Trends in Surface Water Quality and Trophic State in the Yucatán Peninsula over the Last Decade
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Environmental Parameters Measurements
2.3. Water Quality Index and Trophic State Estimation
2.4. Statistical Analysis
3. Results
3.1. Water Quality and Trophic State Trend Tests
3.2. Spatial Analysis of Environmental Variables Associated with Water Quality in 2024
3.3. Spatial Water Quality and Trophic State of the Yucatán Peninsula During 2024
4. Discussion
4.1. Temporal Trends of Water Quality (2012–2024)
4.2. State in the Yucatán Peninsula During 2024
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater Biodiversity: Importance, Threats, Status and Conservation Challenges. Biol. Rev. Camb. Philos. Soc. 2006, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Vári, Á.; Podschun, S.A.; Erős, T.; Hein, T.; Pataki, B.; Iojă, I.-C.; Adamescu, C.M.; Gerhardt, A.; Gruber, T.; Dedić, A.; et al. Freshwater Systems and Ecosystem Services: Challenges and Chances for Cross-Fertilization of Disciplines. Ambio 2022, 51, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.P.; Jiang, B.; Bohn, T.J.; Lee, K.N.; Lettenmaier, D.P.; Ma, D.; Ouyang, Z. Lake and Wetland Ecosystem Services Measuring Water Storage and Local Climate Regulation. Water Resour. Res. 2017, 53, 3197–3223. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Marcinkowski, P.; Piniewski, M.; Kardel, I.; Szcześniak, M.; Benestad, R.; Srinivasan, R.; Ignar, S.; Okruszko, T. Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland. Water 2017, 9, 156. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Jun Xu, Y.; Mao, B.; Jia, S. Extreme Drought Affects Lake Water Quality, Quantity, Morphometry: Evidence from China’s Largest Fresh Water Lake under the 2022 Global Drought. Geosci. Front. 2025, 16, 102146. [Google Scholar] [CrossRef]
- Wanek, A.; Hargiss, C.L.M.; Norland, J.; Ellingson, N. Assessment of Water Quality in Ponds across the Rural, Peri-Urban, and Urban Gradient. Environ. Monit. Assess. 2021, 193, 694. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Lei, Q.; Feng, Q.; Luo, J.; Lindsey, S. Asynchrony between Urban Expansion and Water Environmental Protection Reshapes the Spatial Patterns of Nitrogen and Phosphorus Concentrations and N:P Stoichiometry in Inland Small Water Bodies in Changsha, China. Front. Environ. Sci. 2022, 10, 1018408. [Google Scholar] [CrossRef]
- Brehob, M.M.; Pennino, M.J.; Handler, A.M.; Compton, J.E.; Lee, S.S.; Sabo, R.D. Estimates of Lake Nitrogen, Phosphorus, and Chlorophyll-a Concentrations to Characterize Harmful Algal Bloom Risk Across the United States. Earths Future 2024, 12, e2024EF004493. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.; Burkholder, J.; Anderson, D.; Cochlan, W.; Dennison, W.; Gobler, C.; Dortch, Q.; Heil, C.; Humphries, E.; et al. Eutrophication and Harmful Algal Blooms: A Scientific Consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef]
- Ansari, A.A.; Gill, S.S.; Lanza, G.R.; Rast, W. (Eds.) Eutrophication: Causes, Consequences and Control; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-90-481-9624-1. [Google Scholar]
- Kong, X.; Determann, M.; Andersen, T.K.; Barbosa, C.C.; Dadi, T.; Janssen, A.B.G.; Paule-Mercado, M.C.; Pujoni, D.G.F.; Schultze, M.; Rinke, K. Synergistic Effects of Warming and Internal Nutrient Loading Interfere with the Long-Term Stability of Lake Restoration and Induce Sudden Re-Eutrophication. Environ. Sci. Technol. 2023, 57, 4003–4013. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhou, J.; Deng, D.; Du, M.; Meng, Y.; Dai, L.; Peng, Q.; Wang, L. Understanding the Relationship Between Water Quality and Soil Nutrient Dynamics in Qinghai Lake Through Statistical and Regression Models. Water 2025, 17, 472. [Google Scholar] [CrossRef]
