Multi-Objective Optimization of the Physical Design of a Horizontal Flow Subsurface Wetland
Abstract
1. Introduction
2. Formulating the Multi-Objective Optimization Dilemma
3. HFSW Behavioral Model
Objective Functions
4. Numerical Results
4.1. Non-Dominated Solutions of the HFSW
4.2. Pareto Surface
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, H.; Platzer, C.; Winker, M.; Von Muench, E. Technology Review of Constructed Wetlands Subsurface Flow Constructed Wetlands for Greywater and Domestic Wastewater Treatment; Agencia de Cooperación Internacional de Alemania, GIZ Programa de Saneamiento Sostenible ECOSAN: Eschborn, Germany, 2011. [Google Scholar]
- Murcia-Sarmiento, M.L.; Calderón-Montoya, O.G.; Díaz-Ortiz, J.E. Grey water impact on soil physical properties. Tecnológicas 2014, 17, 57–65. [Google Scholar] [CrossRef]
- Andreo-Martínez, P.; García-Martínez, N.; Almela, L. Domestic wastewater depuration using a horizontal subsurface flow constructed wetland and theoretical surface optimization: A case study under dry Mediterranean climate. Water 2016, 8, 434. [Google Scholar] [CrossRef]
- Hoblitzell, A.; Babbar-Sebens, M.; Mukhopadhyay, S. Non-Stationary Reinforcement-Learning Based Dimensionality Reduction for Multi-objective Optimization of Wetland Design. In Proceedings of the ICRAI ’19, 5th International Conference on Robotics and Artificial Intelligence, Singapore, 22–24 November 2019; Association for Computing Machinery: New York, NY, USA, 2020; pp. 82–86. [Google Scholar] [CrossRef]
- Liao, R.; Jin, Z.; Chen, M.; Li, S. An integrated approach for enhancing the overall performance of constructed wetlands in urban areas. Water Res. 2020, 187, 116443. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zheng, T.; Li, L.; Lv, X.; Wu, W.; Shi, Z.; Zhou, X.; Zhang, G.; Ma, Y.; Liu, J. Simulating and predicting the performance of a horizontal subsurface flow constructed wetland using a fully connected neural network. J. Clean. Prod. 2022, 380, 134959. [Google Scholar] [CrossRef]
- Mendez-Valencia, J.; Sánchez-López, C.; Reyes-Pérez, E. Multi-objective design of a horizontal flow subsurface wetland. Water 2024, 16, 1253. [Google Scholar] [CrossRef]
- Fonseca, C. Diseño de Humedal Construido para Tratar los Lixiviados del Proyecto de Relleno Sanitario de Pococí; Instituto Tecnológico de Costa Rica: Cartago, Costa Rica, 2010; Available online: https://repositoriotec.tec.ac.cr/handle/2238/6158 (accessed on 17 February 2024).
- Aguilar Paredes, K.A. Diseño de un Sistema de Tratamiento de Aguas Residuales con Humedales Artificiales para la Comunidad de Charcay, Provincia del Cañar (Ecuador). Master’s Thesis, Universitat Politècnica de València, València, Spain, 2019. [Google Scholar]
- Basantes Cascante, C.E. Diseño de un Sistema de Humedales Artificiales para el Tratamiento de las Aguas Residuales de la Comunidad de Alacao, Provincia de Chimborazo (Ecuador). Master’s Thesis, Universitat Politècnica de València, València, Spain, 2021. [Google Scholar]
- Abraham, A.; Goldberg, R. Evolutionary Multiobjective Optimization: Theoretical Advances and Applications; Advanced Information and Knowledge Processing; Springer: London, UK, 2005. [Google Scholar]
- Coello, C.; Lamont, G.; van Veldhuizen, D. Evolutionary Algorithms for Solving Multi-Objective Problems; Genetic and Evolutionary Computation; Springer: Boston, MA, USA, 2007. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley Interscience Series in Systems and Optimization; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Dotro, G.; Langergraber, G.; Molle, P.; Nivala, J.; Puigagut, J.; Stein, O.; Von Sperling, M. Humedales para Tratamiento; Biological Wastewater Treatment Series; IWA Publishing: London, UK, 2021. [Google Scholar]
- Conagua. Manual de Agua Potable, Alcantarillado y Saneamiento Diseño de Plantas de Tratamiento de Aguas Residuales Municipales: Zonas Rurales, Periurbanas y Desarrollos Ecoturísticos; Comisión Nacional del Agua: Mexico City, México, 2024.
