Enhancing MUSIC’s Capability for Performance Evaluation and Optimization of Established Urban Constructed Wetlands
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of MUSIC
2.1.1. Flow Simulation
- Fraction of effective impervious area;
- Impervious area runoff coefficient;
- Pervious area runoff coefficient.
2.1.2. Pollutant Generation
2.1.3. Pollutant Treatment
2.1.4. The First-Order Decay Model and Hydraulic Efficiency (γ) Estimation
- Background concentration;
- Input concentration;
- Output concentration;
- The rate of decay;
- Flow rate per surface area (hydraulic loading).
2.2. Study Area
2.3. Water Sampling and Analysis
2.4. Data Analysis
2.4.1. Pollutant Reduction Rates
- (1)
- Event mean concentration (EMC)-based removal:
- Ci = pollutant concentration at time i (mg/L);
- Qi = flow rate at time i (m3/s);
- Δt = time interval between samples (s);
- n = total number of samples.
- (2)
- Instantaneous concentration-based removal:
2.4.2. Pollutant Generation Calibration
2.4.3. Pollutant Reduction Calibration
- C* = 0 (initial design assumption);
- C* = MUSIC-recommended values (Table 1);
- C* = dry weather average;
- C* = average macrophyte zone concentration.
3. Results and Discussion
3.1. Observed and Modeled Pollutant Reduction Rates
3.2. Pollutant Generation (Default Parameters)
3.3. Pollutant Treatment (Background Concentrations and Decay Rates)
3.3.1. Marie Wallace CW (Industrial Catchment)
3.3.2. Jones Park CW
3.4. MUSICX Calibration Using Updated K and C*
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MUSIC | Model for Urban Stormwater Improvement Conceptualization |
CW | Constructed Wetland |
WSUD | Water-Sensitive Urban Design |
GI | Green Infrastructure |
LID | Low-Impact Development |
CSTR | Continuously Stirred Tank Reactor |
TN | Total Nitrogen |
TP | Total Phosphorous |
TSS | Total Suspended Solids |
EMC | Event Mean Concentration |
FWS | Free Water Surface |
BPM | Best Practice Management |
References
- Feng, W.; Liu, Y.; Gao, L. Stormwater treatment for reuse: Current practice and future development—A review. J. Environ. Manag. 2022, 301, 113830. [Google Scholar] [CrossRef]
- Wang, Y.; van Roon, M.; Knight-Lenihan, S. Opportunities and challenges in water sensitive industrial development: An Auckland case study, New Zealand. Int. J. Sustain. Dev. World Ecol. 2021, 28, 143–156. [Google Scholar] [CrossRef]
- Chhetri, S.; Ruangpan, L.; Abebe, Y.A.; Torres, A.S.; Vojinovic, Z. Review of environmental benefits and development of methodology for EUNIS habitat changes from nature-based solutions: Application to Denmark and the Netherlands. Ecol. Indic. 2024, 165, 112189. [Google Scholar] [CrossRef]
- Fowdar, H.S.; Neo, T.H.; Ong, S.L.; Hu, J.; McCarthy, D.T. Performance analysis of a stormwater green infrastructure model for flow and water quality predictions. J. Environ. Manag. 2022, 316, 115259. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cui, W.; Tian, Z.; Tang, Y.; Tillotson, M.; Liu, J. Stormwater Management Modeling in “Sponge City” Construction: Current State and Future Directions. Front. Environ. Sci. 2022, 9, 816093. [Google Scholar] [CrossRef]
- Lisenbee, W.A.; Hathaway, J.M.; Burns, M.J.; Fletcher, T.D. Modeling bioretention stormwater systems: Current models and future research needs. Environ. Model. Softw. 2021, 144, 105146. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Fletcher, T.D.; Duncan, H.P.; Jenkins, G.A. Modelling urban stormwater treatment—A unified approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- Poozan, A.; Fletcher, T.D.; Arora, M.; William, W.A.; James, B.M. The influence of spatial arrangement and site conditions on the fate of infiltrated stormwater. J. Hydrol. 2024, 630, 130738. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Ahsan, A.; Rahman, A.; Mekanik, F. Modelling stormwater treatment systems using MUSIC: Accuracy. Resour. Conserv. Recycl. 2013, 71, 15–21. [Google Scholar] [CrossRef]
