Assessment of the Impact of Climate Change on Daily Extreme Peak and Low Flows of Zenne Basin in Belgium
Abstract
:1. Introduction
- Simulate extreme flow values of the Zenne river under a control period (1961–1990) and four future climate change scenarios (high (wet) summer, high (wet) winter, mean, and low (dry));
- Assess and provide an overview of the possible impacts of the four climate change scenarios on the extreme peak and low flows of the basin compared to the control period.
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Streamflow Modeling
2.4. Climate Change Scenarios
- High scenario: predicts the future climate with wet winters (high frontal rainfall) and wet summers (high convective storm rainfall)
- Mean scenario: projects a future with intermediate conditions
- Low scenario: considers dry (low rainfall) winters and dry summers in the future
2.5. Extreme Peak and Low Flows Analysis
- (1)
- The time length of the decreasing flank of the first peak flow event is greater than a minimum threshold time, which can be assigned to the recession constant of the quick flow or larger value;
- (2)
- The flow in between the two peak events should drop down to a fraction lower than a given threshold fraction value of the peak flow;
- (3)
- The flow increment between the peak flow and lowest flow (in between the current and previous peak flows) should have a minimum height. This criterion is considered to avoid the selection of a small noise peaks.
3. Results and Discussion
3.1. Projected Climate Variables
3.2. Impact of Climate Change on Extreme Peak Flows
3.3. Impact of Climate Change on Extreme Low Flows
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmed, K.F.; Wang, G.; Silander, J.; Wilson, A.M.; Allen, J.M.; Horton, R.; Anyah, R. Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast. Glob. Planet. Chang. 2013, 100, 320–332. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 996. ISBN 978-0521-70596-7. [Google Scholar]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 976. ISBN 978-0521-70597-4. [Google Scholar]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. J. Hydrol. Reg. Stud. 2016, 8, 182–197. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H. Implications of climate change on water budgets and reservoir water harvesting of Nuuanu area watersheds, Oahu, Hawaii. J. Water Resour. Plan. Manag. 2017, 143, 05017013. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, K.; Islam, A.K.M.S.; Islam, G.M.T.; Alfieri, L.; Bala, S.K.; Khan, M.J.U. Impact of High-End Climate Change on Floods and Low Flows of the Brahmaputra River. J. Hydrol. Eng. 2017, 22, 04017041. [Google Scholar] [CrossRef]
- Bodian, A.; Dezetter, A.; Diop, L.; Deme, A.; Djaman, K.; Diop, A. Future Climate Change Impacts on Streamflows of Two Main West Africa River Basins: Senegal and Gambia. Hydrology 2018, 5, 21. [Google Scholar] [CrossRef]
- Ahiablame, L.; Sinha, T.; Paul, M.; Ji, J.-H.; Rajib, A. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. J. Hydrol. Reg. Stud. 2017, 14, 150–166. [Google Scholar] [CrossRef]
- Vetter, T.; Reinhardt, J.; Flörke, M.; van Griensven, A.; Hattermann, F.; Huang, S.; Koch, H.; Pechlivanidis, I.G.; Plötner, S.; Seidou, O.; et al. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Clim. Chang. 2017, 141, 419–433. [Google Scholar] [CrossRef]
- Taye, M.T.; Ntegeka, V.; Ogiramoi, N.P.; Willems, P. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H. Impact of Climate Change on Daily Streamflow and Its Extreme Values in Pacific Island Watersheds. Sustainability 2018, 10, 2057. [Google Scholar] [CrossRef]
