Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. Trend Tests
3.2. Shift Test
3.3. Field Significance Test
4. Results
4.1. MK1 Test for Trends
4.2. MK2 Test for Trends
4.3. MK3 Test for Trends
4.4. Persistence in Trends
4.5. Pettitt’s Test for Shifts
5. Discussion
6. Conclusions
- Use of minimum threshold year as a criterion for selecting the number of stations: This allowed obtaining data from a large number of stations, which subsequently permitted a thorough observation of regional change patterns both at spatial and temporal scales.
- Use of multiple temporal scales to analyze the change patterns: Historical time series data were analyzed in water year and the seasonal scales across the study period to observe the variation (in mean flow) of change at different temporal scales.
- Determination of magnitude and significance of trends: In addition to detecting the presence of trends in historical data, the magnitude of trends (via average flow trend slopes) was evaluated. Stations with significance were classified based on different confidence level with a threshold of 90%.
- A comprehensive analysis of shifts: Change points of shifts could be traced with greater precision, which lead to a thorough analysis of shifts. The variable length of data allowed observation of the shift patterns at different time intervals across the study period.
- Integration of multiple modified test methods: Appropriate modifications were applied to account for persistence in data, which subsequently reduced the probability of over-estimation of trends.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
WMO | World Meteorological Organization |
USGSs | United States Geological Survey |
HCDN | Hydro-climatic Data Network |
MK | Mann-Kendall |
STP | Short-term persistence |
LTP | Long-term persistence |
References
- Rice, J.S.; Emanuel, R.E.; Vose, J.M.; Nelson, S.A.C. Continental U.S. streamflow trends from 1940 to 2009 and their relationships with watershed spatial characteristics. Water Resour. Res. 2015, 1944–7973. [Google Scholar] [CrossRef]
- Lins, H.; Slack, J. Streamflow trends in the United States. Geophys. Res. Lett. 1999, 26, 227–230. [Google Scholar] [CrossRef]
- Carrier, C.; Kalra, A.; Ahmad, S. Long-range precipitation forecast using paleoclimate reconstructions in the western United States. J. Mt. Sci. 2016, 13, 614–632. [Google Scholar] [CrossRef]
- Cayan, D.R.; Kammerdiener, S.A.; Dettinger, M.D.; Caprio, J.M.; Peterson, D.H. Changes in the Onset of Spring in the Western United States. Bull. Am. Meteorol. Soc. 2001, 82, 399–415. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L. Increasing risk of great floods in a changing climate. Nature 2002, 415, 514–517. [Google Scholar] [CrossRef] [PubMed]
- McCabe, G.J.; Wolock, D.M. A step increase in streamflow in the conterminous United States. Geophys. Res. Lett. 2002, 29, 2185. [Google Scholar] [CrossRef]
- Durdu, Ö.F. Effects of climate change on water resources of the Büyük Menderes River basin, western Turkey. Turk. J. Agric. For. 2010, 34, 319–332. [Google Scholar]
- Zhang, F.; Li, L.; Ahmad, S.; Li, X. Using Path Analysis to Identify the Influence of Climatic Factors on Spring Peak Flow Dominated by Snowmelt in an Alpine Watershed. J. Mt. Sci. 2014, 11, 990–1000. [Google Scholar] [CrossRef]
- Burn, D.H.; Sharif, M.; Zhang, K. Detection of trends in hydrological extremes for Canadian watersheds. Hydrol. Process. 2010, 24, 1781–1790. [Google Scholar] [CrossRef]
- Clark, G.M. Changes in patterns of streamflow from unregulated watersheds in Idaho, western Wyoming, and Northern Nevada1. J. Am. Water Resour. Assoc. 2010, 46, 486–497. [Google Scholar]
- Sagarika, S.; Kalra, A.; Ahmad, S. Interconnection between oceanic-atmospheric indices and variability in the US streamflow. J. Hydrol. 2015, 525, 724–736. [Google Scholar] [CrossRef]
- Sagarika, S.; Kalra, A.; Ahmad, S. Pacific Ocean and SST and Z500 climate variability and western U.S. seasonal streamflow. Int. J. Climatol. 2015, 36, 1515–1533. [Google Scholar] [CrossRef]
- Rusuli, Y.; Li, L.; Ahmad, S.; Zhao, X. Dynamics model to simulate water and salt balance of Bosten Lake in Xinjiang, China. Environ. Earth Sci. 2015, 74, 2499–2510. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Kalra, A.; Ahmad, S.; Nayak, A. Increasing streamflow forecast lead time for snowmelt-driven catchment based on large-scale climate patterns. Adv. Water Resour. 2013, 53, 150–162. [Google Scholar] [CrossRef]