- Delgadillo, O.; Camacho, A.; Pérez, L.F.; Andrade, M. Depuración de Aguas Residuales por Medio de Humedales Artificiales; Centro Andino para la Gestión y Uso del Agua (Centro AGUA): Cochabamba, Bolivia, 2010. [Google Scholar]
- Gonzalez-Diaz, A.; Rodriguez, N.; García-Núñez, J.A.; Ruiz Álvarez, E.; Jaime Humberto, A.H.; William Andrés, R.Á. Humedales Artificiales como Alternativa para el Tratamiento Terciario de Efluentes de Planta de Beneficio de Palma de Aceite; CID Palmero: Bogota, Colombia, 2022. [Google Scholar] [CrossRef]
- Vidal, G.; Hormazábal, S. Humedales Construidos: Diseño y Operación; Universidad de Concepción: Concepción, Chile, 2018. [Google Scholar]
- Halverson, N. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands; Technical Report; Savannah River Site (SRS): Aiken, SC, USA, 2004.
- Rincón Santamaría, A. Humedales Construidos para Tratamiento de Aguas Residuales Domésticas y Aguas Ricas en Metales; Centro Editorial Universidad Católica de Manizales: Manizales, Columbia, 2020. [Google Scholar]
- MathWorks®. Matlab Online. 2024. Available online: https://la.mathworks.com/products/matlab-online.html (accessed on 17 February 2024).
- Cespedes Pillaca, R.V. Análisis del Uso de Humedales Artificiales Empleando Plantas Macrofitas para el Tratamiento de Aguas Residuales en el Ámbito Rural, Apurímac 2021. Master’s Thesis, Universidad César Vallejo, Trujillo, Peru, 2021. [Google Scholar]
- Gutiérrez Velásquez, M. Alternativa de Tratamiento Terciario de Aguas Residuales Mediante Humedal de Flujo Subsuperficial para Reúso Agrícola, Lucanas, Ayacucho, 2021. Master’s Thesis, Universidad Nacional San Luis Gonzaga, Ica, Peru, 2022. [Google Scholar]
- Núñez Burga, R.M.F. Tratamiento de Aguas Residuales Domésticas a Nivel Familiar, con Humedales Artificiales de Flujo Subsuperficial Horizontal, Mediante la Especie Macrófita Emergente Cyperus Papyrus (Papiro). Master’s Thesis, Universidad Peruana Unión, Chosica, Peru, 2016. [Google Scholar]
- López-Linares, E.; Rodríguez-Álvarez, M. Evaluación de un Humedal Artificial de Flujo Subsuperficial como Tratamiento de Agua Residual Doméstica en la Vereda Bajos de Yerbabuena en el Municipio de Chía, Cundinamarca. Master’s Thesis, Instituto Tecnológico de Costa Rica Escuela de Ingeniería en Construcción, Cartago, Costa Rica, Universidad de la Salle Facultad de Ingeniería Ambiental y Sanitaria, Bogotá, Colombia, 2016. [Google Scholar]





| Design Variable | Literature | This Work (–) | Units |
|---|---|---|---|
| t | 1–5 1, 2–7 2, 3–10 3, 4–15 4,5 | 1–60 | d |
