Merging Indigenous Knowledge Systems and Station Observations to Estimate the Uncertainty of Precipitation Change in Central Mongolia
Abstract
:1. Introduction
2. Study Site
3. Methods
3.1. Station Trends
3.2. Herder Observations
3.3. Uncertainty from Herder Data
3.4. Data Integration and Comparison
4. Results
5. Discussion
5.1. Station–Herder Observation Correlation
5.2. Herder Insight
5.3. Linking Datasets
5.4. Data Considerations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Computation of the Potential for Conflict Index 2 (PCI2)
otherwise dx,y = 0
References
- Shiklomanov, A.I.; Lammers, R.B.; Vörösmarty, C.J. Widespread decline in hydrological monitoring threatens Pan-Arctic Research. EOS Trans. Am. Geophys. 2002, 83, 13–17. [Google Scholar] [CrossRef]
- Venable, N.B.H.; Fassnacht, S.R.; Hendricks, A.D. Spatial changes in climate across Mongolia. In Proceedings of the Trans-Disciplinary Research Conference: Building Resilience of Mongolian Rangelands, Ulaanbaatar, Mongolia, 9–10 June 2015; Fernández-Giménez, M.E., Batkhishig, B., Fassnacht, S.R., Wilson, D., Eds.; Nutag Action and Research Institute: Ulaanbaatar, Mongolia, 2015; pp. 73–79. [Google Scholar]
- Klein, J.A.; Hopping, K.A.; Yeh, E.T.; Nyima, Y.; Boone, R.B.; Galvin, K.A. Unexpected climate impacts on the Tibetan Plateau: Local and scientific findings of delayed summer. Glob. Environ. Chang. 2014, 28, 141–152. [Google Scholar] [CrossRef]
- Venable, N.B.H. Trends and Tree-Rings: An Investigation of the Historical and Paleo Proxy Hydroclimate Record of the Khangai Mountain Region of Mongolia. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2016; 419p. [Google Scholar]
- Meromy, L.; Molotch, N.P.; Link, T.E.; Fassnacht, S.R.; Rice, R. Subgrid variability of snow water equivalent at operational snow stations in the western United States. Hydrol. Process. 2013, 27, 2383–2400. [Google Scholar] [CrossRef]
- Pielke Sr, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F. Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA. Int. J. Climatol. 2002, 22, 421–434. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Cherry, M.L.; Venable, N.B.H.; Saavedra, F. Snow and albedo climate change impacts across the United States Northern Great Plains. Cryosphere 2016, 10, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Alexander, C.; Bynum, N.; Johnson, E.; King, U.; Mustonen, T.; Neofotis, P.; Oettlé, N.; Rosenzweig, C.; Sakakibara, C.; Shadrin, V.; et al. Linking indigenous and scientific knowledge of climate change. Bioscience 2011, 61, 477–484. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E. The role of ecological perception in indigenous resource management: A case study from the Mongolian forest-steppe. JSTOR 1993, 33, 31–46. [Google Scholar]
- Huntington, H. Using Traditional Ecological Knowledge in science methods and applications. Ecol. Appl. 2000, 10, 1270–1274. [Google Scholar] [CrossRef]
- Ajibade, L.T. In search for methodology for the collection and evaluation of farmers’ indigenous environmental knowledge in developing countries. Indilinga Afr. J. Indig. Knowl. Syst. 2003, 2, 99–113. [Google Scholar]
- Flanagan, C.; Laituri, M. Local cultural knowledge and water resource management in the Wind Rivers Indian Reservation. Environ. Manag. 2004, 33, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Barnhardt, R.; Kawagley, A.O. Indigenous knowledge systems and Alaska Native ways of knowing. Anthropol. Educ. Q. 2005, 36, 8–23. [Google Scholar] [CrossRef]
- Berkes, F. Sacred Ecology, 3rd ed.; Routledge: New York, NY, USA; London, UK, 2012; 392p. [Google Scholar]
- Jiri, O.; Mafongoya, P.L.; Chivenge, P. Indigenous knowledge systems, seasonal ‘quality’ and climate change adaptation in Zimbabwe. Clim. Res. 2015, 66, 103–111. [Google Scholar] [CrossRef]