- Tan, K.M.; Seow, W.K.; Wang, C.L.; Kew, H.J.; Parasuraman, S.B. Evaluation of performance of Active, Beautiful and Clean (ABC) on stormwater runoff management using MIKE URBAN: A case study in a residential estate in Singapore. Urban Water J. 2019, 16, 156–162. [Google Scholar] [CrossRef]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Deletic, A.; Bach, P.M. Evaluating the reliability of stormwater treatment systems under various future climate conditions. J. Hydrol. 2019, 568, 57–66. [Google Scholar] [CrossRef]
- Idros, N.; Sidek, L.M.; Rahim, N.A.A.M.; Noh, N.M.; Abdelkader, A.M.; Mohiyaden, H.A.; Basri, H.; Zawawi, M.H.B.; Ahmed, A.N. Stormwater characterisation and modelling for Sungai Air Hitam in Selangor, Malaysia using model for urban stormwater improvement conceptualisation (music). Ecol. Indic. 2024, 160, 111850. [Google Scholar] [CrossRef]
- Woon, K.L.; Goh, H.W.; Chang, C.K.; Juiani, S.F.; Zakaria, N.A. Bioretention Model for Urban Runoff Treatment in a Tropical Climate: A Case Study at the Universiti Sains Malaysia. J. Water Manag. Model. 2023, 31, C498. [Google Scholar] [CrossRef]
- Raeesi, R.; Xue, Y.; Disfani, M.M.; Arora, M. Hydrological and water quality performance of Waste Tire Permeable Pavements: Field monitoring and numerical analysis. J. Environ. Manag. 2022, 323, 116199. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, F.; Meng, Y.; Byrne, P.; Ghomshei, M.; Abbaspour, K.C. Modeling transport and fate of heavy metals at the watershed scale: State-of-the-art and future directions. Sci. Total Environ. 2023, 878, 163087. [Google Scholar] [CrossRef]
- Godyń, I.; Grela, A.; Muszyński, K.; Pamuła, J. The Impact of Green Infrastructure on the Quality of Stormwater and Environmental Risk. Sustainability 2024, 16, 8530. [Google Scholar] [CrossRef]
- Gong, Y.; Li, X.; Xie, P.; Fu, H.; Nie, L.; Li, J.; Li, Y. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities. Environ. Sci. Pollut. Res. Int. 2023, 30, 44591–44606. [Google Scholar] [CrossRef]
- Dotto, C.B.S.; Deletic, A.; McCarthy, D.T.; Fletcher, T.D. Calibration and Sensitivity Analysis of Urban Drainage Models: Music Rainfall/Runoff Module and a Simple Stormwater Quality Model. Aust. J. Water Resour. 2011, 15, 85–94. [Google Scholar] [CrossRef]
- van der Sterren, M.; Hey-Cunningham, K.; Brennan, K. Modelling a residential catchment, an industrial catchment and a catchment under construction to evaluate the quality and quantity of stormwater discharges into a coastal salt water Lake. In Proceedings of the 34th Hydrology and Water Resources Symposium, HWRS, Sydney, NSW, Australia, 19–22 November 2012; pp. 536–544. Available online: https://www.mendeley.com/catalogue/4ccf491c-7cff-31ab-8ab3-9bf98b51067b/ (accessed on 23 September 2024).
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Okada, E.; Allinson, M.; Barral, M.P.; Clarke, B.; Allinson, G. Glyphosate and aminomethylphosphonic acid (AMPA) are commonly found in urban streams and wetlands of Melbourne, Australia. Water Res. 2020, 168, 115139. [Google Scholar] [CrossRef]
- Sharley, D.J.; Sharp, S.M.; Marshall, S.; Jeppe, K.; Pettigrove, V.J. Linking urban land use to pollutants in constructed wetlands: Implications for stormwater and urban planning. Landsc. Urban Plan. 2017, 162, 80–91. [Google Scholar] [CrossRef]
- Tuomela, C.; Sillanpää, N.; Koivusalo, H. Assessment of stormwater pollutant loads and source area contributions with storm water management model (SWMM). J. Environ. Manag. 2019, 233, 719–727. [Google Scholar] [CrossRef]
- eWater 2023, Treatment Devices—MUSICX 1.0—Confluence. Available online: https://ewater.atlassian.net/wiki/spaces/MX1/pages/56328461/Treatment+Devices (accessed on 15 August 2025).