| W | 1–60 2, 15–61 6 | 5–100 | m |
| L | 1–15 2, 5–30 6 | 5–100 | m |
| 0.4–0.5 2, 0.3–0.6 3, 0.1–0.8 4 | 0.1–2 | m | |
| 0.1–0.6 1, 0.5–0.6 2, 0.5–0.8 3, 0.7–1.5 4, 5–8 5 | 0.1–10 | m | |
| s | 0–1 1,4, 0.5–1 2 | 0–1 | % |
| P | G | Objectives | Constraints | Design Variables | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| (12) | (13) | (14) | (15) | (16) | ||||||||||||
| 80 | 100 | 0.982 | 16.133 | 738.193 | 948,631.90 | 0.032 | 6.133 | 261.807 | 1.763 | 15.303 | 16.264 | 36.390 | 0.221 | 4.736 | 0.148 | |
| 0.962 | 25.231 | 952.540 | 852,163.30 | 0.012 | 15.231 | 47.461 | 1.723 | 12.477 | 15.266 | 34.761 | 0.279 | 4.735 | 0.147 | |||
| 0.958 | 26.582 | 975.071 | 934,589.60 | 0.008 | 16.582 | 24.929 | 1.808 | 12.129 | 16.223 | 35.565 | 0.280 | 4.789 | 0.148 | |||
| 0.953 | 10.488 | 365.500 | 930,909.90 | 0.003 | 0.488 | 634.500 | 1.664 | 11.676 | 15.764 | 36.828 | 0.211 | 4.736 | 0.110 | |||
| 200 | 400 | 0.967 | 12.486 | 483.486 | 563,465.40 | 0.017 | 2.486 | 516.514 | 0.267 | 13.019 | 11.457 | 42.764 | 0.133 | 3.244 | 0.527 | |
| 0.983 | 17.772 | 826.880 | 750,738.30 | 0.033 | 7.772 | 173.120 | 1.683 | 15.615 | 17.674 | 40.950 | 0.125 | 2.911 | 0.530 | |||
| 0.999 | 11.150 | 902.958 | 523,339.50 | 0.049 | 1.150 | 97.042 | 0.796 | 27.192 | 12.719 | 40.749 | 0.118 | 2.793 | 0.511 | |||
| 0.968 | 21.738 | 854.369 | 933,732.40 | 0.018 | 11.738 | 145.632 | 1.112 | 13.196 | 16.024 | 46.279 | 0.154 | 3.635 | 0.527 | |||
| 500 | 700 | 0.979 | 19.269 | 854.852 | 655,594.40 | 0.029 | 9.269 | 145.148 | 0.811 | 14.831 | 14.065 | 44.853 | 0.137 | 2.907 | 0.659 | |
| 0.984 | 20.682 | 963.064 | 920,763.90 | 0.034 | 10.682 | 36.936 | 1.172 | 15.818 | 14.964 | 42.319 | 0.129 | 4.257 | 0.701 | |||
| 0.970 | 13.343 | 535.699 | 505,153.20 | 0.020 | 3.343 | 464.301 | 0.037 | 13.353 | 11.825 | 46.867 | 0.130 | 2.479 | 0.629 | |||
| 0.975 | 20.125 | 839.539 | 886,076.10 | 0.025 | 10.125 | 160.461 | 1.013 | 14.134 | 14.023 | 41.881 | 0.146 | 4.429 | 0.562 | |||
| 700 | 1000 | 0.981 | 18.747 | 840.178 | 544,835.00 | 0.031 | 8.747 | 159.822 | 0.642 | 15.149 | 10.865 | 36.481 | 0.140 | 3.950 | 0.641 | |
| 0.996 | 10.436 | 632.824 | 586,849.40 | 0.046 | 0.436 | 367.176 | 0.801 | 20.761 | 10.692 | 34.200 | 0.104 | 4.688 | 0.611 | |||
| 0.954 | 27.251 | 942.481 | 915,417.40 | 0.004 | 17.251 | 57.519 | 1.439 | 11.726 | 15.241 | 39.033 | 0.146 | 4.528 | 0.651 | |||
| 0.950 | 28.723 | 971.300 | 913,777.20 | 0.000 | 18.723 | 28.700 | 1.466 | 11.457 | 15.096 | 38.257 | 0.154 | 4.667 | 0.614 | |||
