A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water
Abstract
1. Introduction
2. Impacts of Deforestation
2.1. Impacts of Deforestation on the Water Cycle
2.2. Impacts of Deforestation on the Water Quality
3. Impacts of Wildfires
3.1. Impacts of Wildfires on the Water Cycle
3.2. Impacts of Wildfires on the Water Quality
4. Discussion and Perspectives
- Monitor small logged watersheds over several years. The size of the watershed should be proportionate to that of the deforested area. Measurements should begin a few years before deforestation starts and continue for several years after logging finishes, in order to measure the effect of vegetation re-establishing itself.
- To eliminate the effect of meteorological factors, this monitoring should also be carried out simultaneously in neighboring, unlogged watersheds.
- For wildfires, it is difficult to predict where and when they will occur. This makes it difficult to identify which watersheds require monitoring. This also makes it more challenging to accurately assess the quantitative impact of wildfires on ungauged watersheds. Nevertheless, it is crucial to monitor burnt watersheds immediately after wildfires in order to comprehend their effect on hydrology and the subsequent changes as vegetation re-establishes itself. Neighboring unburned watersheds should also be monitored.
- The impact on groundwater should be assessed in the same way. This should involve setting up piezometric monitoring and gauging springs or small draining watercourses. The same recommendations apply to the monitoring of neighboring aquifers (or parts of aquifers), as well as to the specific issue of unpredictable wildfires.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PAH | Polycyclic aromatic hydrocarbon |
PFAS | Perfluoroalkyl and Polyfluoroalkyl Substances |
VOC | Volatile organic compound |
References
- Katsanou, K.; Karapanagioti, H. Surface Water and Groundwater Sources for Drinking Water. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Gil, A., Galeano, L.A., Vicente, M.A., Eds.; Springer: Cham, Switzerland, 2017; Chapter 140. [Google Scholar] [CrossRef]
- Chavez, M.; Gonzalez, F.R. Sustainable Management of Groundwater and Surface Water Resources for Drinking Water Supply. Hydrol. Process. 2018, 32, 1467–1482. [Google Scholar] [CrossRef]
- Smith, B.D.; Thompson, K.W. Surface Water vs. Groundwater: Water Quality and Security Considerations. Environ. Sci. Technol. 2020, 54, 10256–10265. [Google Scholar] [CrossRef]
- Hughes, D.; Pardo, A. Groundwater versus Surface Water as Sources of Drinking Water: A Case Study of Water Quality and Treatment. Water Res. 2021, 176, 115783. [Google Scholar] [CrossRef]
- Juuti, P.S.; Juuti, R.P.; Katko, T.S.; Lipponen, A.M.; Luonsi, A.O. Groundwater Option in Raw Water Source Selection and Related Policy Changes in Finland. Public Work. Manag. Policy 2022, 28, 189–214. [Google Scholar] [CrossRef]
- Huck, P.M.; Coffey, B.M. The importance of robustness in drinking-water systems. J. Toxicol. Environ. Health Part A 2004, 67, 1581–1590. [Google Scholar] [CrossRef]
- Nemani, K.S.; Peldszus, S.; Huck, P.M. Practical Framework for Evaluation and Improvement of Drinking Water Treatment Robustness in Preparation for Extreme-Weather-Related Adverse Water Quality Events. ACS EST Water 2023, 3, 1305–1313. [Google Scholar] [CrossRef]
- Mirus, B.B.; Ebel, B.A.; Mohr, C.H.; Zegre, N. Disturbance hydrology: Preparing for an increasingly disturbed future. Water Resour. Res. 2017, 53, 10007–10016. [Google Scholar] [CrossRef]
- Ebel, B.A.; Mirus, B.B. Disturbance hydrology: Challenges and opportunities. Hydrol. Process. 2014, 28, 5140–5148. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, J.; Yang, Y.; Zhang, R. Influence of Vegetation Coverage on Hydraulic Characteristics of Overland Flow. Water 2021, 13, 1055. [Google Scholar] [CrossRef]
- Nedbal, V.; Bernasová, T.; Kobesová, M.; Tesařová, B.; Vácha, A.; Brom, J. Impact of landscape management and vegetation on water and nutrient runoff from small catchments for over 20 years. J. Environ. Manag. 2025, 373, 123748. [Google Scholar] [CrossRef] [PubMed]