- Dawadi, S.; Ahmad, S. Evaluating the impact of demand-side management on water resources under changing climatic conditions and increasing population. J. Environ. Manag. 2013, 114, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Lettenmaier, D.P.; Wood, E.F.; Wallis, J.R. Hydro-climatological trends in the continental United States, 1948-88. J. Clim. 1994, 7, 586–607. [Google Scholar] [CrossRef]
- Carrier, C.; Kalra, A.; Ahmad, S. Using Paleo Reconstructions to Improve Streamflow Forecast Lead Time in the Western United States. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 1351–1366. [Google Scholar] [CrossRef]
- Middelkoop, H.; Daamen, K.; Gellens, D. Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Clim. Chang. 2001, 49, 105–128. [Google Scholar] [CrossRef]
- Anderson, W.P.; Emanuel, R.E. Effect of interannual and interdecadal climate oscillations on groundwater in North Carolina. Geophys. Res. Lett. 2008, 35, L23402. [Google Scholar] [CrossRef]
- Bates, B.; Kundzewicz, Z.W.; Wu, S.; Palutikof, J. Climate Change and Water: Technical Paper VI; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2008. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; IPCC: Geneva, Switzerland, 2013; p. 33. [Google Scholar] [CrossRef]
- Weider, K.; Boutt, D.F. Heterogeneous water table response to climate revealed by 60 years of ground water data. Geophys. Res. Lett. 2010, 37, 10–15. [Google Scholar] [CrossRef]
- Miller, W.P.; Piechota, T.C. Regional analysis of trend and step changes observed in hydroclimatic variables around the Colorado river basin. J. Hydrometeorol. 2008, 9, 1020–1034. [Google Scholar] [CrossRef]
- Sagarika, S.; Kalra, A.; Ahmad, S. Evaluating the effect of persistence on long-term trends and analyzing shifts in streamflows of the continental United States. J. Hydrol. 2014, 517, 36–53. [Google Scholar] [CrossRef]
- Villarini, G.; Serinaldi, F.; Smith, J.A.; Krajewski, W.F. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Matalas, N.C. Stochastic hydrology in the context of climate change. Clim. Chang. 1997, 37, 89–101. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Montanari, A. Statistical analysis of hydroclimatic time series: Uncertainty and insights. Water Resour. Res. 2007, 43, W05429. [Google Scholar] [CrossRef]
- Milly, P.; Julio, B.; Malin, F.; Robert, M.; Zbigniew, W.; Dennis, P.; Ronald, J. Stationarity is dead. Ground Water News Views 2008, 4, 6–8. [Google Scholar]
- Cook, E.; Woodhouse, C.A.; Eakin, C.M.; Meko, D.M.; Stahle, D.W. Long-Term Aridity Changes in the Western United States. Science 2004, 306, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Birsan, M.V.; Molnar, P.; Burlando, P.; Pfaundler, M. Streamflow trends in Switzerland. J. Hydrol. 2005, 314, 312–329. [Google Scholar] [CrossRef]
- Ampitiyawatta, A.D.; Guo, S. Precipitation trends in the Kalu Ganga basin in Sri Lanka. J. Agric. Sci. 2009, 4, 10–18. [Google Scholar] [CrossRef]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- McCabe, G.J.; Clark, M.P. Trends and Variability in Snowmelt Runoff in the Western United States. J. Hydrometeorol. 2005, 6, 476–482. [Google Scholar] [CrossRef]
- Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes toward earlier streamflow timing across Western North America. J. Clim. 2005, 18, 1136–1155. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Khalil, B. Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008). J. Hydrol. 2012, 475, 204–228. [Google Scholar] [CrossRef]
- Clark, J.S.; Yiridoe, E.K.; Burns, N.D.; Astatkie, T. Regional climate change: Trend analysis of temperature and precipitation series at selected Canadian sites. Can. J. Agric. Econ. 2000, 48, 27–38. [Google Scholar] [CrossRef]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in floods and low flows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Kalra, A.; Piechota, T.C.; Davies, R.; Tootle, G.A. Changes in U.S. streamflow and western U.S. snowpack. J. Hydrol. Eng. 2008, 13, 156–163. [Google Scholar] [CrossRef]
- Small, D.; Islam, D.; Vogel, R.M. Trends in precipitation and streamflow in the eastern U.S.: Paradox or perception? Geophys. Res. Lett. 2006, 33, L03403. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B. Canadian streamflow trend detection: Impacts of serial and cross-correlation. Hydrol. Sci. J. 2003, 48, 51–63. [Google Scholar] [CrossRef]
- Dixon, H.; Lawler, D.M.; Shamseldin, A.Y.; Webster, P. The effect of record length on the analysis of river flow trends in Wales and central England. In Proceedings of the Fifth FRIEND World Conference, Havana, Cuba, 27 November–1 December 2006; pp. 490–495.