- Soropa, G.; Gwatibaya, S.; Musiyiwa, K.; Rusere, F.; Mavima, G.A.; Kasasa, P. Indigenous knowledge systems weather forecasts as a climate change adaptation strategy in small farming systems of Zimbabwe: Case study of Murehwa, Tsholotsho and Chiredzi districts. Afr. J. Agric. Res. 2015, 10, 1067–1075. [Google Scholar] [CrossRef]
- Laituri, M.; Harvey, L.E. Bridging the space between indigenous ecological knowledge and New Zealand conservation management using GIS. In Nature Conservation: The Role of Networks; Craig, J., Ed.; Surrey Beatty and Sons: Chipping Norton, Australia, 1995. [Google Scholar]
- Bohensky, E.L.; Maru, Y. Indigenous Knowledge, Science, and Resilience: What Have We Learned from a Decade of International Literature on Integration? Ecol. Soc. 2011, 16. [Google Scholar] [CrossRef]
- Laituri, M. Ensuring access to GIS for marginal populations. In Community Participation and Geographic Information Systems; Craig, W.J., Howard, T.M., Weiner, D., Eds.; Taylor & Francis: London, UK, 2002; pp. 270–282. [Google Scholar]
- Laituri, M. GIS and Indigenous Knowledge. In The SAGE Handbook of GIS and Society; Nyerges, T., Coucleis, H., McMaster, R., Eds.; Sage Publications, Ltd.: Thousand Oaks, CA, USA, 2011; Chapter 11. [Google Scholar]
- Tengö, M.; Brondizio, E.S.; Elmqvist, T.; Malmer, P.; Spierenburg, M. Connecting Diverse Knowledge Systems for Enhanced Ecosystem Governance: The Multiple Evidence Base Approach. Ambio 2014, 43, 579–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntington, H.; Callaghan, T.; Fox, S.; Krupnik, I. Matching traditional and scientific observations to detect environmental change: A discussion on Arctic terrestrial ecosystem. Ambio 2004, 13, 18–23. [Google Scholar]
- Gearheard, S.; Pocernich, M.; Stewart, R.; Sanguya, J.; Huntington, H. Linking Inuit knowledge and meteorological station observations to understand changing wind patterns at Clyde River, Nunavut. Clim. Chang. 2010, 100, 267–294. [Google Scholar] [CrossRef]
- Crate, S.A. Climate change and ice dependent communities: Perspectives from Siberia and Labrador. Polar J. 2012, 2, 61–75. [Google Scholar] [CrossRef]
- Crona, B.; Wutich, A.; Brewis, A.; Gartin, M. Perceptions of climate change: Linking local and global perceptions through a cultural knowledge approach. Clim. Chang. 2013, 119, 519–531. [Google Scholar] [CrossRef]
- Simelton, E.; Quinn, C.H.; Batisani, N.; Dougill, A.J.; Dyer, J.C.; Fraser, E.D.G.; Mkwambisi, D.; Sallu, S.; Stringer, L.C. Is rainfall really changing? Farmers’ perceptions, meteorological data, and policy implications. Clim. Dev. 2013, 5, 123–138. [Google Scholar] [CrossRef]
- Wheeler, S.; Zuo, A.; Bjornlund, H. Farmers’ climate change beliefs and adaptation strategies for a water scarce future in Australia. Glob. Environ. Chang. 2013, 23, 537–547. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M.; Morton, J.F. Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria. Weather Clim. Extrem. 2017, 15, 24–33. [Google Scholar] [CrossRef]
- Sternberg, T. Environmental challenges in Mongolia’s dryland pastoral landscape. J. Arid Environ. 2008, 72, 1294–1304. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Sukh, T.; Fernández-Giménez, M.; Batbuyan, B.; Venable, N.B.H.; Laituri, M.; Adyabadam, G. Local understanding of hydro-climatic changes in Mongolia. In Cold Region Hydrology in a Changing Climate (Proceedings of Symposium H02 Held during IUGG2011 in Melbourne, Australia, July 2011); IAHS: Wallingford, UK, 2011; Volume 346, pp. 120–129. [Google Scholar]
- Fosu-Mensah, B.Y.; Vlek, P.L.; MacCarthy, D. Farmers’ perception and adaptation to climate change: A case study of Sekyedumase district in Ghana. Environ. Dev. Sustain. 2012, 14, 495–505. [Google Scholar] [CrossRef]
- Hou, X.Y.; Han, Y.; Li, F.Y. The perception and adaptation of herdsmen to climate change and climate variability in the desert steppe region of northern China. Rangel. J. 2012, 34, 349–357. [Google Scholar] [CrossRef]