- Mapulanga, A.M.; Naito, H. Effect of deforestation on access to clean drinking water. Proc. Natl. Acad. Sci. USA 2019, 116, 8249–8254. [Google Scholar] [CrossRef]
- Andreassian, V. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.B.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef]
- Kändler, M.; Blechinger, K.; Seidler, C.; Pavlů, V.; Šanda, M.; Dostál, T.; Krása, J.; Vitvar, T.; Štich, M. Impact of land use on water quality in the upper Nisa catchment in the Czech Republic and in Germany. Sci. Total Environ. 2017, 586, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Clément, F.; Ruiz, J.; Rodríguez, M.A.; Blais, D.; Campeau, S. Landscape diversity and forest edge density regulate stream water quality in agricultural catchments. Ecol. Indic. 2017, 72, 627–639. [Google Scholar] [CrossRef]
- Caldwell, P.V.; Martin, K.L.; Vose, J.M.; Baker, J.S.; Warziniack, T.W.; Costanza, J.K.; Frey, G.E.; Nehra, A.; Mihiar, C.M. Forested watersheds provide the highest water quality among all land cover types, but the benefit of this ecosystem service depends on landscape context. Sci. Total Environ. 2023, 882, 163550. [Google Scholar] [CrossRef]
- Warziniack, T.; Sham, C.H.; Morgan, R.; Feferholtz, Y. Effect of Forest Cover on Water Treatment Costs. Water Econ. Policy 2017, 3, 1750006. [Google Scholar] [CrossRef]
- Mupepele, A.-C.; Dormann, C.F. Influence of forest harvest on nitrate concentration in temperate streams—A Meta-analysis. Forests 2017, 8, 5. [Google Scholar] [CrossRef]
- Piffer, P.R.; Tambosi, L.R.; de Ferraz, S.F.B.; Metzger, J.P.; Uriarte, M. Native forest cover safeguards stream water quality under a changing climate. Ecol. Appl. 2021, 31, e02414. [Google Scholar] [CrossRef]
- Gay, E.T.; Martin, K.L.; Caldwell, P.V. Projected land use changes will cause water quality degradation at drinking water intakes across a regional watershed. PLoS Water 2025, 4, e0000313. [Google Scholar] [CrossRef]
- Winter, C.; Nguyen, T.V.; Musolff, A.; Lutz, S.R.; Rode, M.; Kumar, R.; Fleckenstein, J.H. Droughts can reduce the Nitrogen retention capacity of catchments. Hydrol. Earth Syst. Sci. 2023, 27, 303–318. [Google Scholar] [CrossRef]
- Price, J.I.; Heberling, M.T. The Effects of Source Water Quality on Drinking Water Treatment Costs: A Review and Synthesis of Empirical Literature. Ecol. Econ. 2018, 151, 195–209. [Google Scholar] [CrossRef]
- Fiquepron, J.; Garcia, S.; Stenger, A. Land use impact on water quality: Valuing forest services in terms of the water supply sector. J. Environ. Manag. 2013, 126, 113–121. [Google Scholar] [CrossRef]
- Ernst, C.; Gullick, R.; Nixon, K. Protecting the source: Conserving forests to protect water. Opflow 2004, 30, 4–7. [Google Scholar] [CrossRef]
- Sthiannopkao, S.; Takizawa, S.; Homewong, J.; Wirojanagud, W. Soil erosion and its impacts on water treatment in the northeastern provinces of Thailand. Environ. Int. 2007, 33, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Abildtrup, J.; Garcia, S.; Stenger, A. The effect of forest land use on the cost of drinking water supply: A spatial econometric analysis. Ecol. Econ. 2013, 92, 126–136. [Google Scholar] [CrossRef]
- Honey-Rosés, J.; Acuna, V.; Bardina, M.; Brozovic, N.; Marcé, R.; Munné, A.; Sabater, S.; Termes, M.; Valero, F.; Vega, A.; et al. Examining the demand for ecosystem services: The value of stream restoration for drinking water treatment managers in the Llobregat River, Spain. Ecol. Econ. 2013, 90, 196–205. [Google Scholar] [CrossRef]
- Vincent, J.R.; Ahmad, I.; Adnan, N.; Burwell, W.B.; Pattanayak, S.K.; Tan-Soo, J.-S.; Thomas, K. Valuing water purification by forests: An analysis of Malaysian panel data. Environ. Resour. Econ. 2016, 64, 59–80. [Google Scholar] [CrossRef]
- Namugize, J.N.; Jewitt, G.; Graham, M. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys. Chem. Earth 2018, 105, 247. [Google Scholar] [CrossRef]
- Westling, N.; Stromberg, P.M.; Swain, R.B. Can upstream ecosystems ensure safe drinking water—Insights from Sweden. Ecol. Econ. 2020, 169, 106552. [Google Scholar] [CrossRef]