- OECD. Diffuse Pollution, Degraded Waters: Emerging Policy Solutions; OECD Studies on Water; OECD: Paris, France, 2017; ISBN 978-92-64-26905-7. [Google Scholar]
- Devlin, M.; Brodie, J. Nutrients and Eutrophication. In Marine Pollution—Monitoring, Management and Mitigation; Reichelt-Brushett, A., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 75–100. ISBN 978-3-031-10127-4. [Google Scholar]
- De Souza Beghelli, F.G.; Frascareli, D.; Pompêo, M.L.M.; Moschini-Carlos, V. Trophic State Evolution over 15 Years in a Tropical Reservoir with Low Nitrogen Concentrations and Cyanobacteria Predominance. Water. Air. Soil Pollut. 2016, 227, 95. [Google Scholar] [CrossRef]
- Raulino, R.N.S.; Andrade de Lima, M.V. Multimodel TSI Evaluation to Characterize Eutrophication in a Tropical Semi-Arid Reservoir: A Case Study of the Araras Reservoir. Rev. Gest. Ambient. E Sustentabilidade GeAS 2024, 13, 30. [Google Scholar]
- Bauer-Gottwein, P.; Gondwe, B.R.N.; Charvet, G.; Marín, L.E.; Rebolledo-Vieyra, M.; Merediz-Alonso, G. Review: The Yucatán Peninsula Karst Aquifer, Mexico. Hydrogeol. J. 2011, 19, 507–524. [Google Scholar] [CrossRef]
- Carrillo, L.; Yescas, M.; Nieto-Oropeza, M.O.; Elías-Gutiérrez, M.; Alcérreca-Huerta, J.C.; Palacios-Hernández, E.; Reyes-Mendoza, O.F. Investigating the Morphometry and Hydrometeorological Variability of a Fragile Tropical Karstic Lake of the Yucatán Peninsula: Bacalar Lagoon. Hydrology 2024, 11, 68. [Google Scholar] [CrossRef]
- Gondwe, B.R.N.; Lerer, S.; Stisen, S.; Marín, L.; Rebolledo-Vieyra, M.; Merediz-Alonso, G.; Bauer-Gottwein, P. Hydrogeology of the South-Eastern Yucatan Peninsula: New Insights from Water Level Measurements, Geochemistry, Geophysics and Remote Sensing. J. Hydrol. 2010, 389, 1–17. [Google Scholar] [CrossRef]
- Lucero, L.J. Ancient Maya Reservoirs, Constructed Wetlands, and Future Water Needs. Proc. Natl. Acad. Sci. USA 2023, 120, e2306870120. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía (INEGI). Available online: https://www.inegi.org.mx/?utm_source (accessed on 24 October 2025).
- Moreno-Pérez, P.A.; Hernández-Téllez, M.; Bautista-Gálvez, A. In Danger One of the Largest Aquifers in the World, the Great Mayan Aquifer, Based on Monitoring the Cenotes of the Yucatan Peninsula. Arch. Environ. Contam. Toxicol. 2021, 81, 189–198. [Google Scholar] [CrossRef]
- García-Cruz, N.; Couder-García, B.; Saldaña-Villanueva, K.; Valdivia Rivera, S. Capítulo 7 Contaminantes Ambientales En La Península de Yucatán. In Los Residuos Pesqueros, Zcuícolas y Biomasa de Algas: Posibilidades de su Aprovechamiento en la Península de Yucatán. Experiencias Transdiciplinarias/Sustentables con Enfoque a la Soberanía Alimentaria; CIATEJ: Guadalajara, Mexico, 2025; pp. 131–149. ISBN 978-607-8734-83-2. [Google Scholar]
- Cohuo, S.; Moreno-López, A.; Escamilla-Tut, N.Y.; Pérez-Tapia, A.M.; Santos-Itzá, I.; Macario-González, L.A.; Villegas-Sánchez, C.A.; Medina-Quej, A. Assessment of Water Quality and Heavy Metal Environmental Risk on the Peri-Urban Karst Tropical Lake La Sabana, Yucatán Peninsula. Water 2023, 15, 390. [Google Scholar] [CrossRef]
- Acuña-Alonso, C.; Álvarez, X.; Lorenzo, O.; Cancela, Á.; Valero, E.; Sánchez, Á. Assessment of Water Quality in Eutrophized Water Bodies through the Application of Indexes and Toxicity. Sci. Total Environ. 2020, 728, 138775. [Google Scholar] [CrossRef] [PubMed]
- Kopczynski, S.; Nolen, R.; Hala, D.; Lases-Hernández, F.; Escobedo-Hinojosa, W.; Arcega-Cabrera, F.; Oceguera-Vargas, I.; Quigg, A. Investigation of Anthropogenic and Emerging Contaminants in Sinkholes (Cenotes) of the Great Mayan Aquifer, Yucatán Peninsula. Arch. Environ. Contam. Toxicol. 2025, 89, 279–299. [Google Scholar] [CrossRef]
