sediments. J. Environ. Qual. 2007, 36, 1534. [Google Scholar] [CrossRef] [PubMed]
- Nowlin, W.; Evarts, J.; Vanni, M. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshw. Biol. 2005, 50, 301–322. [Google Scholar] [CrossRef] [Green Version]
- Holtan, H.; Kamp-Nielsen, L.; Stuanes, A. Phosphorus in soil, water and sediment: An overview. Hydrobiologia 1988, 170, 19–34. [Google Scholar] [CrossRef]
- Pace, M.L.; Funke, E. Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 1991, 72, 904–914. [Google Scholar] [CrossRef]
- Gibson, C.E. Dynamics of phosphorus in freshwater and marine environments. In Phosphorus Loss from Soil to Water; Tunney, H., Carton, O.T., Brookes, P.C., Johnson, A.E., Eds.; CAB International: Wexford, Ireland, 1997; pp. 119–136. [Google Scholar]
- Szmant, A.; Forrester, A. Water column and sediment nitrogen and phosphorus distribution patterns in the florida keys, USA. Coral Reefs 1996, 15, 21–41. [Google Scholar] [CrossRef]
- Abu-Hmeidan, H.Y.; Williams, G.P.; Miller, A.W. Characterizing total phosphorus in current and geologic utah lake sediments: Implications for water quality management issues. Hydrology 2018, 5, 8. [Google Scholar] [CrossRef]
- Thornton, K.W.; Kennedy, R.H.; Magoun, A.D.; Saul, G.E. Reservoir water quality sampling design. J. Am. Water Resour. Assoc. 1982, 18, 471–480. [Google Scholar] [CrossRef]
- Hakanson, L. Determination of characteristic values for physical and chemical lake sediment parameters. Water Resour. Res. 1981, 17, 1625–1640. [Google Scholar] [CrossRef]
- Hakanson, L. Sediment sampling in different aquatic environments: Statistical aspects. Water Resour. Res. 1984, 20, 41–46. [Google Scholar] [CrossRef]
- Fabre, A. Experimental studies on some factors influencing phosphorus solubilization in connexion with the drawdown of a reservoir. Hydrobiologia 1988, 159, 153–158. [Google Scholar] [CrossRef]
- Eckert, W.; Nishri, A.; Parparova, R. Factors Regulating the Flux of Phosphate at the Sediment-Water Interface of a Subtropical Calcareous Lake: A Simulation Study with Intact Sediment Cores; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997; pp. 401–409. [Google Scholar]
- Golterman, H.L. The Chemistry of Phosphate and Nitrogen Compounds in Sediments; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Devine, J.; Vanni, M. Spatial and seasonal variation in nutrient excretion by benthic invertebrates in a eutrophic reservoir. Freshw. Biol. 2002, 47, 1107–1121. [Google Scholar] [CrossRef] [Green Version]
- Fisher, L.H.; Wood, T.M. Effect of Water-Column PH on Sediment Phosphorus Release Rates in Upper Klamath Lake, Oregon, 2001; United States Geological Survey: Washington, DC, USA, 2004. [Google Scholar]
- Buckley, K.L. History of the Salt Lake Aqueduct; Metropolitan Water District of Salt Lake & Sandy: Salt Lake City, UT, USA, 2004; p. 15. [Google Scholar]
- Hansen, C.; Burian, S.; Dennison, P.; Williams, G. Spatiotemporal variability of lake water quality in the context of remote sensing models. Remote Sens. 2017, 9, 409. [Google Scholar] [CrossRef]
- Hansen, C.H.; Williams, G.P.; Adjei, Z.; Barlow, A.; Nelson, E.J.; Miller, A.W. Reservoir water quality monitoring using remote sensing with seasonal models: Case study of five central-utah reservoirs. Lake Reserv. Manag. 2015, 31, 225–240. [Google Scholar] [CrossRef]
- Hansen, C.; Swain, N.; Munson, K.; Adjei, Z.; Williams, G.P.; Miller, W. Development of sub-seasonal remote sensing chlorophyll-a detection models. Am. J. Plant Sci. 2013, 4, 21. [Google Scholar] [CrossRef]
- Hansen, C.H.; Williams, G.P.; Adjei, Z. Long-term application of remote sensing chlorophyll detection models: Jordanelle reservoir case study. Nat. Resour. 2015, 6, 123. [Google Scholar] [CrossRef]
- PSOMAS. Deer Creek Reservoir Drainage, Tmdl Study; Utah Department of Natural Resources: Salt Lake City, UT, USA, 2002. [Google Scholar]
- Messer, J.J.; Ihnat, J.M. Reconnaissance of Sediment-Phosphorus Relationships in Some Utah Reservoirs; Utah Water Research Laboratory, Utah State University: Logan, UT, USA, 1983; Volume UWRL/Q-83/03. [Google Scholar]
- Messer, J.J.; Hardy, T.B.; Ihnat, J.M. Sediment-Phosphorus Relationships in Deer Creek Reservoir; Utah Water Research Laboratory, Utah State University: Logan, UT, USA, 1984; Volume UWRL/Q-84/01. [Google Scholar]
- Sims, J.T.; Pierzynski, G.M. Chemistry of phosphorus in soils. In Chemical Processes in Soils; Tabatabai, M.A., Sparks, D.L., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 2005; pp. 151–192. [Google Scholar]
- Pierzynski, G.M.; Sims, J.T.; Vance, G.F. Soils and Environmental Quality; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005. [Google Scholar]
- Shang, C.; Zelazny, L.W. Selective dissolution techniques for mineral analysis of soils and sediments. In Methods of Soil Analysis Part 5—Mineralogical Methods; Ulery, A.L., Drees, L.R., Eds.; Soil Science Society of America, Inc.: Washington, DC, USA, 2008; Volume 5. [Google Scholar]
- Chang, S.C.; Jackson, M.L. Fractionation of soil phosphorus. Soil Sci. 1957, 84, 133–144. [Google Scholar] [CrossRef]
- Dean, L.A. An attempted fractionation of the soil phosphorus. J. Agric. Sci. 1938, 28, 234–246. [Google Scholar] [CrossRef]
- Kouwe, F.A.; Golterman, H.L. Rol van bodemfosfaten in het eutropieringsproces. H2O 1976, 9, 84–86. [Google Scholar]
- van Eck, G.T.M. Forms of phosphorus in particulate matter from the hollands diep/haringvliet, the netherlands. Hydrobiologia 1982, 91, 665–681. [Google Scholar] [CrossRef]
- Moore, P.A.; Coale, F. Phosphorus Fractionation in Flooded Soils and Sediments; Department of Agronomy, Kansas State University: Manhattan, KS, USA, 2000; p. 102. [Google Scholar]
- Stieg, S.; Fisher, B.R.; Mathre, O.B.; Wright, T.M. Inorganic nonmetallic constituents: Phosphorus. In Standard Methods for the Examination of Water and Wastewater; Franson, M.A.H., Eaton, A.D., Eds.; American Public Health Association & American Water Works Association & Water Environment Federation: Baltimore, MD, USA, 2005. [Google Scholar]
- Hach. Dr5000 Spectrophotometer: Procedures Manual; Hach Company: Loveland, CO, USA, 2005. [Google Scholar]
- Aquaveo Groundwater Modeling System (GSM) Software, Version 6.5; Aquaveo LLC: Provo, UT, USA, 2008.