- Liu, N.; Caldwell, P.V.; Dobbs, G.R.; Miniat, C.F.; Bolstad, P.V.; Nelson, S.A.C.; Sun, G. Forested lands dominate drinking water supply in the conterminous United States. Environ. Res. Lett. 2021, 16, 084008. [Google Scholar] [CrossRef]
- Mulatu, D.W.; Fentie, A.; Siikamäki, J. The Impact of forest and non-forest cover on drinking water treatment costs: Panel evidence from Ethiopia. Water Environ. J. 2021, 35, 772–790. [Google Scholar] [CrossRef]
- Piaggio, M.; Siikamäki, J. The value of forest water purification ecosystem services in Costa Rica. Sci. Total Environ. 2021, 789, 147952. [Google Scholar] [CrossRef] [PubMed]
- Dearmont, D.; McCarl, B.A.; Tolman, D.A. Costs of water treatment due to diminished water quality: A case study in Texas. Water Resour. Res. 1998, 34, 849–853. [Google Scholar] [CrossRef]
- Price, J.I.; Renzetti, S.; Dupont, D.; Adamowicz, W.; Emelko, M.B. Production costs, inefficiency, and source water quality: A stochastic cost frontier analysis of Canadian Water utilities. Land Econ. 2017, 93, 1–11. [Google Scholar] [CrossRef]
- Nehra, A.; Baker, J.S.; Caldwell, P.V.; Martin, K.L.; Warziniack, T.W.; Manner, R.H.; Mihiar, C.M.; Frey, G.E.; Costanza, J.K. The potential impact of forest loss on drinking water treatment costs in the southeastern U.S. For. Policy Econ. 2025, 179, 103603. [Google Scholar] [CrossRef]
- François, M.; de Aguiar, T.R., Jr.; Mielke, M.S.; Rousseau, A.N.; Faria, D.; Mariano-Neto, E. Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water 2024, 16, 3350. [Google Scholar] [CrossRef]
- Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes on water yield, and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [Google Scholar] [CrossRef]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Gomyo, M.; Kuraji, K. Effect of the litter layer on runoff and evapotranspiration using the paired watershed method. J. Res. 2016, 21, 306–313. [Google Scholar] [CrossRef]
- Danáčová, M.; Földes, G.; Labat, M.M.; Kohnová, S.; Hlavčová, K. Estimating the Effect of Deforestation on Runoff in Small Mountainous Basins in Slovakia. Water 2020, 12, 3113. [Google Scholar] [CrossRef]
- Wiekenkamp, I.; Huisman, J.A.; Bogena, H.R.; Vereecken, H. Effects of Deforestation on Water Flow in the Vadose Zone. Water 2020, 12, 35. [Google Scholar] [CrossRef]
- Te Wierik, S.A.; Cammeraat, E.L.H.; Gupta, J.; Artzy-Randrup, Y.A. Reviewing the Impact of Land Use and Land-Use Change on Moisture Recycling and Precipitation Patterns. Water Resour. Res. 2021, 57, e2020WR029234. [Google Scholar] [CrossRef]
- Shadmehri Toosi, A.S.; Batelaan, O.; Shanafield, M.; Guan, H. Land Use-Land Cover and Hydrological Modeling: A Review. WIREs Water 2025, 12, e70013. [Google Scholar] [CrossRef]
- Woodward, C.; Shulmeister, J.; Larsen, J.; Jacobsen, G.E.; Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 2014, 346, 844–847. [Google Scholar] [CrossRef]
- Makarieva, A.; Nefiodov, A.V.; Nobre, A.D.; Bardi, U.; Shell, D.; Baudena, M.; Salexka, S.; Rammig, A. How transpiration by forests and other vegetation determines alternate moisture regimes. arXiv 2022, arXiv:2204.07409v1. [Google Scholar] [CrossRef]
- van Luijk, G.; Cowling, R.M.; Riksen, M.J.P.M.; Glenday, J. Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. J. Arid Environ. 2013, 91, 14–21. [Google Scholar] [CrossRef]
- Archer, S.R.; Andersen, E.M.; Predick, K.I.; Schwinning, S.; Steidl, R.J.; Woods, S.R. Woody Plant Encroachment: Causes and Consequences. In Rangeland Systems; Briske, D., Ed.; Springer Series on Environmental Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.B.; Stebler, E.; Will, R.E. Woody plant encroachment reduces annual runoff and shifts runoff mechanisms in the tallgrass prairie, USA. Water Resour. Res. 2017, 53, 4838–4849. [Google Scholar] [CrossRef]
- Huntoon, P.W. Hydrogeologic characteristics and deforestation of the Stone Forest karst aquifers of South China. Groundwater 1992, 30, 167–176. [Google Scholar] [CrossRef]