- Chiew, F.H.S.; McMahon, T.A. Modelling runoff and diffuse pollution loads in urban areas. Water Sci. Technol. 1999, 39, 241–248. [Google Scholar] [CrossRef]
- Duncan, H. Urban Stormwater Quality: A Statistical Overview. Cooperative Research Center for Catchment Hydrology. 1999, p. 134. Available online: https://ewater.org.au/archive/crcch/archive/pubs/pdfs/technical199903.pdf (accessed on 12 December 2023).
- Fletcher, T.; Duncan, H.; Poelsma, P.; Lloyd, S. Stormwater Flow and Quality and the Effectiveness of Non-Proprietary Stormwater Treatment Measures: A Review and Gap Analysis. Cooperative Research Center for Catchment Hydrology. 2005. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=1v0q0ad0w6330pg0ev6a0v50xx784470&site=xueshu_se&hitarticle=1 (accessed on 15 August 2025).
- Persson, J.; Somes, N.L.G.; Wong, T.H.F. Hydraulics efficiency of constructed wetlands and ponds. Water Sci. Technol. 1999, 40, 291–300. [Google Scholar] [CrossRef]
- Hart, B.T.; Francey, M.; Chesterfield, C.; Blackham, D.; McCarthy, N. Management of urban waterways in Melbourne, Australia: 2—Integration and future directions. Australas. J. Water Resour. 2022, 28, 101–122. [Google Scholar] [CrossRef]
- Victorian Stormwater Committee, EPA 1999, Urban Stormwater Best Practice Environmental Management Guidelines. Available online: https://trid.trb.org/view.aspx?id=1159605 (accessed on 15 August 2025).
- da Costa, J.F.; de Paoli, A.C.; Seidl, M.; von Sperling, M. Performance and behaviour of planted and unplanted units of a horizontal subsurface flow constructed wetland system treating municipal effluent from a UASB reactor. Water Sci. Technol. 2013, 68, 1495–1502. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Zhang, L.; Griffiths, L.N.; Bays, J. Contrasting two urban wetland parks created for improving habitat and downstream water quality. Ecol. Eng. 2023, 192, 106976. [Google Scholar] [CrossRef]
- Jiang, L.; Chui, T.F.M. Performance and sustainability of a multi-stage free water surface constructed wetland under seasonal change and shock loading. Ecol. Eng. 2023, 186, 106834. [Google Scholar] [CrossRef]
- Zhou, Q.; He, L.; Yuan, D.; Meng, R.; Zhao, H.; Zhao, H.; Zhang, Y.; Du, S. Pollutant-removal and DOM characteristics in an urban stormwater wetland. Environ. Technol. 2023, 44, 45–56. [Google Scholar] [CrossRef]
- Vymazal, J.; Krása, P. Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage. Water Sci. Technol. 2003, 48, 299–305. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, L.; Xu, J. Clogging mechanisms of constructed wetlands: A critical review. J. Clean. Prod. 2021, 295, 126455. [Google Scholar] [CrossRef]
- Ergaieg, K.; Msaddek, M.H.; Kallel, A.; Trabelsi, I. Monitoring of horizontal subsurface flow constructed wetlands for tertiary treatment of municipal wastewater. Arab. J. Geosci. 2021, 14, 2045. [Google Scholar] [CrossRef]
- Yang, M.; Lu, M.; Bian, H.; Sheng, L.; He, C. Effects of clogging on hydraulic behavior in a vertical-flow constructed wetland system: A modelling approach. Ecol. Eng. 2017, 109, 41–47. [Google Scholar] [CrossRef]