- Wang, C.; Zhang, Y.; Li, H.; Morrison, R.J. Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology 2013, 14, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Borgnino, L.; Orona, C.; Avena, M.; Maine, M.A.; Rodriguez, A.; De Pauli, C.P. Phosphate concentration and association as revealed by sequential extraction and microprobe analysis: The case of sediments from two argentinean reservoirs. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
P Fraction | Current Solvent | tshake (h) Current/Previous | Previous Solvent |
---|---|---|---|
Fr.W | DI Water | - | - |
Fr.KCl | 1.0 M KCl | 2/2 | 1.0 N NH4Cl |
Fr.NaOH | 0.1 M NaOH | 17/18 | 0.1 N NaOH |
Fr.CBD | - | - | CBD * |
Fr.HCl | 0.5 M HCl | 24/18 | 0.5 M HCl |
Fr.K2S2O8 | Persulfate | - | Persulfate |
Depth | n | CP.avg (mg·g−1) |
---|---|---|
Surface | 55 | 5.64 × 10−3 |
6 in | 15 | 4.43 × 10−3 |
12 in | 13 | 4.06 × 10−3 |
2 ft | 4 | 3.99 × 10−3 |
All | 87 | 5.12 × 10−3 |
Transect | n | CP.avg (mg·g−1) |
---|---|---|
1 | 10 | 7.29 × 10−3 |
2 | 10 | 4.81 × 10−3 |
3 | 11 | 6.31 × 10−3 |
4 | 8 | 5.59 × 10−3 |
5 | 5 | 3.82 × 10−3 |
6 | 7 | 4.03 × 10−3 |
Column | n | CP.avg (mg·g−1) | Group |
---|---|---|---|
1 | 3 | 1.53 × 10−2 | High |
2 | 4 | 5.88 × 10−3 | |
3 | 4 | 9.68 × 10−3 | |
4 | 5 | 7.62 × 10−3 | |
5 | 5 | 4.10 × 10−3 | Low |
6 | 5 | 3.47 × 10−3 | |
7 | 6 | 4.54 × 10−3 | |
8 | 6 | 4.73 × 10−3 | |
9 | 6 | 4.04 × 10−3 | |
10 | 6 | 3.10 × 10−3 | |
11 | 2 | 3.23 × 10−3 |
Pool | n | CP.avg (mg·g−1) |
---|---|---|
Fr.W | 19 | 4.70 × 10−3 |
Fr.KCl | 18 | 4.93 × 10−3 |
Fr.NaOH | 19 | 1.82 × 10−1 |
Fr.HCl | 18 | 9.39 × 10−1 |
Fr.K2S2O8 | 19 | 1.46 |
CP.avg (mg·kg−1) | |||
---|---|---|---|
This Study | This Study | Messer * | Messer |
Fr.W | 4.66 | - | - |
Fr.KCl | 4.53 | - | - |
Fr.W+Fr.KCl | 9.19 | 54.3 | Fr.NH4Cl |
Fr.NaOH | 174.07 | 155.2 | Fr.NaOH |
- | - | 355.8 | Fr.NaOH + Fr.CBD |
Fr.HCl | 926.31 | 542.0 | Fr.HCl |
Fr.PFD | 1460 | - | Total (NAIP + Fr.HCl) |
Total (by sum) | 2572.5 | 1107.3 * | Total (by sum) |
- | - | 825.6 | Total (by digestion) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casbeer, W.; Williams, G.P.; Borup, M.B. Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir. Hydrology 2018, 5, 58. https://doi.org/10.3390/hydrology5040058
Casbeer W, Williams GP, Borup MB. Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir. Hydrology. 2018; 5(4):58. https://doi.org/10.3390/hydrology5040058
Chicago/Turabian StyleCasbeer, Warren, Gustavious P. Williams, and M. Brett Borup. 2018. "Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir" Hydrology 5, no. 4: 58. https://doi.org/10.3390/hydrology5040058
APA StyleCasbeer, W., Williams, G. P., & Borup, M. B. (2018). Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir. Hydrology, 5(4), 58. https://doi.org/10.3390/hydrology5040058