- van Meerveld, H.J.; Jones, J.P.G.; Ghimire, C.P.; Zwartendijk, B.W.; Lahitiana, J.; Ravelona, M.; Mulligan, M. Forest regeneration can positively contribute to local hydrological ecosystem services: Implications for forest landscape restoration. J. Appl. Ecol. 2021, 58, 755–765. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Basant, S.; Olariu, H.; Leite, P.A.M. Ecohydrological connectivity: A unifying framework for understanding how woody plant encroachment alters the water cycle in drylands. Front. Environ. Sci. 2022, 10, 934535. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Huang, Y. Woody plant encroachment paradox: Rivers rebound as degraded grasslands convert to woodlands. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Stockinger, M.; Coenders-Gerrits, M.; van der Ent, R.; Bogena, H.; Lücke, A.; Stumpp, C. Reduction of vegetation-accessible water storage capacity after deforestation affects catchment travel time distributions and increases young water fractions in a headwater catchment. Hydrol. Earth Syst. Sci. 2021, 25, 4887–4915. [Google Scholar] [CrossRef]
- Ruiz, M.C.; Valdés-Abellán, J.; Pla, C.; Fernández-Mejuto, M.; Benavente, D. Land Cover Changes and Their Influence on Recharge in a Mediterranean Karstic Aquifer (Alicante, Spain). Land 2023, 12, 128. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G.; Zou, C.B.; Wilcox, B.P.; Halihan, T. Woody Plant Encroachment Impacts on Groundwater Recharge: A Review. Water 2018, 10, 1466. [Google Scholar] [CrossRef]
- Mongil-Manso, J.; Navarro-Hevia, J.; San Martín, R. Impact of Land Use Change and Afforestation on Soil Properties in a Mediterranean Mountain Area of Central Spain. Land 2022, 11, 1043. [Google Scholar] [CrossRef]
- Qazi, N. Hydrological functioning of forested catchments, Central Himalayan Region, India. For. Ecosyst 2020, 7, 63. [Google Scholar] [CrossRef]
- Płaczkowska, E.; Mostowik, K.; Bogena, H.R.; Leuchner, M. The Impact of Partial Deforestation on Solute Fluxes and Stream Water Ionic Composition in a Headwater Catchment. Water 2023, 15, 107. [Google Scholar] [CrossRef]
- Rosén, K.; Aronson, J.A.; Eriksson, H.M. Effects of clear-cutting on streamwater quality in forest catchments in central Sweden. For. Ecol. Manag. 1996, 83, 237–244. [Google Scholar] [CrossRef]
- Houlton, B.Z.; Driscol, C.T.; Fahey, T.J.; Likens, G.E.; Groffman, P.M.; Bernhardt, E.S.; Buso, D.C. Nitrogen Dynamics in Ice Storm Damaged Forest Ecosystems: Implications for Nitrogen Limitation Theory. Ecosystems 2003, 6, 431–443. [Google Scholar] [CrossRef]
- Sajdak, M.; Siwek, J.P.; Wasak-Sęk, K.; Kosmowska, A.; Stańczyk, T.; Małek, S.; Żelazny, M.; Woźniak, G.; Jelonkiewicz, Ł.; Żelazny, M. Stream water chemistry changes in response to deforestation of variable origin (case study from the Carpathians, southern Poland). Catena 2021, 202, 105237. [Google Scholar] [CrossRef]
- Noteboom, M.; Seidou, O.; Lapen, D.R. Predicting water quality trends resulting from forest cover change in an agriculturally dominated river basin in Eastern Ontario. Water Qual. Res. J. 2021, 56, 218–238. [Google Scholar] [CrossRef]
- Robinson, K.-L.; Bogena, H.R.; Cammeraat, E.; Bol, R. Effects of Deforestation on Dissolved Organic Carbon and Nitrate in Catchment Stream Water revealed by Wavelet Analysis. Front. Water 2022, 4, 1003693. [Google Scholar] [CrossRef]
- De Mello, K.; Valente, R.A.; Randhir, T.O.; Vettorazzi, C.A. Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecol. Indic. 2018, 93, 1293–1301. [Google Scholar] [CrossRef]
- Narayanan, A.; Cohen, S.; Gardner, J.R. Riverine sediment response to deforestation in the Amazon basin. Earth Surf. Dynam. 2024, 12, 581–599. [Google Scholar] [CrossRef]
- Zhao, B.; Lei, H.; Yang, D.; Yang, S.; Santisirisomboon, J. Runoff and sediment response to deforestation in a large Southeast Asian monsoon watershed. J. Hydrol. 2022, 606, 127432. [Google Scholar] [CrossRef]
- Klein, R.D.; Lewis, J.; Buffleben, M.S. Logging and turbidity in the coastal watersheds of northern California. Geomorphology 2012, 139–140, 136–144. [Google Scholar] [CrossRef]
- Sheikhy Narany, S.T.; Aris, A.Z.; Sefie, A.; Keesstra, S. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci. Total Environ. 2017, 599–600, 844–853. [Google Scholar] [CrossRef]