- Arcega-Cabrera, F.; Sickman, J.O.; Fargher, L.; Herrera-Silveira, J.; Lucero, D.; Oceguera-Vargas, I.; Lamas-Cosío, E.; Robledo-Ardila, P.A. Groundwater Quality in the Yucatan Peninsula: Insights from Stable Isotope and Metals Analysis. Groundwater 2021, 59, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Silveira, J.A.; Medina-Gomez, I.; Colli, R. Trophic Status Based on Nutrient Concentration Scales and Primary Producers Community of Tropical Coastal Lagoons Influenced by Groundwater Discharges. Hydrobiologia 2002, 475/476, 91–98. [Google Scholar] [CrossRef]
- Rodríguez-Huerta, E.; Rosas-Casals, M.; Hernández-Terrones, L.M. A Water Balance Model to Estimate Climate Change Impact on Groundwater Recharge in Yucatan Peninsula, Mexico. Hydrol. Sci. J. 2020, 65, 470–486. [Google Scholar] [CrossRef]
- Barats, A.; Renac, C.; Garrido- Hoyos, S.; Gonzalez-Perez, B.; Garcia-Mendoza, K.; Esteller-Alberich, M.V.; Jara-Marini, M.E.; Aguilar-Chavez, A. Assessment of the Water Quality in the Coastal Yaqui Valley (Mexico): Implications for Human Health and Ecological Risks. Environ. Res. 2025, 264, 120275. [Google Scholar] [CrossRef]
- Marisa, M.-H.; Adrián, F.-R.; Jannice, A.-V.; Misael Sebastián, G.-H.; Diego, D.-V. Water Quality Management in a Tropical Karstic System Influenced by Land Use in Chiapas, Mexico. Environ. Chall. 2024, 16, 100981. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A Comprehensive Review of Water Quality Indices (WQIs): History, Models, Attempts and Perspectives. Rev. Environ. Sci. Biotechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef]
- Perry, E.; Socki, R. Hydrogeology of the Yucatán Peninsula. In The Lowland Maya Area; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Romero, D.; Alfaro, E.J. Spatiotemporal Variability of the Rainy Season in the Yucatan Peninsula. Int. J. Climatol. 2024, 44, 2561–2574. [Google Scholar] [CrossRef]
- Sanchez Rivera, G.; Frausto, O.; Gómez-Mendoza, L.; Terán-Cuevas, Á.; Morales Hernandez, J. Tropical Cyclones in the North Atlantic Basin and Yucatan Peninsula, Mexico: Identification of Extreme Events. Int. J. Des. Nat. Ecodyn. 2021, 16, 145–160. [Google Scholar] [CrossRef]
- Bautista, F. Clasificación de Suelos de La Península de Yucatán. In Los Territorios Kársticos de la Península de Yucatán: Caracterización, Manejo y Riesgos; Mexican Association for Karst Studies: Mexico, Mexico, 2021; pp. 25–38. ISBN 978-607-97684-2-3. [Google Scholar]
- Strickland, J.D.H.; Parsons, T.R. A Practical Handbook of Seawater Analysis; Fisheries Research Board of Canada: Ottawa, ON, Canada, 1972. [Google Scholar]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Biliani, I.; Skamnia, E.; Economou, P.; Zacharias, I. A Novel Methodology to Correct Chlorophyll-a Concentrations from Satellite Data and Assess Credible Phenological Patterns. Remote Sens. 2025, 17, 1156. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering: Treatment, Disposal, and Reuse; McGraw-Hill: New York, NY, USA, 2004; Volume 4. [Google Scholar]
- Schumacher, A.J.; Lingle, C.K.; Silbernagel, K.M.; Thompson-Strehlow, L. Validation of the 3MTM PetrifilmTM Coliform Count Plate for Enumeration of Coliforms in Bottled Water: AOAC Performance Tested MethodSM 082101. J. AOAC Int. 2021, 105, 866–875. [Google Scholar] [CrossRef] [PubMed]
- DOTABLES. Available online: https://water.usgs.gov/water-resources/software/DOTABLES/ (accessed on 22 June 2025).
- Garcia, H.E.; Gordon, L.I. Oxygen Solubility in Seawater: Better Fitting Equations. Limnol. Oceanogr. 1992, 37, 1307–1312. [Google Scholar] [CrossRef]
- WQI. For Surface Waters. Available online: https://form.jotform.com/222877212484056 (accessed on 14 September 2025).