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Kumar, D.N. Predictability of nonstationary time series using wavelet and EMD based ARMA models. J. Hydrol. 2013, 502, 103–119. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Önöz, B.; Bayazit, M. The power of statistical tests for trend detection. Turk. J. Eng. Environ. Sci. 2003, 27, 247–251. [Google Scholar]
- Burn, D.H. Climatic influences on streamflow timing in the headwaters of the Mackenzie River Basin. J. Hydrol. 2008, 352, 225–238. [Google Scholar] [CrossRef]
- Pettitt, A. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis; IPCC: Geneva, Switzerland, 2001; p. 881. [Google Scholar] [CrossRef]
- Lins, H.F. USGS Hydro-Climatic Data Network 2009 (HCDN-2009): U.S. Geological Survey Fact Sheet 2012-3047; U.S. Geological Survey: Reston, VA, USA, 2012; p. 4. Available online: http://pubs.usgs.gov/fs/2012/ 3047/ (accessed on 25 March 2015).
- Partal, T.; Küçük, M. Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys. Chem. Earth 2006, 31, 1189–1200. [Google Scholar] [CrossRef]
- Von Storch, H. Misuses of Statistical Analysis in Climate Research. In Analysis of Climate Variability: Applications of Statistical Techniques; Springer: Berlin, Germany, 1995; pp. 11–26. [Google Scholar]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hurst, H. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar]
- Koutsoyiannis, D. Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol. Sci. J. 2003, 48, 3–24. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Thiel, H. A rank-invariant method of linear and polynomial regression analysis. Adv. Stud. Theor. Appl. Econom. 1950, 23, 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wilks, D.S. On “Field Significance” and the false discovery rate. J. Appl. Meteorol. Climatol. 2006, 45, 1181–1189. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Streamflow, Society and Ecosystems, Climate Change Indicators in the United States. 2012. Available online: http://www.epa.gov/climatechange/science/indicators/society-eco/streamflow.html (accessed on 3 April 2015). [Google Scholar]
- Groisman, P.; Knight, R.; Karl, T. Heavy precipitation and high streamflow in the contiguous United States: Trends in the twentieth century. Bull. Am. Meteorol. Soc. 2001, 82, 19–46. [Google Scholar] [CrossRef]
- Kalra, A.; Ahmad, S. Estimating annual precipitation for the Colorado River Basin using oceanic-atmospheric oscillations. Water Resour. Res. 2012, 48, W06527. [Google Scholar] [CrossRef]
- Cohn, T.A.; Lins, H.F. Nature’s style: Naturally trendy. Geophys. Res. Lett. 2005, 32, L23402. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