- Kasper, T.M.; Jenkins, G.A. Measuring the background concentration in a constructed stormwater treatment wetland. Urban Water J. 2007, 4, 79–91. [Google Scholar] [CrossRef]
- Liu, X.; Peng, C.; Zhou, Z.; Jiang, Z.; Guo, Z.; Xiao, X. Impacts of land use/cover and slope on the spatial distribution and ecological risk of trace metals in soils affected by smelting emissions. Environ. Monit. Assess. 2024, 196, 53. [Google Scholar] [CrossRef]
- Kumar, S.; Nand, S.; Pratap, B.; Dubey, D.; Dutta, V. Removal kinetics and treatment efficiency of heavy metals and other wastewater contaminants in a constructed wetland microcosm: Does mixed macrophytic combinations perform better? J. Clean. Prod. 2021, 327, 129468. [Google Scholar] [CrossRef]
- Ayyanar, A.; Thatikonda, S. Enhanced Electrokinetic Removal of Heavy Metals from a Contaminated Lake Sediment for Ecological Risk Reduction. Soil Sediment Contam. 2021, 30, 12–34. [Google Scholar] [CrossRef]
- Elahi, M.; Rezaitabar, S.; Savabieasfahani, M. Ecological risk assessment of Toxic heavy Metal(loid)s in surface sediment of Zarivar International Wetland: An indices analysis approach. Soil Sediment Contam. 2022, 31, 405–422. [Google Scholar] [CrossRef]
- Qin, C.; Xu, X.; Peck, E. Sink or source? Insights into the behavior of copper and zinc in the sediment porewater of a constructed wetland by peepers. Sci. Total Environ. 2022, 821, 153127. [Google Scholar] [CrossRef]
- Hathaway, J.M.; Hunt, W.F. Evaluation of Storm-Water Wetlands in Series in Piedmont North Carolina. J. Environ. Eng. 2010, 136, 140–146. [Google Scholar] [CrossRef]
- Sullivan, C.; McDonald, W. Hydrologic and water quality performance of a subsurface gravel wetland treating stormwater runoff. J. Environ. Manag. 2022, 322, 116120. [Google Scholar] [CrossRef]
- Greenway, M. Stormwater wetlands for the enhancement of environmental ecosystem services: Case studies for two retrofit wetlands in Brisbane, Australia. J. Clean. Prod. 2017, 163, S91–S100. [Google Scholar] [CrossRef]
- Nayeb Yazdi, M.; Scott, D.; Sample, D.J.; Wang, X. Efficacy of a retention pond in treating stormwater nutrients and sediment. J. Clean. Prod. 2021, 290, 125787. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Y.; Li, X.; Yu, Z. Study on the Heavy Metals Removal Efficiencies of Constructed Wetlands with Different Substrates. J. Water Resour. Prot. 2009, 1, 7. [Google Scholar] [CrossRef]
- Walker, D.J.; Hurl, S. The reduction of heavy metals in a stormwater wetland. Ecol. Eng. 2002, 18, 407–414. [Google Scholar] [CrossRef]
- Knox, A.S.; Paller, M.H.; Seaman, J.C.; Mayer, J.; Nicholson, C. Removal, distribution and retention of metals in a constructed wetland over 20 years. Sci. Total Environ. 2021, 796, 149062. [Google Scholar] [CrossRef] [PubMed]
- Walaszek, M.; Bois, P.; Laurent, J.; Lenormand, E.; Wanko, A. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence. Sci. Total Environ. 2018, 637–638, 443–454. [Google Scholar] [CrossRef] [PubMed]
Pollutants | Residential | Industrial | ||
---|---|---|---|---|