- Paulic, M.; Hand, J.; Lord, L. Florida Department of Environmental Protection. 1996 Water-Quality Assessment for the State of Florida, Section 305(b) Main Report; Florida Department of Environmental Protection: Tallahassee, FL, USA, 1996. Available online: http://lake.wateratlas.usf.edu/upload/documents/1996%20Water-Quality%20Assessment%20for%20the%20State%20of%20Florida%20Section%20305(b)%20Main%20Report.pdf (accessed on 5 September 2025).
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics; Raj, B., Koerts, J., Eds.; Advanced Studies in Theoretical and Applied Econometrics; Springer: Dordrecht, The Netherlands, 1992; Volume 23, pp. 345–381. ISBN 978-94-010-5124-8. [Google Scholar]
- Souza, T. Non-Metric Multidimensional Scaling (NMDS). In Advanced Statistical Analysis for Soil Scientists; Souza, T., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 79–102. ISBN 978-3-031-88161-9. [Google Scholar]
- Hammoumi, D.; Al-Aizari, H.S.; Alaraidh, I.A.; Okla, M.K.; Assal, M.E.; Al-Aizari, A.R.; Moshab, M.S.; Chakiri, S.; Bejjaji, Z. Seasonal Variations and Assessment of Surface Water Quality Using Water Quality Index (WQI) and Principal Component Analysis (PCA): A Case Study. Sustainability 2024, 16, 5644. [Google Scholar] [CrossRef]
- Dutta, S.; Dwivedi, A.; Suresh Kumar, M. Use of Water Quality Index and Multivariate Statistical Techniques for the Assessment of Spatial Variations in Water Quality of a Small River. Environ. Monit. Assess. 2018, 190, 718. [Google Scholar] [CrossRef]
- Zavareh, M.; Maggioni, V.; Sokolov, V.; Zavareh, M.; Maggioni, V.; Sokolov, V. Investigating Water Quality Data Using Principal Component Analysis and Granger Causality. Water 2021, 13, 343. [Google Scholar] [CrossRef]
- McCune, B.; Grace, J.B.; Urban, D.L. Analysis of Ecological Communities; MjM Software Design: Gleneden Beach, OR, USA, 2002; ISBN 0-9721290-0-6. [Google Scholar]
- Arcega-Cabrera, F.; León-Aguirre, K.; Enseñat-Soberanis, F.; Giácoman-Vallejos, G.; Rodríguez-Fuentes, G.; Oceguera-Vargas, I.; Lamas-Cosío, E.; Simoes, N. Use of Microbiological and Chemical Data to Evaluate the Effects of Tourism on Water Quality in Karstic Cenotes in Yucatan, Mexico. Bull. Environ. Contam. Toxicol. 2023, 111, 6. [Google Scholar] [CrossRef]
- Borbolla-Vazquez, J.; Ugalde-Silva, P.; León-Borges, J.; Díaz-Hernández, J.A. Total and Faecal Coliforms Presence in Cenotes of Cancun; Quintana Roo, Mexico. BioRisk 2020, 15, 31–43. [Google Scholar] [CrossRef]
- Rojas Fabro, A.Y.; Pacheco Ávila, J.G.; Esteller Alberich, M.V.; Cabrera Sansores, S.A.; Camargo-Valero, M.A. Spatial Distribution of Nitrate Health Risk Associated with Groundwater Use as Drinking Water in Merida, Mexico. Appl. Geogr. 2015, 65, 49–57. [Google Scholar] [CrossRef]
- INEGI Mapa. Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463173359&utm (accessed on 18 November 2025).
- Ellis, E.A.; Romero Montero, J.A.; Hernández Gómez, I.U. Deforestation Processes in the State of Quintana Roo, Mexico: The Role of Land Use and Community Forestry. Trop. Conserv. Sci. 2017, 10, 1940082917697259. [Google Scholar] [CrossRef]
- INEGICenso Agropecuario (CA) 2022. Available online: https://www.inegi.org.mx/programas/ca/2022/ (accessed on 1 September 2025).