- Brindha, K.; Parimalarenganayaki, S.; Elango, L. Sources, toxicological effects and removal techniques of nitrates in groundwater: An Overview. Indian J. Environ. Prot. 2017, 37, 667–700. [Google Scholar]
- Rasolofoson, R.A.; Ricketts, T.H.; Johnson, K.B.; Jacob, A.; Fisher, B. Forests moderate the effectiveness of water treatment at reducing childhood diarrhea. Environ. Res. Lett. 2021, 16, 064035. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; De Sy, V.; De Fries, R.S.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- van Wees, D.; van der Werf, G.R.; Randerson, J.T.; Andela, N.; Chen, Y.; Morton, D.C. The role of fire in global forest loss dynamics. Glob. Chang. Biol. 2021, 27, 2377–2391. [Google Scholar] [CrossRef]
- Folton, N.; Andréassian, V.; Duperray, R. Hydrological impact of forest-fire from paired-catchment and rainfall–runoff modelling perspectives. Hydrol. Sci. J. 2015, 60, 1213–1224. [Google Scholar] [CrossRef]
- Wagenbrenner, J.W.; Ebel, B.A.; Bladon, K.D.; Kinoshita, A.M. Post-wildfire hydrologic recovery in Mediterranean climates: A systematic review and case study to identify current knowledge and opportunities. J. Hydrol. 2021, 602, 126772. [Google Scholar] [CrossRef]
- Soulis, K.X.; Generali, K.A.; Papadaki, C.; Theodoropoulos, C.; Psomiadis, E. Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology 2021, 8, 15. [Google Scholar] [CrossRef]
- Moazeni, S.; Cerdà, A. The impacts of forest fires on watershed hydrological response. A review. Trees For. People 2024, 18, 100707. [Google Scholar] [CrossRef]
- González-Pelayo, O.; Prats, S.A.; van den Elsen, E.; Malvar, M.C.; Ritsema, C.; Bautista, S.; Keizer, J.J. The effects of wildfire frequency on post-fire soil surface water dynamics. Eur. J. For. Res. 2024, 143, 493–508. [Google Scholar] [CrossRef]
- Atchley, A.L.; Kinoshita, A.M.; Lopez, S.R.; Trader, L.; Middleton, R. Simulating Surface and Subsurface Water Balance Changes Due to Burn Severity. Vadose Zone J. 2018, 17, 180099. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena 2011, 87, 240–252. [Google Scholar] [CrossRef]
- Wine, M.; Cadol, D. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: Fact or fiction? Environ. Res. Lett. 2016, 11, 085006. [Google Scholar] [CrossRef]
- Johnk, B.T.; Mays, D.C. Wildfire Impacts on Groundwater Aquifers: A Case Study of the 1996 Honey Boy Fire in Beaver County, Utah, USA. Water 2021, 13, 2279. [Google Scholar] [CrossRef]
- Guzmán-Rojo, M.; Fernandez, J.; d’Abzac, P.; Huysmans, M. Impacts of Wildfires on Groundwater Recharge: A Comprehensive Analysis of Processes, Methodological Challenges, and Research Opportunities. Water 2024, 16, 2562. [Google Scholar] [CrossRef]
- Pradhan, N.R.; Floyd, I. Examining the effect of moisture thresholds on post-fire water-repellent soil: A large-scale modelling approach applied to the Upper Arroyo Seco watershed, California, USA. Int. J. Wildland Fire 2024, 33, WF22083. [Google Scholar] [CrossRef]
- Rodríguez-Jiménez, E.; Cruz-Pérez, N.; Koritnik, J.; García-Gil, A.; Marazuela, M.Á.; Santamarta, J.C. Revealing the impact of wildfires on groundwater quality: Insights from Sierra de la Culebra (Spain). Chemosphere 2024, 365, 143375. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Rojo, M.; Silva de Freitas, L.; Coritza Taquichiri, E.; Huysmans, M. Groundwater Vulnerability in the Aftermath of Wildfires at the El Sutó Spring Area: Model-Based Insights and the Proposal of a Post-Fire Vulnerability Index for Dry Tropical Forests. Fire 2025, 8, 86. [Google Scholar] [CrossRef]
- Partington, D.; Thyer, M.; Shanafield, M.; McInerney, D.; Westra, S.; Maier, H.; Simmons, C.; Croke, B.; Jakeman, A.J.; Gupta, H.; et al. Predicting wildfire induced changes to runoff: A review and synthesis of modeling approaches. WIREs Water 2022, 9, e1599. [Google Scholar] [CrossRef]
- Webb, R.W.; Litvak, M.E.; Brooks, P.D. The role of terrain-mediated hydroclimate in vegetation recovery after wildfire. Environ. Res. Lett. 2023, 18, 064036. [Google Scholar] [CrossRef]