Dry | Wet | Dry | Wet | |
TN (mg/L) | 0.4~4 | 0.7~6 | 0.4~4 | 0.7~6 |
TP (mg/L) | 0.04~0.5 | 0.08~0.8 | 0.04~0.5 | 0.08~0.8 |
TSS (mg/L) | 5~50 | 40~500 | 5~50 | 40~500 |
Zn (mg/L) | N/A | 0.05~0.5 | N/A | 0.1~1 |
Cu (mg/L) | N/A | 0.02~0.3 | N/A | 0.02~0.3 |
Pollutant | Analytical Method | Testing Range | Wavelength |
---|---|---|---|
Phosphorus, Total | Acid Persulfate Digestion Method | 0.06 to 3.50 mg/L | 880 nm |
Nitrogen, Total | Persulfate Digestion Method | 1 to 40 mg/L | 345 nm |
Suspended Solids | Photometric Method | 5 to 750 mg/L | 810 nm |
Zinc | USEPA1 Zincon Method | 0.01 to 3.00 mg/L | 620 nm |
Copper | Porphyrin Method | 1 to 210 µg/L | 425 nm |
Aluminum | 1,10-Phenanthroline Method | 0.02 to 3.00 mg/L | 510 nm |
Manganese | 1-(2-Pyridylazo)-2-Naphthol PAN Method | 0.006 to 0.700 mg/L | 560 nm |
Iron | FerroZine® Method | 0.009 to 1.400 mg/L | 562 nm |
Pollutant | MUSIC-Modeled Reduction | Observed Average Pollutant Removal Rates (%) ± Standard Deviation in Different Seasons | |||||
---|---|---|---|---|---|---|---|
2022 | 2022 | 2022 | 2023 | 2023 | 2023 | ||
Summer | Autumn | Spring | Summer | Autumn | Spring | ||
TN | 15.30% | 20.03 ± 32.23 | 59.09 ± 0.00 | 18.18 ± 0.00 | 69.44 ± 19.44 | 69.79 ± 64.80 | 62.38 ± 83.76 |
TP | 33.60% | −84.01 ± 147.56 | 18.52 ± 23.96 | −18.06 ± 25.08 | −8.78 ± 8.78 | −13.18 ± 81.27 | −28.94 ± 81.65 |
TSS | 44.00% | −68.21 ± 72.24 | −5.40 ± 90.47 | 23.33 ± 23.33 | −149.26 ± 125.74 | −258.29 ± 430.40 | 43.99 ± 49.07 |
Fe | N/A | −207.74 ± 284.81 | −4.58 ± 28.41 | 9.57 ± 29.57 | −88.54 ± 37.28 | −289.21 ± 483.06 | −407.81 ± 384.70 |
Cu | N/A | −58.63 ± 85.4 | 76.67 ± 20.55 | −50.00 ± 16.67 | 55.00 ± 5.00 | −40.12 ± 301.95 | 23.08 ± 109.88 |
Zn | N/A | −32.62 ± 32.10 | 27.66 ± 17.72 | −31.25 ± 108.75 | −366.18 ± 183.82 | 41.22 ± 52.72 | 32.73 ± 103.09 |
Al | N/A | −17.66 ± 66.31 | 1.58 ± 77.51 | −7.50 ± 84.17 | 62.43 ± 7.26 | 9.50 ± 142.48 | 9.70 ± 62.39 |
Mn | N/A | −62.13 ± 3.89 | 26.33 ± 42.08 | −13.22 ± 18.78 | −41.25 ± 21.25 | −125.12 ± 250.46 | N/A |
Pollutant | MUSIC-Modeled Reduction | Observed Average Pollutant Removal Rates (%) ± Standard Deviation in Different Seasons | |||||
---|---|---|---|---|---|---|---|
2017 | 2019 | 2022 | 2022 | 2022 | 2023 | ||
Spring | Autumn | Summer | Autumn | Spring | Summer | ||
TN | 13.02% | N/A | −25.00 ± 54.01 | −12.50 ± 119.82 | 64.99 ± 38.03 | 0.54 ± 73.81 | −153.65 ± 236.38 |
TP | 33.81% | N/A | −12.22 ± 8.75 | 46.75 ± 56.94 | −21.01 ± 59.57 | 37.49 ± 16.58 | 11.35 ± 49.33 |
TSS | 45.48% | N/A | 21.59 ± 62.58 | −37.30 ± 153.43 | −56.42 ± 86.46 | −19.99 ± 80.39 | −216.58 ± 293.88 |
Fe | N/A | 21.30 ± 49.50 | −189.52 ± 110.53 | −455.03 ± 631.99 | −681.84 ± 798.87 | −116.17 ± 209.53 | −893.90 ± 876.51 |
Cu | N/A | 6.25 ± 10.83 | −58.33 ± 100.69 | −51.92 ± 258.72 | 25.00 ± 75.00 | 68.75 ± 40.98 | −428.77 ± 755.46 |
Zn | N/A | 38.50 ± 28.76 | −17.99 ± 52.71 | 80.56 ± 14.16 | 42.50 ± 43.29 | 72.55 ± 16.44 | −81.53 ± 299.39 |
Al | N/A | −133.59 ± 304.94 | 34.36 ± 18.76 | 39.70 ± 64.90 | −638.85 ± 1103.72 | −188.54 ± 184.05 | −322.41 ± 341 |