- Tun-Canto, G.E.; Álvarez-Legorreta, T.; Zapata-Buenfil, G.; Sosa-Cordero, E. Metales Pesados En Suelos y Sedimentos de La Zona Cañera Del Sur de Quintana Roo, México. Rev. Mex. Cienc. Geológicas 2017, 34, 157. [Google Scholar] [CrossRef]
- Kauffer Michel, E.F.; Villanueva Aguilar, C.L.V. Retos de la gestión de una cuenca construida: La Península de Yucatán en México. Aqua-LAC 2011, 3, 81–91. [Google Scholar] [CrossRef]
- Camacho-Cruz, K.A.; Ortiz-Hernández, M.C.; Sánchez, A.; Carrillo, L.; De Jesús Navarrete, A. Water Quality in the Eastern Karst Region of the Yucatan Peninsula: Nutrients and Stable Nitrogen Isotopes in Turtle Grass, Thalassia Testudinum. Environ. Sci. Pollut. Res. 2020, 27, 15967–15983. [Google Scholar] [CrossRef]
- Nazeri Tahroudi, M. Comprehensive Global Assessment of Precipitation Trend and Pattern Variability Considering Their Distribution Dynamics. Sci. Rep. 2025, 15, 22458. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Change Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef]
- Elías-Gutiérrez, M.; Valdez-Moreno, M.; Montes-Ortiz, L.; García-Morales, A.E. Zooplankton as an Indicator: A Dramatic Shift in Its Composition Following a Sudden Temporal Brownification of a Tropical Oligotrophic Lake in Southern Mexico. Diversity 2025, 17, 58. [Google Scholar] [CrossRef]
- Samset, B.H.; Zhou, C.; Fuglestvedt, J.S.; Lund, M.T.; Marotzke, J.; Zelinka, M.D. Steady Global Surface Warming from 1973 to 2022 but Increased Warming Rate after 1990. Commun. Earth Environ. 2023, 4, 400. [Google Scholar] [CrossRef]
- Griffith, A.W.; Gobler, C.J. Harmful Algal Blooms: A Climate Change Co-Stressor in Marine and Freshwater Ecosystems. Harmful Algae 2020, 91, 101590. [Google Scholar] [CrossRef]
- Gogoi, P.; Das, B.K.; Koushlesh, S.K.; Johnson, C.; Malick, R.; Saha, A.; Kayal, T.; Chakraborty, R.; Pradhan, L.; Das, A.K. An Integrative Water Quality Index and Multivariate Modeling Approach to Assess Surface Water Quality, Trophic Status and Nutrient Source Apportionment in a Large Tropical Reservoir, Hirakud–the Longest Earthen Dam in Asia. Appl. Water Sci. 2025, 15, 219. [Google Scholar] [CrossRef]
- INEGI. XII Censo General de Población y Vivienda 2000; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2001; p. 113. Available online: https://www.inegi.org.mx/programas/ccpv/2000/ (accessed on 5 September 2025).
- INEGI. Censo de Población y Vivienda 2020. Resultados Definitivos; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2020; Available online: https://www.inegi.org.mx/programas/ccpv/2020/ (accessed on 5 September 2025).
- Zhang, Y.; Li, M.; Dong, J.; Yang, H.; Van Zwieten, L.; Lu, H.; Alshameri, A.; Zhan, Z.; Chen, X.; Jiang, X.; et al. A Critical Review of Methods for Analyzing Freshwater Eutrophication. Water 2021, 13, 225. [Google Scholar] [CrossRef]
- Ferguson, A.; Filippini, G.; Potts, J.; Bugnot, A.B.; Johnston, E.L.; Rao, S.; Ruszczyk, J.; Dafforn, K.A. Benthic Processes Are an Important Indicator of Eutrophication in Intermittently Open and Closed Lakes and Lagoons. Estuaries Coasts 2024, 47, 2324–2340. [Google Scholar] [CrossRef]