- Mantua, N.; Tohver, I.; Hamlet, A. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim. Chang. 2010, 102, 187–223. [Google Scholar] [CrossRef]
- Beniston, M.; Stephenson, D.; Christensen, O.; Ferro, C.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef]
- Blenkinsop, S.; Fowler, H.J. Changes in European drought characteristics projected by the PRUDENCE regional climate models. Int. J. Climatol. 2007, 27, 1595–1610. [Google Scholar] [CrossRef] [Green Version]
- De Wit, M.J.M.; Hurk, B.; Warmerdam, P.M.M.; Torfs, P.J.J.F.; Roulin, E.; Deursen, W.P.A. Impact of climate change on low-flows in the river Meuse. Clim. Chang. 2007, 82, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Feyen, L.; Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. 2009, 114, D17116. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, Y.D.; Xu, C.-Y.; Chen, X.; Chen, X.; Singh, V.P. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. J. Hydrol. 2007, 336, 316–333. [Google Scholar] [CrossRef]
- Firing, Y.L.; Merrifield, M.A. Extreme sea level events at Hawaii: Influence of mesoscale eddies. Geophys. Res. Lett. 2004, 31, L24306. [Google Scholar] [CrossRef]
- Firing, Y.L.; Merrifield, M.A.; Schroeder, T.A.; Qiu, B. Interdecadal Sea Level Fluctuations at Hawaii. J. Phys. Oceanogr. 2004, 34, 2514–2524. [Google Scholar] [CrossRef]
- Caccamise, D.J.; Merrifield, M.A.; Bevis, M.; Foster, J.; Firing, Y.L.; Schenewerk, M.S.; Taylor, F.W.; Thomas, D.A. Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion. Geophys. Res. Lett. 2005, 32, L03607. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Elias, E.P.L.; Berkowitz, P. Many Atolls May be Uninhabitable Within Decades Due to Climate Change. Sci. Rep. 2015, 5, 14546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storlazzi, C.D.; Gingerich, S.B.; van Dongeren, A.; Cheriton, O.M.; Swarzenski, P.W.; Quataert, E.; Voss, C.I.; Field, D.W.; Annamalai, H.; Piniak, G.A.; et al. Most atolls will be uninhabitable by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Habel, S.; Fletcher, C.H.; Rotzoll, K.; El-Kadi, A.I. Development of a model to simulate groundwater inundation induced by sea-level rise and high tides in Honolulu, Hawaii. Water Res. 2017, 114, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Rotzoll, K.; Fletcher, C.H. Assessment of groundwater inundation as a consequence of sea-level rise. Nat. Clim. Chang. 2012, 3, 477–481. [Google Scholar] [CrossRef]
- Porter, K.; Wein, A.; Alpers, C.; Baez, A.; Barnard, P.; Carter, J.; Corsi, A.; Costner, J.; Cox, D.; Das, T.; et al. Overview of the ARkStorm Scenario; Open File Report 2010-1312; U.S. Geological Survey: Reston, VA, USA, 2011; p. 183.
- Poelmans, L.; Van Rompaey, A.; Ntegeka, V.; Willems, P. The relative impact of climate change and urban expansion on peak flows: A case study in central Belgium. Hydrol. Process. 2011, 25, 2846–2858. [Google Scholar] [CrossRef]
- Vansteenkiste, T. Climate change impact on river flows and catchment hydrology: A comparison of two spatially distributed models. Hydrol. Process. 2013, 27, 3649–3662. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Elsner, M.; Cuo, L.; Voisin, N.; Deems, J.; Hamlet, A.; Vano, J.; Mickelson, K.B.; Lee, S.-Y.; Lettenmaier, D. Implications of 21st century climate change for the hydrology of Washington State. Clim. Chang. 2010, 102, 225–260. [Google Scholar] [CrossRef] [Green Version]