- Sukh, T. Local Understanding of Hydro-Climate Changes in Mongolia. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2012. [Google Scholar]
- Goulden, C.E.; Mead, J.; Horwitz, R.; Goulden, M.; Nandintsetseg, B.; McCormick, S.; Boldgiv, B.; Petraitis, P.S. Interviews of Mongolian herders and high resolution precipitation data reveal an increase in short heavy rains and thunderstorm activity in semi-arid Mongolia. Clim. Chang. 2016, 136, 281–295. [Google Scholar] [CrossRef] [Green Version]
- La Frenierre, J.; Mark, B.G. Detecting Patterns of Climate Change at Volcán Chimborazo, Ecuador, by Integrating Instrumental Data, Public Observations, and Glacier Change Analysis. Ann. Am. Assoc. Geogr. 2017, 107, 979–997. [Google Scholar] [CrossRef]
- Somerville, R.C.J.; Hassol, S.J. Communicating the science of climate change. Phys. Today 2011, 64, 48–53. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E. The Role of Mongolian Nomadic Pastoralists’ Ecological Knowledge in Rangeland Management. Ecol. Appl. 2000, 10, 1318–1326. [Google Scholar] [CrossRef]
- Marin, A. Rider under storms: Contributions of nomadic herders observations to analyzing climate change in Mongolia. Glob. Environ. Chang. 2010, 20, 162–176. [Google Scholar] [CrossRef]
- Bruegger, R.A.; Jigjsuren, O.; Fernández-Giménez, M.E. Herder Observations of Rangeland Change in Mongolia: Indicators, Causes, and Application to Community-Based Management. Rangel. Ecol. Manag. 2014, 67, 119–131. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E.; Angerer, J.P.; Allegretti, A.; Fassnacht, S.R.; Byamba, A.; Chantsallkham, J.; Reid, R.; Venable, N.B.H. Integrating Herder Observations, Meteorological Data and Remote Sensing to Understand Climate Change Patterns and Impacts across an Eco-Climatic Gradient in Mongolia. In Proceedings of the Trans-Disciplinary Research Conference: Building Resilience of Mongolian Rangelands, Ulaanbaatar, Mongolia, 9–10 June 2015; pp. 228–234. [Google Scholar]
- Venable, N.B.H.; Fassnacht, S.R.; Adyabadam, G.; Tumenjargal, S.; Fernández-Giménez, M.E.; Batbuyan, B. Does the length of station record influence the warming trend that is perceived by Mongolian Herders near the Khangai Mountains? Pirineos 2012, 167, 71–88. [Google Scholar] [CrossRef]
- Shi, H.Y.; Li, T.J.; Wei, J.H. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters region. J. Hydrol. 2017, 548, 322–332. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Chen, J. Characteristics of climate change and its relationship with land use/cover change in Yunnan Province, China. Int. J. Climatol. 2018, 38, 2520–2537. [Google Scholar] [CrossRef]
- Vaske, J.J.; Needham, M.D.; Newman, P.; Manfredo, M.J.; Petchenick, J. Potential for conflict index: Hunters’ responses to chronic wasting disease. Wildl. Soc. Bull. 2006, 34, 44–50. [Google Scholar] [CrossRef]
- Vaske, J.J.; Beaman, J.; Barreto, H.; Shelby, L.B. An extension and further validation of the potential for conflict index. Leisure Sci. 2010, 32, 240–254. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: New York, NY, USA, 1987; 320p. [Google Scholar]
- Prakash, S.; Mitra, A.; Momin, I.; Rajagopal, E.; Basu, S.; Collins, M.; Turner, A.G.; Rao, K.A.; Ashok, K. Seasonal intercomparison of observational rainfall datasets over India during the southwest monsoon season. Int. J. Climatol. 2015, 35, 2326–2338. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.K. Uncertainties in calculating precipitation climatology in East Asia. Hydrol. Earth Syst. Sci. 2016, 20, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Nearing, G.S.; Gupta, H.V. Ensembles vs. Information Theory: Supporting Science under Uncertainty. Front. Earth Sci. 2018, 12, 1–8. [Google Scholar] [CrossRef]
- National Statistical Office of Mongolia. Mongolia National Census 2010 Provisional Results; National Statistical Office of Mongolia: Ulaanbaatar, Mongolia, 2011.