- Ebel, B.A. Simulated unsaturated flow processes after wildfire and interactions with slope aspect. Water Resour. Res. 2013, 49, 8090–8107. [Google Scholar] [CrossRef]
- Maina, F.Z.; Siirila-Woodburn, E.R. Watersheds dynamics following wildfires: Nonlinear feedbacks and implications on hydrologic responses. Hydrol. Process. 2020, 34, 33–50. [Google Scholar] [CrossRef]
- Nyman, P.; Sheridan, G.; Lane, P.N. Synergistic effects of water repellency and macropore flow on the hydraulic conductivity of a burned forest soil, south-east Australia. Hydrol. Process. 2010, 24, 2871–2887. [Google Scholar] [CrossRef]
- Stoof, C.R.; Slingerland, E.C.; Mol, W.; van den Berg, J.; Vermeulen, P.J.; Ferreira, A.J.D.; Ritsema, C.J.; Parlange, J.-Y.; Steenhuis, T.S. Preferential flow as a potential mechanism for fire-induced increase in streamflow. Water Resour. Res. 2014, 50, 1840–1845. [Google Scholar] [CrossRef]
- Giambastiani, B.M.; Greggio, N.; Nobili, G.; Dinelli, E.; Antonellini, M. Forest Fire Effects on Groundwater in a Coastal Aquifer (Ravenna, Italy). Hydrol. Process. 2018, 32, 2377–2389. [Google Scholar] [CrossRef]
- La Pasta Cordeiro, M.; Nunes, J.P.; Condesso de Melo, M.T. Impact of wildfires on spatial and temporal evolution of groundwater recharge in an Atlantic pine forest: An integrated approach using field, remote sensing and modeling. J. Hydrol. Reg. Stud. 2025, 59, 102408. [Google Scholar] [CrossRef]
- Atwood, A.; Hille, M.; Clark, M.K. Rengers, F.; Ntarlagiannis, D.; Townsend, K.; West, A.J. Importance of Subsurface Water for Hydrological Response During Storms in a Post-Wildfire Bedrock Landscape. Nat. Commun. 2023, 14, 3814. [Google Scholar] [CrossRef] [PubMed]
- Walvoord, M.A.; Ebel, B.A.; Partridge, T.F.; Rey, D.M.; Rosenberry, D.O. Disparate Groundwater Responses to Wildfire. Wiley Interdiscip. Rev. Water 2025, 12, e70029. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A.; Martin, D.A. Hydrologic conditions controlling runoff generation immediately after wildfire. Water Resour. Res. 2012, 48, 3529. [Google Scholar] [CrossRef]
- Stein, E.D.; Brown, J.S.; Hogue, T.S.; Burke, M.P.; Kinoshita, A. Stormwater contaminant loading following southern California wildfires Get access Arrow. Environ. Toxicol. Chem. 2012, 31, 2625–2638. [Google Scholar] [CrossRef]
- Kean, J.W.; McGuire, L.A.; Rengers, F.K.; Smith, J.B.; Staley, D.M. Amplification of post wildfire peak flow by debris. Geophys. Res. Lett. 2016, 43, 8545–8553. [Google Scholar] [CrossRef]
- Havel, A.; Tasdighi, A.; Arabi, M. Assessing the hydrologic response to wildfires in mountainous regions. Hydrol. Earth Syst. Sci. 2018, 22, 2527–2550. [Google Scholar] [CrossRef]
- Carvalho-Santos, C.; Marcos, B.; Nunes, J.P.; Regos, A.; Palazzi, E.; Terzago, S.; Monteiro, A.T.; Honrado, J.P. Hydrological Impacts of Large Fires and Future Climate: Modeling Approach Supported by Satellite Data. Remote Sens. 2019, 11, 2832. [Google Scholar] [CrossRef]
- Yu, M.; Bishop, T.F.A.; Van Ogtrop, F.F. Assessment of the Decadal Impact of Wildfire on Water Quality in Forested Catchments. Water 2019, 11, 533. [Google Scholar] [CrossRef]
- Williams, A.P.; Livneh, B.; McKinnon, K.A.; Lettenmaier, D.P. Growing impact of wildfire on western US water supply. Proc. Natl. Acad. Sci. USA 2022, 119, e2114069119. [Google Scholar] [CrossRef]
- Imeson, A.C.; Verstraten, J.M.; van Mulligen, E.J.; Sevink, J. The effects of fire and water repellency on infiltration and runoff under Mediterranean type forest. Catena 1992, 19, 345–361. [Google Scholar] [CrossRef]
- Carrà, B.G.; Bombino, G.; Denisi, P.; Plaza-Àlvarez, P.A.; Lucas-Borja, M.E.; Zema, D.A. Water Infiltration after Prescribed Fire and Soil Mulching with Fern in Mediterranean Forests. Hydrology 2021, 8, 95. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA. J. Hydrol. 2000, 231–232, 220–229. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A. Post-fire, rainfall intensity-peak discharge relations for three mountainous watersheds in the Western USA. Hydrol. Process. 2001, 15, 2981–2993. [Google Scholar] [CrossRef]