- Jennings, E.; Allott, N.; Pierson, D.C.; Schneiderman, E.M.; Lenihan, D.; Samuelsson, P.; Taylor, D. Impacts of climate change on phosphorus loading from a grassland catchment: Implications for future management. Water Res. 2009, 43, 4316–4326. [Google Scholar] [CrossRef] [PubMed]
- Prudhomme, C.; Reynard, N.; Crooks, S. Downscaling of global climate models for flood frequency analysis: Where are we now? Hydrol. Process. 2002, 16, 1137–1150. [Google Scholar] [CrossRef]
- Willems, P.; Vrac, M. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J. Hydrol. 2011, 402, 193–205. [Google Scholar] [CrossRef]
- Willems, P.; Arnbjerg-Nielsen, K.; Olsson, J.; Nguyen, V.T.V. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings. Atmos. Res. 2012, 103, 106–118. [Google Scholar] [CrossRef]
- Taye, M.T.; Willems, P. Influence of downscaling methods in projecting climate change impact on hydrological extremes of upper Blue Nile basin. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 7857–7896. [Google Scholar] [CrossRef] [Green Version]
- Ntegeka, V.; Baguis, P.; Boukhris, O.; Willems, P.; Roulin, E. Climate Change Impact on Hydrological Extremes along Rivers and Urban Drainage Systems. II. Study of Rainfall and ETo Climate Change Scenarios; Technical Report CCI-HYDR Project; Belgian Science Policy—SSD Research Programme; KU Leuven—Hydraulics Section & Royal Meteorological Institute of Belgium: Leuven, Belgium, 2008; p. 112. [Google Scholar]
- Baguis, P.; Ntegeka, V.; Willems, P.; Roulin, E. Extension of CCI-HYDR Climate Change Scenarios for INBO; Technical Report; Instituut voor Natuur-en Bosonderzoek (INBO) & Belgian Science Policy—SSD Research Programme; KU Leuven—Hydraulics Section & Royal Meteorological Institute of Belgium: Brussels, Belgium, 2009; p. 31. [Google Scholar]
- Ntegeka, V.; Baguis, P.; Roulin, E.; Willems, P. Developing tailored climate change scenarios for hydrological impact assessments. J. Hydrol. 2014, 508, 307–321. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Ashraf Vaghefi, S.; Farzaneh, M.R.; Zehnder, A.J.B.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Bae, D.-H.; Jung, I.-W.; Lettenmaier, D.P. Hydrologic uncertainties in climate change from IPCC AR4 GCM simulations of the Chungju Basin, Korea. J. Hydrol. 2011, 401, 90–105. [Google Scholar] [CrossRef]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef] [Green Version]
- Devkota, L.P.; Gyawali, D.R. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. J. Hydrol. Reg. Stud. 2015, 4, 502–515. [Google Scholar] [CrossRef]
- Rahman, K.; Etienne, C.; Gago-Silva, A.; Maringanti, C.; Beniston, M.; Lehmann, A. Streamflow response to regional climate model output in the mountainous watershed: A case study from the Swiss Alps. Environ. Earth Sci. 2014, 72, 4357–4369. [Google Scholar] [CrossRef]
- Ntegeka, V.; Willems, P. Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, A.; Sohier, C.; Degré, A. Hydrological response to climate change in the Lesse and the Vesdre catchments: Contribution of a physically based model (Wallonia, Belgium). Hydrol. Earth Syst. Sci. 2011, 15, 1745–1756. [Google Scholar] [CrossRef]
- Baguis, P.; Roulin, E.; Willems, P.; Ntegeka, V. Climate change and hydrological extremes in Belgian catchments. Hydrol. Earth Syst. Sci. Discuss. 2010, 7, 5033–5078. [Google Scholar] [CrossRef] [Green Version]
- Dams, J.; Salvadore, E.; Van Daele, T.; Ntegeka, V.; Willems, P.; Batelaan, O. Spatio-temporal impact of climate change on the groundwater system. Hydrol. Earth Syst. Sci. 2012, 16, 1517–1531. [Google Scholar] [CrossRef] [Green Version]