| Reference | (%) | Q (m3/d) | (m3) | (USD) | t (d) | W (m) | L (m) | (m) | (m) | s (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| [3] | 93.00 | 0.27 | 3.13 | - | 4.37 | 1.32 | 3.96 | - | 0.60 | 1.00 |
| [7] | 96.80 | - | 401.44 | - | 13.12 | 27.44 | 74.86 | 0.10 | 2.00 | 0.55 |
| [8] | - | 24.53 | 279.68 | 621,717.00 | 7.00 | 16.00 | 23.00 | - | 0.76 | 1.00 |
| [10] | 95.00 | 148.18 | 3511.25 | 3,762,200.74 | 7.00 | 261.24 | 26.30 | 0.50 | - | 1.00 |
| [9] | 96.48 | 72.01 | 917.02 | - | 8.24 | 247.31 | 15.22 | 0.45 | - | 1.00 |
| [23] | 99.00 | 4.00 | 22.40 | 14,567.91 | 5.60 | 3.00 | 12.44 | 0.60 | 0.75 | 2.00 |
| [24] | 87.50 | 7.80 | 92.40 | - | 4.51 | 9.60 | 38.50 | - | 0.25 | 2.00 |
| [25] | 96.00 | 0.03 | 0.43 | - | 7.00 | 0.60 | 1.20 | - | 0.60 | 1.00 |
| [26] | 90.30 | 0.621 | 6.00 | 6545.72 | 3.00 | 2.00 | 4.00 | 0.10 | 2.00 | 0.80 |
| This work | 97.00 | 13.34 | 535.69 | 505,153.20 | 13.35 | 11.82 | 46.86 | 0.13 | 2.47 | 0.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendez-Valencia, J.; Sánchez-López, C.; Reyes-Pérez, E.; Ochoa-Montiel, R.; Marquez-Pallares, L.; Aguila-Muñoz, J.; Montalvo-Galicia, F.; Carrasco-Aguilar, M.A.; Sánchez-Martínez, J.A.; Arellano-Hernández, J. Multi-Objective Optimization of the Physical Design of a Horizontal Flow Subsurface Wetland. Hydrology 2025, 12, 303. https://doi.org/10.3390/hydrology12110303
Mendez-Valencia J, Sánchez-López C, Reyes-Pérez E, Ochoa-Montiel R, Marquez-Pallares L, Aguila-Muñoz J, Montalvo-Galicia F, Carrasco-Aguilar MA, Sánchez-Martínez JA, Arellano-Hernández J. Multi-Objective Optimization of the Physical Design of a Horizontal Flow Subsurface Wetland. Hydrology. 2025; 12(11):303. https://doi.org/10.3390/hydrology12110303
Chicago/Turabian StyleMendez-Valencia, Jhonatan, Carlos Sánchez-López, Eneida Reyes-Pérez, Rocío Ochoa-Montiel, Lucila Marquez-Pallares, Juan Aguila-Muñoz, Fredy Montalvo-Galicia, Miguel Angel Carrasco-Aguilar, Jorge Alberto Sánchez-Martínez, and Jorge Arellano-Hernández. 2025. "Multi-Objective Optimization of the Physical Design of a Horizontal Flow Subsurface Wetland" Hydrology 12, no. 11: 303. https://doi.org/10.3390/hydrology12110303
APA StyleMendez-Valencia, J., Sánchez-López, C., Reyes-Pérez, E., Ochoa-Montiel, R., Marquez-Pallares, L., Aguila-Muñoz, J., Montalvo-Galicia, F., Carrasco-Aguilar, M. A., Sánchez-Martínez, J. A., & Arellano-Hernández, J. (2025). Multi-Objective Optimization of the Physical Design of a Horizontal Flow Subsurface Wetland. Hydrology, 12(11), 303. https://doi.org/10.3390/hydrology12110303