- Dorligsuren, D.; Batbuyan, B.; Bulgamaa, D.; Fassnacht, S.R. Lessons from a Territory-based Community Development Approach in Mongolia: Ikh-tamir Pasture User Groups. In Restoring Community Connections to the Land: Building Resilience through Community-Based Rangeland Management in China and Mongolia; Fernández-Giménez, M.E., Wang, X., Baival, B., Klein, J., Reid, R., Eds.; CABI Press: Wallingford, UK, 2011; Chapter 9; 260p. [Google Scholar]
- Baival, B.; Oyuntulkhuur, B.; Altanzul, T.; Fernández-Giménez, M.E. A case study of community-based rangeland management in Jinst Soum, Mongolia. In Restoring Community Connections to the Land: Building Resilience through Community-Based Rangeland Management in China and Mongolia; Fernández-Giménez, M.E., Wang, X., Baival, B., Klein, J., Reid, R., Eds.; CABI Press: Wallingford, UK, 2011; Chapter 6; 260p. [Google Scholar]
- Finch, C. Mongolia’s Wild Heritage: Biological Diversity, Protected Areas, and Conservation in the Land of Chingis Khan, Mongolian Ministry of Nature and Environment. United Nations Development Programme-Global Environment Facility, and World Wide Fund for Nature; Avery Press: Boulder, CO, USA, 1996; 42p. [Google Scholar]
- Fassnacht, S.R.; Venable, N.B.H.; Khishigbayar, J.; Cherry, M.L. The Probability of Precipitation as Snow Derived from Daily Air Temperature for High Elevation Areas of Colorado, United States, Cold and Mountain Region Hydrological Systems under Climate Change: Towards Improved Projections (Proceedings of Symposium H02, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, July 2013); IAHS: London, UK, 2013; Volume 360, pp. 65–70. [Google Scholar]
- Zhang, Y.; Ohata, T.; Yang, D.; Davaa, G. Bias correction of daily precipitation measurements for Mongolia. Hydrol. Process. 2004, 18, 2991–3005. [Google Scholar] [CrossRef]
- Hoover, J.D.; Doesken, N.; Elder, K.; Laituri, M.; Liston, G.E. Temporal Trend Analyses of Alpine Data Using North American Regional Reanalysis and In Situ Data: Temperature, Wind Speed, Precipitation, and Derived Blowing Snow. J. Appl. Meteorol. Climatol. 2014, 53, 676–693. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Edward Arnold, a Division of Hodder and Stoughton: London, UK, 1990. [Google Scholar]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, I, II, III. Proc. R. Neth. Acad. Sci. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Likert, R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932, 140, 1–55. [Google Scholar]
- Auerbach, C.F.; Silverstein, L.B. Qualitative Data: An Introduction to Coding and Analysis; New York University Press: New York, NY, USA, 2003; 216p. [Google Scholar]
- Fereday, J.; Muir-Cochrane, E. Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme development. Int. J. Qual. Methods 2006, 5, 80–92. [Google Scholar] [CrossRef]
- Manfredo, M.J.; Vaske, J.J.; Teel, T.L. The potential for conflict index: A graphic approach to practical significance of human dimensions research. Hum. Dimens. Wildl. 2003, 8, 219–228. [Google Scholar] [CrossRef]
- Allegretti, A.M.; Vaske, J.J. Normative Beliefs of Fishermen in the Galapagos Marine Reserve. In Proceedings of the Northeastern Recreation Research Symposium, Bolton Landing, NY, USA, 11–13 April 2010; pp. 91–97. [Google Scholar]