- Andrietti, G.; Freire, R.; do Amaral, A.G.; de Almeida, F.T.; Bongiovani, M.C.; Schneider, R.M. Water quality index and eutrophication indices of Caiabi River, MT. Ambiente E Agua-Interdiscip. J. Appl. Sci. 2016, 11, 162–175. [Google Scholar]
- Kim, H.-S.; Hwang, S.-J.; Shin, J.-K.; An, K.-G.; Yoon, C.G. Effects of Limiting Nutrients and N:P Ratios on the Phytoplankton Growth in a Shallow Hypertrophic Reservoir. Hydrobiologia 2007, 581, 255–267. [Google Scholar] [CrossRef]
- Heffernan, J.B.; Albertin, A.R.; Fork, M.L.; Katz, B.G.; Cohen, M.J. Denitrification and Inference of Nitrogen Sources in the Karstic Floridan Aquifer. Biogeosciences 2012, 9, 1671–1690. [Google Scholar] [CrossRef]
- Brandenburg, K.; Siebers, L.; Keuskamp, J.; Jephcott, T.G.; Van de Waal, D.B. Effects of Nutrient Limitation on the Synthesis of N-Rich Phytoplankton Toxins: A Meta-Analysis. Toxins 2020, 12, 221. [Google Scholar] [CrossRef]
- Scott, J.; McCarthy, M.; Paerl, H. Nitrogen Transformations Differentially Affect Nutrient-limited Primary Production in Lakes of Varying Trophic State. Limnol. Oceanogr. Lett. 2019, 4, 96–104. [Google Scholar] [CrossRef]
- Trommer, G.; Leynaert, A.; Klein, C.; Naegelen, A.; Beker, B. Phytoplankton Phosphorus Limitation in a North Atlantic Coastal Ecosystem Not Predicted by Nutrient Load. J. Plankton Res. 2013, 35, 1207–1219. [Google Scholar] [CrossRef]
- Yanez-Montalvo, A.; Gómez-Acata, S.; Águila, B.; Hernández-Arana, H.; Falcón, L.I. The Microbiome of Modern Microbialites in Bacalar Lagoon, Mexico. PLoS ONE 2020, 15, e0230071. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, C.; Yan, J.; Ren, K.; Peng, N.; Jiang, W.; Liu, S. Research on the Surface Water Quality in the Huaihe River Basin and the Gensis Based on Multivariate Statistical Analysis. Sci. Rep. 2025, 15, 19763. [Google Scholar] [CrossRef]
- Hu, L.; Chen, L.; Li, Q.; Zou, K.; Li, J.; Ye, H. Water Quality Analysis Using the CCME-WQI Method with Time Series Analysis in a Water Supply Reservoir. Water Supply 2022, 22, 6281–6295. [Google Scholar] [CrossRef]
- Madjar, R.M.; Scăețeanu, G.V.; Sandu, M.A.; Madjar, R.M.; Scăețeanu, G.V.; Sandu, M.A. Nutrient Water Pollution from Unsustainable Patterns of Agricultural Systems, Effects and Measures of Integrated Farming. Water 2024, 16, 3146. [Google Scholar] [CrossRef]
- Xu, J.; Mo, Y.; Zhu, S.; Wu, J.; Jin, G.; Wang, Y.-G.; Ji, Q.; Li, L. Assessing and Predicting Water Quality Index with Key Water Parameters by Machine Learning Models in Coastal Cities, China. Heliyon 2024, 10, e33695. [Google Scholar] [CrossRef]






| Lake | T°C | Con. (mS/cm) | pH | TDS (mg/L) | OD (mg/l) | OS (%) | BOD (mg/L) | Turb (NTU) | TN (mgN/L) | PO (mgPO4/L) | Chl-a (mg/m3) | TC (CFU/100 mL) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BAC | 31 | 2.667 | 6.8 | 1337 | 7.8 | 105 | 1.8 | 2.04 | 0.3 | 0.4 | 0.4 | 10,800 |
| BAN | 31 | 3.053 | 7 | 1527 | 8.6 | 115.8 | 3.9 | 3.69 | 1.5 | 0.47 | 0.47 | 1400 |
| BAS | 30 | 2.433 | 6.5 | 1220 | 5.7 | 75.4 | 5.1 | 1.65 | 0.433 | 0.373 | 0.26 | 7200 |