Hydrologic Region No. | Region Name | Number of Stations in Each Region | Number of Stations with Significant Trend in Each Region | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water-year | Fall | Winter | Spring | Summer | |||||||||||||
MK1 +/− | MK2 +/− | MK3 +/− | MK1 +/− | MK2 +/− | MK3 +/− | MK1 +/− | MK2 +/− | MK3 +/− | MK1 +/− | MK2 +/− | MK3 +/− | MK1 +/− | MK2 +/− | MK3 +/− | |||
1 | New England | 29 | 23/0 | 22/0 | 17/0 | 23/0 | 23/0 | 23/0 | 14/0 | 14/0 | 10/0 | 0/0 | 0/0 | 0/0 | 16/0 | 16/0 | 14/0 |
2 | Mid-Atlantic | 70 | 9/0 | 8/1 | 3/0 | 26/0 | 26/0 | 19/0 | 3/0 | 3/0 | 1/0 | 3/9 | 3/9 | 3/8 | 11/0 | 11/0 | 11/0 |
3 | South Atlantic-Gulf | 75 | 0/16 | 0/18 | 0/12 | 0/8 | 0/8 | 0/8 | 0/24 | 0/24 | 0/22 | 0/25 | 0/26 | 0/25 | 0/13 | 0/10 | 0/9 |
4 | Great Lakes | 26 | 6/6 | 6/7 | 5/3 | 4/4 | 4/4 | 3/1 | 9/1 | 9/1 | 8/1 | 2/7 | 2/7 | 2/7 | 5/9 | 5/10 | 4/6 |
5 | Ohio | 36 | 8/0 | 7/0 | 4/0 | 13/0 | 13/0 | 13/0 | 1/2 | 0/2 | 0/1 | 8/2 | 8/2 | 7/2 | 4/2 | 4/2 | 4/2 |
6 | Tennessee | 15 | 0/0 | 0/0 | 0/0 | 2/0 | 2/0 | 2/0 | 0/3 | 0/3 | 0/0 | 0/3 | 0/3 | 0/3 | 1/0 | 1/0 | 1/0 |
7 | Upper Mississippi | 31 | 14/0 | 14/0 | 9/0 | 10/1 | 10/1 | 5/0 | 2/0 | 3/0 | 1/0 | 16/0 | 16/0 | 15/0 | 6/1 | 6/1 | 4/1 |
8 | Lower Mississippi | 5 | 0/1 | 0/1 | 0/1 | 0/0 | 0/0 | 0/0 | 0/1 | 0/1 | 0/1 | 0/4 | 0/4 | 0/4 | 0/1 | 0/1 | 0/1 |
9 | Souris-Red-Rainy | 8 | 6/0 | 6/0 | 2/0 | 5/1 | 5/1 | 3/1 | 6/0 | 5/0 | 5/0 | 5/0 | 5/0 | 2/0 | 4/0 | 4/0 | 1/0 |
10 | Missouri | 69 | 14/13 | 13/13 | 6/8 | 19/4 | 18/5 | 7/0 | 16/6 | 14/7 | 4/4 | 14/7 | 14/7 | 9/5 | 9/5 | 10/6 | 3/4 |
11 | Arkansas-White-Red | 24 | 3/1 | 3/1 | 1/0 | 3/0 | 1/0 | 1/0 | 3/0 | 3/1 | 1/0 | 2/1 | 2/1 | 1/1 | 2/2 | 2/2 | 1/2 |
12 | Texas-Gulf | 31 | 1/2 | 1/2 | 1/2 | 1/1 | 1/1 | 0/1 | 3/0 | 3/0 | 2/0 | 0/13 | 0/13 | 0/13 | 2/1 | 2/1 | 1/1 |
13 | Rio Grande | 7 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 4/0 | 3/0 | 1/0 | 0/0 | 0/0 | 0/0 | 0/1 | 0/1 | 0/1 |
14 | Upper Colorado | 14 | 0/3 | 0/3 | 0/2 | 3/3 | 2/3 | 1/0 | 9/1 | 5/1 | 4/0 | 0/3 | 0/3 | 0/2 | 0/6 | 0/6 | 0/5 |
15 | Lower Colorado | 16 | 0/4 | 0/4 | 0/2 | 0/6 | 0/6 | 0/1 | 0/3 | 0/3 | 0/1 | 1/7 | 1/7 | 0/5 | 0/5 | 0/4 | 0/4 |
16 | Great Basin | 37 | 2/7 | 1/8 | 0/4 | 5/3 | 6/6 | 3/1 | 10/2 | 10/2 | 6/0 | 0/8 | 0/8 | 0/6 | 2/7 | 2/7 | 1/5 |
17 | Pacific Northwest | 67 | 4/4 | 4/4 | 4/3 | 2/3 | 2/3 | 2/3 | 7/3 | 7/3 | 6/3 | 5/5 | 6/5 | 5/5 | 1//11 | 1/11 | 1/10 |
18 | California | 40 | 0/0 | 0/0 | 0/0 | 5/0 | 4/0 | 0/0 | 6/1 | 6/1 | 5/1 | 0/0 | 0/0 | 0/0 | 2/2 | 1/2 | 0/2 |