Mn | N/A | −4.69 ± 34.52 | −355.86280.40 | −327.07 ± 593.43 | −319.81 ± 369.53 | −17.96 ± 88.61 | −284.26 ± 314.41 |
Flow Type | Duncan (1999) | MUSIC Default Values | Jones Park (Residential) | Marie Wallace (Industrial) | |||
---|---|---|---|---|---|---|---|
No. Observations | Concentration (mg/L) | No. Observations | Concentration (mg/L) | ||||
TSS | Baseflow | 1.55~2.19 | 1.2 ± 0.17 | 15 | 0.95 ± 0.38 | 8 | 0.84 ± 0.36 |
Stormflow | 2.15 ± 0.32 | 18 | 0.77 ± 0.28 | 15 | 0.85 ± 0.29 | ||
TP | Baseflow | −0.89~−0.40 | −0.85 ± 0.19 | 15 | −0.25 ± 0.08 | 8 | −0.36 ± 0.43 |
Stormflow | −0.6 ± 0.25 | 18 | −0.33 ± 0.07 | 18 | −0.51 ± 0.55 | ||
TN | Baseflow | 0.33~0.42 | 0.11 ± 0.12 | 11 | 0.86 ± 0.54 | 7 | 0.47 ± 0.39 |
Stormflow | 0.3 ± 0.19 | 16 | 1.18 ± 0.44 | 16 | 0.54 ± 0.62 | ||
Cu | Baseflow | −1.62~−1.09 | −1.10 | 15 | −1.50 ± 0.25 | 11 | −2.10 ± 0.66 |
Stormflow | 10 | −1.58 ± 0.26 | 15 | −1.80 ± 0.51 | |||
Zn | Baseflow | −0.80~0.57 | −0.52 | 15 | −0.95 ± 0.34 | 9 | −1.38 ± 0.31 |
Stormflow | 10 | −0.97 ± 0.13 | 15 | −1.20 ± 0.47 | |||
Al | Baseflow | - | - | 15 | −1.73 ± 0.30 | 11 | −1.26 ± 0.77 |
Stormflow | 10 | −1.62 ± 0.17 | 16 | −1.51 ± 0.56 | |||
Fe | Baseflow | 0.20~0.74 | - | 15 | −0.39 ± 0.29 | 11 | −0.23 ± 0.47 |
Stormflow | 10 | −1.08 ± 0.26 | 15 | −0.48 ± 0.46 | |||
Mn | Baseflow | −0.63 | - | 15 | −1.27 ± 0.22 | 11 | −0.83 ± 0.58 |
Stormflow | 10 | −1.60 ± 0.14 | 16 | −1.20 ± 0.47 |
Pollutant | Marie Wallace CW (Industrial) | Jones Park CW (Residential) | ||||
---|---|---|---|---|---|---|
k (m/Year) | C* (mg/L) | t-Test | k (m/Year) | C* (mg/L) | t-Test | |
TN | 100–250 | 0.6–6 | 0.24 | 100–1000 | 2–10 | 0.25 |
TP | 100–250 | 0.06–0.5 | 0.84 | 300–900 | 0.4–1 | 0.39 |
TSS | 100–200 | 5–20 | 0.23 | 500–1000 | 10–30 | 0.46 |
Cu | 10–150 | 0–0.03 | 0.35 | 500–1000 | 0–0.04 | 0.34 |
Zn | 300–700 | 0–0.04 | 0.54 | 300–1000 | 0.05–0.3 | 0.44 |
Al | 50–100 | 0–0.5 | 0.17 | 500–2000 | 0–0.02 | 0.25 |
Mn | 70–300 | 0.1–0.7 | 0.09 | 100–2000 | 0.05–0.1 | 0.47 |
Fe | 10–300 | 0.8–2 | 0.06 | 500–1000 | 0.1–1.1 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Gato-Trinidad, S.; Hossain, I. Enhancing MUSIC’s Capability for Performance Evaluation and Optimization of Established Urban Constructed Wetlands. Hydrology 2025, 12, 219. https://doi.org/10.3390/hydrology12080219
Yang F, Gato-Trinidad S, Hossain I. Enhancing MUSIC’s Capability for Performance Evaluation and Optimization of Established Urban Constructed Wetlands. Hydrology. 2025; 12(8):219. https://doi.org/10.3390/hydrology12080219
Chicago/Turabian StyleYang, Fujia, Shirley Gato-Trinidad, and Iqbal Hossain. 2025. "Enhancing MUSIC’s Capability for Performance Evaluation and Optimization of Established Urban Constructed Wetlands" Hydrology 12, no. 8: 219. https://doi.org/10.3390/hydrology12080219
APA StyleYang, F., Gato-Trinidad, S., & Hossain, I. (2025). Enhancing MUSIC’s Capability for Performance Evaluation and Optimization of Established Urban Constructed Wetlands. Hydrology, 12(8), 219. https://doi.org/10.3390/hydrology12080219