- Fernández-Giménez, M.E.; Batkhishig, B.; Batbuyan, B. Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Glob. Environ. Chang. 2012, 22, 836–851. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Greene, J.S.; Goulden, C.E. Trends in extreme daily precipitation and temperature near Lake Hovsgol, Mongolia. Int. J. Climatol. 2007, 27, 341–347. [Google Scholar] [CrossRef]
- Dagvadorj, D.; Natsagdorj, L.; Dorjpurev, J.; Namkhainyam, B. Mongolia: Assessment Report on Climate Change; Ministry of Nature, Environment and Tourism: Ulanbaatar Mongolia, 2009. [Google Scholar]
- Davi, N.; Jacoby, G.; Arrigo, D.; Baatarbileg, N.; Jinbao, L.; Curtis, A. A tree-ring based drought index reconstruction for far-western Mongolia. Int. J. Climatol. 2009, 29, 1508–1514. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Severe summer rainfall in China associated with enhanced global warming. Clim. Res. 2000, 16, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Kilmister, I.F.; Burston, M.; Campbell, P.; Taylor, P. Love Me Forever; Track 6 on 1916; WTG/Epic: New York, NY, USA, 1991. [Google Scholar]
- Speranza, C.I.; Kiteme, B.; Ambenje, P.; Wiesmann, U.; Makali, S. Indigenous Knowledge related to climate variability and change: Insights from Droughts in Semi-Arid Areas of Former Makueni District, Kenya. Clim. Chang. 2010, 100, 295–315. [Google Scholar] [CrossRef]
- Brooke, L.F. The participation of indigenous peoples and the application of their environmental and ecological knowledge in the Arctic Environmental Protection Strategy. In Proceedings of the Inuit Circumpolar Conference, Ottawa, ON, Canada, 28–30 March 2017. [Google Scholar]
- Inglis, J.T. Traditional Ecological Knowledge: Concepts and Cases; Canadian Museum of Nature: Ottawa, ON, Canada, 1993. [Google Scholar]
- West, C.T.; Roncoli, C.; Quattara, F. Local perception and regional climate trends on the central Plateau of Burkina Faso. Land Degrad. Dev. 2008, 19, 289–304. [Google Scholar] [CrossRef]
- Wakie, T.; Evangelista, P.; Laituri, M.J. Assessing the distribution and impacts of Prosopis juliflora through participatory approaches. Appl. Geogr. 2016, 66, 132–143. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Hou, Z.; Liu, Z.; Yin, Y.; Ding, Y.; Hu, J. Herders’ perception of climate change does not always fit with actual climate change. Rangel. J. 2014, 36, 557–564. [Google Scholar] [Green Version]
- Herman-Mercer, N.M.; Matkin, E.; Laituri, M.J.; Toohey, R.C.; Massey, M.; Elder, K.; Schuster, P.F.; Mutter, E.A. Changing times, changing stories: Generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska. Ecol. Soc. 2016, 21, 28. [Google Scholar] [CrossRef]
- Nakashima, D.; Roué, M. Indigenous knowledge, peoples and sustainable practice. In Social and Economic Dimensions of Global Environmental Change of the Encyclopedia of Global Environmental Change; Timmerman, P., Ed.; John Wiley & Sons Ltd.: New York, NY, USA, 2002; Volume 5, pp. 314–324. [Google Scholar]
- Hoover, J.; Leisz, S.; Laituri, M. Comparing and combining Landsat Satellite Imagery and Participatory Data to Access Land-Use and Land-Cover Changes in a Coastal Village in Papua New Guinea. Hum. Ecol. 2017, 45, 251–264. [Google Scholar] [CrossRef]
- Nichols, T.; Berkes, F.; Jolly, D.; Snow, N.B. Climate change and sea ice: Local observations from the Canadian Western Arctic. Arctic 2004, 57, 68–79. [Google Scholar] [CrossRef]