- Leta, O.T.; van Griensven, A.; Bauwens, W. Effect of Single and Multisite Calibration Techniques on the Parameter Estimation, Performance, and Output of a SWAT Model of a Spatially Heterogeneous Catchment. J. Hydrol. Eng. 2017, 22, 05016036. [Google Scholar] [CrossRef]
- Van Uytven, E.; Willems, P. Climate Perturbation Tool: Manual; KU Leuven: Leuven, Belgium, 2015; p. 20. [Google Scholar]
- Ruosteenoja, K.; Räisänen, P. Seasonal changes in solar radiation and relative humidity in Europe in response to global warming. J. Clim. 2013, 26, 2467–2481. [Google Scholar] [CrossRef]
- Chen, W.Y.; Liekens, I.; Broekx, S. Identifying Societal Preferences for River Restoration in a Densely Populated Urban Environment: Evidence from a Discrete Choice Experiment in Central Brussels. Environ. Manag. 2017, 60, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.K.; Leta, O.T.; Bauwens, W. Development of RWQM1-based Integrated water quality model in OpenMI with application to the River Zenne, Belgium. Hydrol. Sci. J. 2017, 62, 774–799. [Google Scholar] [CrossRef]
- Leta, O.; Shrestha, N.; de Fraine, B.; van Griensven, A.; Bauwens, W. Integrated Water Quality Modelling of the River Zenne (Belgium) Using OpenMI. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G., Eds.; Springer: Singapore, 2014; pp. 259–274. [Google Scholar]
- Shrestha, N.K.; Leta, O.T.; de Fraine, B.; Garcia-Armisen, T.; Ouattara, N.K.; Servais, P.; van Griensven, A.; Bauwens, W. Modelling Escherichia coli dynamics in the river Zenne (Belgium) using an OpenMI. J. Hydroinf. 2014, 16, 354–374. [Google Scholar] [CrossRef]
- Leta, O.T. Catchment Processes Modeling, Including the Assessment of Different Sources of Uncertainty, Using the SWAT Model: The River Zenne Basin (Belgium) Case Study. Ph.D. Thesis, Free University of Brussels (VUB), Brussels, Belgium, 2013. [Google Scholar]
- US Department of Agriculture-Soil Conservation Service (USDA-SCS). Urban Hydrology for Small Watersheds; USDA: Washington, DC, USA, 1986.
- Monteith, J.L. Evaporation and Environment. 19th Symposia of the Society for Expimental Biology; The Society for Experimental Biology: London, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill Book Company: New York, NY, USA, 1959. [Google Scholar]
- Van Griensven, A.; Meixner, T.; Grunwald, S.; Bishop, T.; Di Lluzio, M.; Srinivasan, R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006, 324, 10–23. [Google Scholar] [CrossRef]
- Tabari, H.; Taye, M.T.; Willems, P. Water availability change in central Belgium for the late 21st century. Glob. Planet. Chang. 2015, 131, 115–123. [Google Scholar] [CrossRef]
- Willems, P.; Baguis, P.; Ntegeka, V.; Roulin, E. Climate Change Impact on Hydrological Extremes along Rivers and Urban Drainage Systems in Belgium "CCI-HYDR" Final Report; Belgian Science Policy, Research Programme Science for a Sustainable Development; KU Leuven—Hydraulics Section & Royal Meteorological Institute of Belgium: Brussels, Belgium, 2010; p. 110. [Google Scholar]
- Christensen, J.; Carter, T.; Rummukainen, M.; Amanatidis, G. Evaluating the performance and utility of regional climate models: The PRUDENCE project. Clim. Chang. 2007, 81, 1–6. [Google Scholar] [CrossRef]
- Christensen, J.; Christensen, O. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Chang. 2007, 81, 7–30. [Google Scholar] [CrossRef]
- IPCC. Data Distribution Center. 2007. Available online: http://www.ipcc-data.org/ (accessed on 26 July 2018).