Total | 600 | 90/57 | 85/62 | 52/37 | 121/34 | 117/38 | 82/16 | 93/47 | 85/49 | 54/34 | 56/94 | 57/95 | 44/86 | 65/66 | 65/64 | 46/53 |
Hydrologic Region No. | Region Name | Number of Stations in the Region | Number of Stations with Significant Shifts in Each Region | ||||
---|---|---|---|---|---|---|---|
Water-year | Fall | Winter | Spring | Summer | |||
+/− | +/− | +/− | +/− | +/− | |||
1 | New England | 29 | 20/0 | 20/0 | 18/0 | 0/1 | 18/0 |
2 | Mid-Atlantic | 70 | 27/2 | 37/1 | 5/4 | 9/10 | 16/1 |
3 | South Atlantic-Gulf | 75 | 0/23 | 1/8 | 1/46 | 1/31 | 1/13 |
4 | Great Lakes | 26 | 9/9 | 6/5 | 12/1 | 1/9 | 6/12 |
5 | Ohio | 36 | 14/0 | 19/0 | 0/1 | 7/2 | 6/1 |
6 | Tennessee | 15 | 1/0 | 2/0 | 0/7 | 0/4 | 1/0 |
7 | Upper Mississippi | 31 | 16/0 | 18/0 | 3/0 | 15/0 | 6/0 |
8 | Lower Mississippi | 5 | 0/3 | 0/0 | 1/2 | 0/3 | 0/1 |
9 | Souris-Red-Rainy | 8 | 7/0 | 6/0 | 6/0 | 6/0 | 7/1 |
10 | Missouri | 69 | 18/14 | 26/8 | 22/7 | 16/11 | 12/11 |
11 | Arkansas-White-Red | 24 | 8/2 | 9/2 | 9/1 | 1/2 | 4/2 |
12 | Texas-Gulf | 31 | 4/2 | 6/2 | 7/0 | 0/10 | 7/2 |
13 | Rio Grande | 7 | 0/1 | 2/1 | 6/0 | 0/0 | 0/3 |
14 | Upper Colorado | 14 | 0/5 | 7/3 | 9/1 | 0/5 | 0/9 |
15 | Lower Colorado | 16 | 1/8 | 1/7 | 1/3 | 1/12 | 0/5 |
16 | Great Basin | 37 | 3/10 | 10/11 | 11/5 | 2/8 | 3/11 |
17 | Pacific Northwest | 67 | 6/10 | 3/3 | 5/4 | 8/11 | 3/27 |
18 | California | 40 | 3/0 | 6/3 | 9/2 | 0/0 | 6/3 |
Total | 600 | 137/89 | 179/54 | 125/84 | 67/119 | 96/102 |
Time Interval | Water Year | Fall | Winter | Spring | Summer |
---|---|---|---|---|---|
1921–1950 | 5 | 5 | 4 | 1 | 11 |
1951–1960 | 4 | 6 | 14 | 1 | 6 |
1961–1970 | 53 | 77 | 24 | 24 | 28 |
1971–1980 | 45 | 38 | 51 | 31 | 41 |
1981–1990 | 52 | 43 | 43 | 66 | 66 |
1991–2000 | 50 | 38 | 67 | 51 | 40 |
2000–2012 | 17 | 26 | 6 | 12 | 6 |
Total | 226 | 233 | 209 | 186 | 198 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamaddun, K.; Kalra, A.; Ahmad, S. Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths. Hydrology 2016, 3, 24. https://doi.org/10.3390/hydrology3020024
Tamaddun K, Kalra A, Ahmad S. Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths. Hydrology. 2016; 3(2):24. https://doi.org/10.3390/hydrology3020024
Chicago/Turabian StyleTamaddun, Kazi, Ajay Kalra, and Sajjad Ahmad. 2016. "Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths" Hydrology 3, no. 2: 24. https://doi.org/10.3390/hydrology3020024
APA StyleTamaddun, K., Kalra, A., & Ahmad, S. (2016). Identification of Streamflow Changes across the Continental United States Using Variable Record Lengths. Hydrology, 3(2), 24. https://doi.org/10.3390/hydrology3020024