| CAH | 30 | 1.18 | 8.4 | 5930 | 5.8 | 76.72 | 9.4 | 13.04 | 0.933 | 0.437 | 15.52 | 11,000 |
| CHA | 30 | 1.38 | 8.5 | 6080 | 6.6 | 87.3 | 11.7 | 2.625 | 0.95 | 0.655 | 2.07 | 9800 |
| CAC | 32 | 0.803 | 7.9 | 400 | 7.5 | 102.7 | 6.2 | 429.7 | 29,167 | 0.91 | 673.61 | 8400 |
| CHL | 34 | 0.5 | 7 | 250 | 5.6 | 79.32 | 3.5 | 5.137 | 1.833 | 0.293 | 18.85 | 6333.3 |
| CHU | 33 | 0.74 | 7.6 | 370 | 5.4 | 75.21 | 4.6 | 11.34 | 0.833 | 0.29 | 11.9 | 3066.7 |
| COB | 30 | 1.38 | 7.7 | 6890 | 7.6 | 100.5 | 7 | 7.25 | 1.667 | 0.603 | 6.15 | 29,400 |
| ENC | 32 | 3.32 | 6.8 | 1667 | 6.2 | 84.93 | 6.45 | 0.793 | 2.5 | 0.36 | 1.8 | 9000 |
| GUA | 31 | 3.26 | 6.8 | 1617 | 6.4 | 86.14 | 6.3 | 1.707 | 0.4 | 0.367 | 0.3 | 2300 |
| GUE | 31 | 8.7825 | 6.7 | 4380 | 9.6 | 129.2 | 3.6 | 2.975 | 2.6 | 0.325 | 0.54 | 8000 |
| LAG | 32 | 1.653 | 7.4 | 827 | 6.3 | 86.3 | 10.5 | 41.78 | 3.5 | 0.7 | 56.81 | 12,133.3 |
| LNO | 34 | 0.38 | 7.8 | 190 | 6.6 | 93.48 | 5.1 | 26.37 | 4.333 | 0.39 | 39.65 | 11,400 |
| LOM | 33 | 0.41 | 7.2 | 207 | 8 | 111.4 | 14.7 | 3.583 | 1.5 | 0.357 | 14.2 | 15,600 |
| MIH | 33 | 0.73 | 7.7 | 367 | 7.7 | 107.2 | 6 | 14.97 | 2.433 | 0.46 | 16.36 | 700 |
| MIL | 30 | 3.31 | 7 | 1653 | 6.633 | 87.7 | 5.2 | 3.757 | 2 | 0.4 | 0.38 | 1300 |
| NEG | 30 | 3.277 | 6.9 | 1640 | 7.5 | 99.21 | 3.1 | 0.953 | 2.2 | 0.37 | 1.4 | 4200 |
| NOB | 32 | 2.463 | 7.3 | 1230 | 6.2 | 84.93 | 3.15 | 2.363 | 1 | 0.37 | 1.31 | 3666.7 |
| NOP | 30 | 19.01 | 8.4 | 8690 | 7.9 | 104.5 | 23.6 | 1.217 | 0.167 | 0.667 | 25.6 | 25,200 |
| OCH | 32 | 0.423 | 8.3 | 210 | 7.8 | 106.9 | 6.3 | 349.5 | 17.3 | 1.63 | 576.95 | 28,000 |
| PUL | 30 | 1.42 | 8.4 | 710 | 5.7 | 75.4 | 5.2 | 1.71 | 4.367 | 0.44 | 2.5 | 16,800 |
| ROJ | 30 | 13.41 | 7.2 | 6697 | 6.6 | 87.3 | 8.4 | 5.083 | 1.4 | 0.387 | 1.99 | 4000 |
| SAC | 31 | 3.9 | 5.9 | 1960 | 2.6 | 34.85 | 8.4 | 6.93 | 1.8 | 0.67 | 8.4 | 198,000 |
| SAN | 33 | 3.32 | 7.5 | 1240 | 5.8 | 80.22 | 13.2 | 239.3 | 13.5 | 3.21 | 716.41 | 270,000 |
| SAS | 34 | 4.37 | 6.4 | 2150 | 4.9 | 69.8 | 8.4 | 2.23 | 3.9 | 0.52 | 3.58 | 19,800 |
| SFB | 31 | 0.628 | 7 | 314 | 6.9 | 92.87 | 3.7 | 9.842 | 1.52 | 0.394 | 18.06 | 4980 |
| SIL | 34 | 0.507 | 7.3 | 253 | 7.4 | 104.8 | 6 | 15.97 | 1.867 | 0.283 | 24.67 | 9066.7 |
| SJM | 31 | 0.497 | 6.9 | 250 | 6.4 | 86.14 | 6.4 | 5.41 | 1.833 | 0.883 | 11.57 | 19,800 |
| XBA | 32 | 4.273 | 7.2 | 2137 | 5.2 | 71.23 | 6.5 | 35.74 | 1.5 | 0.28 | 52.65 | 9200 |
| XUH | 30 | 2.407 | 6.5 | 1200 | 7.6 | 100.5 | 1.6 | 2.45 | 0.667 | 0.323 | 0.21 | 500 |
| YAL | 29 | 2.27 | 8.9 | 1140 | 5.7 | 74.12 | 3.8 | 14.02 | 2.267 | 0.387 | 15.64 | 22,400 |
| ZOL | 34 | 0.35 | 7.5 | 173 | 8.8 | 124.7 | 10.7 | 9.73 | 2.167 | 0.4 | 10.87 | 6766.7 |
| Lake | WQI | Water Quality | TSI | Trophic State | N:P Ratio | Limiting Nutrient |
|---|---|---|---|---|---|---|
| BAC | 53 | FAIR | 19 | Oligotrophic | 2.3 | Nitrogen |
| BAN | 46 | POOR | 37 | Mesotrophic | 9.77 | Nitrogen |
| BAS | 44 | POOR | 20 | Oligotrophic | 3.55 | Nitrogen |
| CAH | 36 | POOR | 57 | Mesotrophic | 6.54 | Nitrogen |