- Bart, R.R.; Tague, C.L. The impact of wildfire on baseflow recession rates in California. Hydrol. Process. 2017, 31, 1662–1673. [Google Scholar] [CrossRef]
- Úbeda, X.; Sala, M. Variations in runoff and erosion in three areas with different fire intensities. Geookodynamik 1998, 19, 179–188. [Google Scholar]
- Hubbert, K.R.; Wohlgemuth, P.M.; Beyers, J.L.; Narog, M.G.; Gerrard, R. Post-Fire Soil Water Repellency, Hydrologic Response, and Sediment Yield Compared between Grass-Converted and Chaparral Watersheds. Fire Ecol. 2012, 8, 143–162. [Google Scholar] [CrossRef]
- Papadaki, C.; Theodoropoulos, C.; Soulis, K.X.; Generali, K.A.; Psomiadis, E.; Dimitriou, E. Effects of forest fires on headwater streamflow and the habitat suitability for benthic macroinvertebrates. Hydrol. Sci. J. 2022, 67, 1356–1371. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Thomas, M.A.; Lindsay, D.N.; Cavagnaro, D.B.; Kean, J.W.; McCoy, S.W.; Graber, A.P. The Rainfall Intensity-Duration Control of Debris Flows After Wildfire. Geophys. Res. Lett. 2023, 50, e2023GL103645. [Google Scholar] [CrossRef]
- Secci, D.; Tanda, M.G.; Oria, M.D.; Todaro, V.; Fagandini, C. Impacts of climate change on groundwater droughts by means of standardized indices and regional climate models. J. Hydrol. 2021, 603, 127154. [Google Scholar] [CrossRef]
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-Fire Hydrological and Erosional Responses of a Mediterranean Landscape: Seven Years of Catchment-Scale Dynamics. Catena 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Lane, P.N.; Sheridan, G.J.; Noske, P.J.; Sherwin, C.B.; Costenaro, J.L.; Nyman, P.; Smith, H.G. Fire Effects on Forest Hydrology: Lessons from a Multi-Scale Catchment Experiment in SE Australia. IAHS Publ. 2012, 353, 137–143. [Google Scholar]
- Zhou, Y.; Zhang, Y.; Vaze, J.; Lane, P.; Xu, S. Impact of Bushfire and Climate Variability on Streamflow from Forested Catchments in Southeast Australia. Hydrol. Sci. J. 2015, 60, 1340–1360. [Google Scholar] [CrossRef]
- Mansilha, C.; Melo, A.; Martins, Z.E.; Ferreira, I.M.P.L.V.O.; Pereira, A.M.; Espinha Marques, J. Wildfire Effects on Groundwater Quality from Springs Connected to Small Public Supply Systems in a Peri-Urban Forest Area (Braga Region, NW Portugal). Water 2020, 12, 1146. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [Google Scholar] [CrossRef]
- Malmon, D.V.; Reneau, S.L.; Katzman, D.; Lavine, A.; Lyman, J. Suspended sediment transport in an ephemeral stream following wildfire. J. Geophys. Res. Earth Surf. 2007, 112, F2. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.J.; Nyman, P. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Emelko, M.B.; Silins, U.; Bladon, K.D.; Stone, M. Implications of land disturbance on drinking water treatability in a changing climate: Demonstrating the need for “source water supply and protection” strategies. Water Res. 2011, 45, 461–472. [Google Scholar] [CrossRef]
- Porter, B.W.; Sowby, R.B.; Williams, G.P.; Limb, B.J.; Quinn, J.C.; Johnson, A. Mitigating Wildfire Impact on Water Quality through Climate-Based Financing: A Case Study of the Provo River Watershed. ACS EST Water 2025, 5, 649–658. [Google Scholar] [CrossRef]
- Hampton, T.B.; Lin, S.; Basu, N.B. Forest fire effects on stream water quality at continental scales: A meta-analysis. Environ. Res. Lett. 2022, 17, 064003. [Google Scholar] [CrossRef]
- Son, J.H.; Kim, S.; Carlson, K.H. Effects of Wildfire on River Water Quality and Riverbed Sediment Phosphorus. Water Air Soil Pollut. 2015, 226, 26. [Google Scholar] [CrossRef]
- Rust, A.; Hogue, T.S.; Saxe, S.; Mccray, J.E. Post-fire water-quality response in the western United States. Int. J. Wildland Fire 2018, 27, 203–216. [Google Scholar] [CrossRef]
- Klimas, K.; Hiesl, P.; Hagan, D.; Park, D. Prescribed fire effects on sediment and nutrient exports in forested environments: A review. J. Environ. Qual. 2020, 49, 793–811. [Google Scholar] [CrossRef] [PubMed]
- De Palma-Dow, A.; McCullough, I.M.; Brentrup, J.A. Turning up the heat: Long-term water quality responses to wildfires and climate change in a hypereutrophic lake. Ecosphere 2022, 13, e4271. [Google Scholar] [CrossRef]