- Semenov, M.A.; Stratonovitch, P. The use of multi-model ensembles from global climate models for impact assessments of climate change. In Proceedings of the EGU General Assembly Conference 2009, Vienna, Austria, 19–24 April 2009; Volume 41. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output File Documentation; Version 2009; Agrilife Blackland Research Center: Temple, TX, USA, 2011. [Google Scholar]
- Willems, P. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environ. Model. Softw. 2009, 24, 311–321. [Google Scholar] [CrossRef]
- Leta, O.T.; Nossent, J.; Velez, C.; Shrestha, N.K.; van Griensven, A.; Bauwens, W. Assessment of the different sources of uncertainty in a SWAT model of the River Senne (Belgium). Environ. Model. Softw. 2015, 68, 129–146. [Google Scholar] [CrossRef]
- Tavakoli, M.; De Smedt, F.; Vansteenkiste, T.; Willems, P. Impact of climate change and urban development on extreme flows in the Grote Nete watershed, Belgium. Nat. Hazards 2014, 71, 2127–2142. [Google Scholar] [CrossRef]
Scenario | Variable | Winter | Spring | Summer | Autumn |
---|---|---|---|---|---|
High(wet) winter | Precipitation | high | low | low | mean |
PET/Temperature | high | high | high | high | |
High(wet) summer | Precipitation | mean | mean | high | mean |
PET/Temperature | mean | mean | low | low | |
Mean | Precipitation | mean | mean | mean | mean |
PET/Temperature | mean | mean | mean | mean | |
Low (dry) | Precipitation | low | mean | low | mean |
PET/Temperature | low | high | high | high |
Station | Period | Relative Change [%] | |||||
---|---|---|---|---|---|---|---|
Wet-Summer | Wet-Winter | Mean | Low | Ensemble Range | |||
Tubize | 2050s | Minimum | −49.3 | −74.9 | −62.5 | −70.0 | −74.9 |
Average | 43.0 | −20.5 | 5.5 | −33.8 | −1.4 | ||
Maximum | 77.8 | 11.7 | 24.6 | 20.4 | 77.8 | ||
2080s | Minimum | −69.7 | −80.2 | −76.5 | −80.4 | −80.4 | |
Average | 43.8 | −28.6 | −4.6 | −46.2 | −8.9 | ||
Maximum | 109.2 | 30.9 | 48.2 | 19.5 | 109.2 | ||
Lot | 2050s | Minimum | −27.5 | −63.6 | −37.8 | −60.6 | −63.6 |
Average | 38.5 | −19.7 | 5.6 | −32.7 | −2.1 | ||
Maximum | 51.5 | 10.3 | 22.0 | 17.8 | 51.5 | ||
2080s | Minimum | −21.3 | −70.5 | −54.4 | −76.2 | −76.2 | |
Average | 39.7 | −27.6 | −3.7 | −44.4 | −9.0 | ||
Maximum | 58.4 | 15.0 | 30.1 | 23.6 | 58.4 |
Station | Period | Relative Change [%] | |||||
---|---|---|---|---|---|---|---|
Wet-Summer | Wet-Winter | Mean | Low | Ensemble | |||
Tubize | 2050s | Minimum | 4.3 | −14.1 | −3.7 | −28.6 | −28.6 |
Average | 11.2 | −8.5 | 0.4 | −12.4 | −2.3 | ||
Maximum | 20.4 | 9.3 | 14.8 | −7.1 | 20.4 | ||
2080s | Minimum | 4.9 | −19.2 | −5.7 | −35.8 | −35.8 | |
Average | 12.9 | −11.9 | −1.9 | −18.2 | −4.8 | ||
Maximum | 23.0 | 11.8 | 12.4 | −9.0 | 23.0 | ||
Lot | 2050s | Minimum | −18.3 | −82.9 | −16.6 | −115.4 | −115.4 |
Average | 24.7 | −29.6 | 3.5 | −58.6 | −15.0 | ||
Maximum | 33.3 | −9.9 | 26.4 | −21.3 | 33.3 | ||
2080s | Minimum | 10.5 | −138.2 | −22.0 | −169.0 | −169.0 | |
Average | 27.6 | −55.3 | −3.8 | −109.3 | −35.2 | ||
Maximum | 34.7 | −23.8 | 20.7 | −42.3 | 34.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leta, O.T.; Bauwens, W. Assessment of the Impact of Climate Change on Daily Extreme Peak and Low Flows of Zenne Basin in Belgium. Hydrology 2018, 5, 38. https://doi.org/10.3390/hydrology5030038
Leta OT, Bauwens W. Assessment of the Impact of Climate Change on Daily Extreme Peak and Low Flows of Zenne Basin in Belgium. Hydrology. 2018; 5(3):38. https://doi.org/10.3390/hydrology5030038
Chicago/Turabian StyleLeta, Olkeba Tolessa, and Willy Bauwens. 2018. "Assessment of the Impact of Climate Change on Daily Extreme Peak and Low Flows of Zenne Basin in Belgium" Hydrology 5, no. 3: 38. https://doi.org/10.3390/hydrology5030038
APA StyleLeta, O. T., & Bauwens, W. (2018). Assessment of the Impact of Climate Change on Daily Extreme Peak and Low Flows of Zenne Basin in Belgium. Hydrology, 5(3), 38. https://doi.org/10.3390/hydrology5030038