| CHA | 34 | POOR | 43 | Mesotrophic | 4.44 | Nitrogen |
| CAC | 34 | POOR | 100 | Hypereutrophic | 98.08 | Phosphorus |
| CHL | 47 | POOR | 62 | Eutrophic | 23.8 | Balanced |
| CHU | 45 | POOR | 54 | Mesotrophic | 8.59 | Nitrogen |
| COB | 38 | POOR | 57 | Mesotrophic | 8.45 | Nitrogen |
| OCH | 33 | POOR | 100 | Hypereutrophic | 32.48 | Phosphorus |
| ENC | 43 | POOR | 49 | Mesotrophic | 21.25 | Balanced |
| GUA | 43 | POOR | 20 | Oligotrophic | 3.34 | Nitrogen |
| GUE | 45 | POOR | 40 | Mesotrophic | 24.48 | Balanced |
| MIL | 44 | POOR | 37 | Mesotrophic | 15.3 | Balanced |
| LAG | 39 | POOR | 78 | Hypereutrophic | 15.3 | Balanced |
| LOM | 39 | POOR | 61 | Eutrophic | 13.05 | Balanced |
| LNO | 42 | POOR | 81 | Hypereutrophic | 32.81 | Phosphorus |
| MIH | 45 | POOR | 66 | Eutrophic | 15.95 | Balanced |
| NEG | 48 | POOR | 46 | Mesotrophic | 18.19 | Balanced |
| NOB | 48 | POOR | 40 | Mesotrophic | 8.27 | Nitrogen |
| NOP | 32 | POOR | 42 | Mesotrophic | 0.77 | Nitrogen |
| PUL | 41 | POOR | 62 | Eutrophic | 30.37 | Phosphorus |
| ROJ | 39 | POOR | 47 | Mesotrophic | 11.08 | Balanced |
| SAC | 37 | POOR | 89 | Hypereutrophic | 8.22 | Nitrogen |
| SAN | 31 | POOR | 100 | Hypereutrophic | 12.86 | Balanced |
| SAS | 39 | POOR | 79 | Hypereutrophic | 22.95 | Balanced |
| SFB | 46 | POOR | 63 | Eutrophic | 11.65 | Balanced |
| SJM | 41 | POOR | 62 | Eutrophic | 8.05 | Nitrogen |
| SIL | 43 | POOR | 64 | Eutrophic | 26.33 | Balanced |
| XBA | 42 | POOR | 68 | Eutrophic | 18.88 | Balanced |
| XUH | 57 | FAIR | 23 | Oligotrophic | 6.31 | Nitrogen |
| YAL | 42 | POOR | 64 | Eutrophic | 17.94 | Balanced |
| ZOL | 40 | POOR | 61 | Eutrophic | 15.88 | Balanced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hernández-Hernández, P.; Macario-González, L.; Cohuo-Zaragoza, N.O.; Cohuo, S.; Beltrán-Castro, J.R.; Montes-Ortiz, L.; Cutz-Pool, L.Q.; Huix, C.M. Trends in Surface Water Quality and Trophic State in the Yucatán Peninsula over the Last Decade. Hydrology 2026, 13, 6. https://doi.org/10.3390/hydrology13010006
Hernández-Hernández P, Macario-González L, Cohuo-Zaragoza NO, Cohuo S, Beltrán-Castro JR, Montes-Ortiz L, Cutz-Pool LQ, Huix CM. Trends in Surface Water Quality and Trophic State in the Yucatán Peninsula over the Last Decade. Hydrology. 2026; 13(1):6. https://doi.org/10.3390/hydrology13010006
Chicago/Turabian StyleHernández-Hernández, Plutarco, Laura Macario-González, Noel O. Cohuo-Zaragoza, Sergio Cohuo, Juan R. Beltrán-Castro, Lucía Montes-Ortiz, Leopoldo Q. Cutz-Pool, and Christian M. Huix. 2026. "Trends in Surface Water Quality and Trophic State in the Yucatán Peninsula over the Last Decade" Hydrology 13, no. 1: 6. https://doi.org/10.3390/hydrology13010006
APA StyleHernández-Hernández, P., Macario-González, L., Cohuo-Zaragoza, N. O., Cohuo, S., Beltrán-Castro, J. R., Montes-Ortiz, L., Cutz-Pool, L. Q., & Huix, C. M. (2026). Trends in Surface Water Quality and Trophic State in the Yucatán Peninsula over the Last Decade. Hydrology, 13(1), 6. https://doi.org/10.3390/hydrology13010006