- Fassnacht, S.R. Estimating Alter-shielded gauge snowfall undercatch, snowpack sublimation, and blowing snow transport at six sites in the coterminous United States. Hydrol. Process. 2004, 18, 3481–3492. [Google Scholar] [CrossRef]
- Fassnacht, S.R. Data time step to estimate snowpack accumulation at select United States meteorological stations. Hydrol. Process. 2007, 21, 1608–1615. [Google Scholar] [CrossRef]
Setup: Have you observed any precipitation changes in past decades? In answering these questions, please think about what the precipitation was like when you were in your 20s. |
(i) The amount of rainfall has (a) decreased a lot, (b) decreased somewhat, (c) not changed, (d) increased somewhat, (e) increased a lot |
(ii) The rains have become (a) much less intense, (b) somewhat less intense, (c) about the same intensity, (d) somewhat more intense, (e) much more intense. |
(iii) The amount of snow has (a) decreased a lot, (b) decreased somewhat, (c) is about the same, (d) increased somewhat, (e) increased a lot. |
(iv) The frequency of snowstorms has (a) decreased a lot, (b) decreased somewhat, (c) is about the same, (d) increased somewhat, (e) increased a lot. |
Data | Rain Amount [mm/century] | Rain Intensity [mm/day/century] | Snow Amount [mm/century] | Snow Frequency [days/century] |
---|---|---|---|---|
North | ||||
Tsetserleg | −151 * | −1.40 * | 15.0 | 2.90 |
Erdenemandal | −149 * | −1.03 | −17.3 | 0 |
station mean | −150 | −1.21 | −1.14 | 1.45 |
station difference | 2.29 | 0.37 | 32.3 | 2.90 |
PCI2 uncertainty | 0 | 1.91 | 35.4 | 2.84 |
South | ||||
Bayankhongor | −112 | −1.63 | 7.50 | 2.70 |
Khoriult | 37.8 | −4.14 | 24.1 * | 19.0 * |
station mean | −37.0 | −2.89 | 15.8 | 10.9 |
station difference | 140 | 2.51 | 16.6 | 16.3 |
PCI2 uncertainty | 0 | 0.75 | 12.5 | 10.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fassnacht, S.R.; Allegretti, A.M.; Venable, N.B.H.; Fernández-Giménez, M.E.; Tumenjargal, S.; Kappas, M.; Laituri, M.J.; Batbuyan, B.; Pfohl, A.K.D. Merging Indigenous Knowledge Systems and Station Observations to Estimate the Uncertainty of Precipitation Change in Central Mongolia. Hydrology 2018, 5, 46. https://doi.org/10.3390/hydrology5030046
Fassnacht SR, Allegretti AM, Venable NBH, Fernández-Giménez ME, Tumenjargal S, Kappas M, Laituri MJ, Batbuyan B, Pfohl AKD. Merging Indigenous Knowledge Systems and Station Observations to Estimate the Uncertainty of Precipitation Change in Central Mongolia. Hydrology. 2018; 5(3):46. https://doi.org/10.3390/hydrology5030046
Chicago/Turabian StyleFassnacht, Steven R., Arren Mendezona Allegretti, Niah B. H. Venable, María E. Fernández-Giménez, Sukh Tumenjargal, Martin Kappas, Melinda J. Laituri, Batjav Batbuyan, and Anna K. D. Pfohl. 2018. "Merging Indigenous Knowledge Systems and Station Observations to Estimate the Uncertainty of Precipitation Change in Central Mongolia" Hydrology 5, no. 3: 46. https://doi.org/10.3390/hydrology5030046
APA StyleFassnacht, S. R., Allegretti, A. M., Venable, N. B. H., Fernández-Giménez, M. E., Tumenjargal, S., Kappas, M., Laituri, M. J., Batbuyan, B., & Pfohl, A. K. D. (2018). Merging Indigenous Knowledge Systems and Station Observations to Estimate the Uncertainty of Precipitation Change in Central Mongolia. Hydrology, 5(3), 46. https://doi.org/10.3390/hydrology5030046