- Kirn, L.; Mudarra, M.; Marín, A.; Andreo, B.; Hartmann, A. Improved Assessment of Groundwater Recharge in a Mediterranean Karst Region: Andalusia, Spain. In EuroKarst 2016, Neuchâtel. Advances in Karst Science 2017; Renard, P., Bertrand, C., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Dimitriadou, S.; Katsanou, K.; Charalabopoulos, S.; Lambrakis, N. Interpretation of the Factors Defining Groundwater Quality of the Site Subjected to the Wildfire of 2007 in Ilia Prefecture, South-Western Greece. Geosciences 2018, 8, 108. [Google Scholar] [CrossRef]
- Orlova, J.; Olefeldt, D.; Yasinski, J.H.; Anderson, A.E. Effects of prescribed burn on nutrient and dissolved organic matter characteristics in peatland shallow groundwater. Fire 2020, 3, 53. [Google Scholar] [CrossRef]
- Pennino, M.J.; Leibowitz, S.G.; Compton, J.E.; Beyene, M.T.; LeDuc, S.D. Wildfires can increase regulated nitrate, arsenic, and disinfection byproduct violations and concentrations in public drinking water supplies. Sci. Total Environ. 2022, 804, 149890. [Google Scholar] [CrossRef]
- Gunnarsdottir, M.J.; Tómasdóttir, S.; Örlygsson, O.; Andradóttir, H.Ó.; Gardarsson, S.M. Impact of wildfires on the drinking water catchment for the capital area of Iceland—A case study. Environ. Sci. Adv. 2025, 4, 606–618. [Google Scholar] [CrossRef]
- Solomon, G.M.; Hurley, S.; Carpenter, C.; Young, T.M.; English, P.; Reynolds, P. Fire and Water: Assessing Drinking Water Contamination After a Major Wildfire. ACS EST Water 2021, 1, 1878–1886. [Google Scholar] [CrossRef]
- Tobin, B.W.; Schwartz, B.F.; Kelly, M.; Despain, J.D. Fire retardant and post-fire nutrient mobility in a mountain surface water—Karst groundwater system: The Hidden Fire, Sequoia National Park, California, USA. Environ. Earth Sci. 2014, 73, 951–960. [Google Scholar] [CrossRef]
- Ghahremani, Z.; Iradukunda, P.; Farid, A. Post-wildfire soil and aquifer contamination: A review. Jpn. Geotech. Soc. Spec. Publ. 2021, 9, 175–179. [Google Scholar] [CrossRef]
- Mussabek, D.; Söderman, A.; Imura, T.; Persson, K.M.; Nakagawa, K.; Ahrens, L.; Berndtsson, R. PFAS in the Drinking Water Source: Analysis of the Contamination Levels, Origin and Emission Rates. Water 2023, 15, 137. [Google Scholar] [CrossRef]
- Benaafi, M.; Bafaqeer, A. Comprehensive Review of Global Perspectives on Per- and Polyfluoroalkyl Compounds: Occurrence, Fate, and Remediation in Groundwater Systems. Water 2024, 16, 1583. [Google Scholar] [CrossRef]
- Sims, J.L.; Stroski, K.M.; Kim, S.; Killeen, G.; Ehalt, R.; Simcik, M.F.; Brooks, B.W. Global Occurrence and Probabilistic Environmental Health Hazard Assessment of Per- and Polyfluoroalkyl Substances (PFASs) in Groundwater and Surface Waters. Sci. Total Environ. 2022, 816, 151535. [Google Scholar] [CrossRef]
- Johnson, G.R.; Brusseau, M.L.; Carroll, K.C.; Tick, G.R.; Duncan, C.M. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Sci. Total Environ. 2022, 841, 156602. [Google Scholar] [CrossRef]
- Rasmusson, K.; Fagerlund, F. Per- and polyfluoroalkyl substances (PFAS) as contaminants in groundwater resource—A comprehensive review of subsurface transport processes. Chemosphere 2024, 362, 142663. [Google Scholar] [CrossRef]
- Hou, Y.; Wei, X.; Zhang, M.; Creed, I.F.; McNulty, S.G.; Ferraz, S.F.B. A global synthesis of hydrological sensitivities to deforestation and forestation. For. Ecol. Manag. 2023, 529, 120718. [Google Scholar] [CrossRef]
- Paul, M.J.; LeDuc, S.D.; Lassiter, M.G.; Moorhead, L.C.; Noyes, P.D.; Leibowitz, S.G. Wildfire induces changes in receiving waters: A review with considerations for water quality management. Water Resour. Res. 2022, 58, e2021WR030699. [Google Scholar] [CrossRef]
- Elliott, S.M.; Hornberger, M.I.; Rosenberry, D.O.; Frus, R.J.; Webb, R.M. A Conceptual Framework to Assess Post-Wildfire Water Quality: State of the Science and Knowledge Gaps. Water Resour. Res. 2024, 60, e2023WR036260. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, X. Deforestation, forestation, and water supply. Science 2021, 371, 990–991. [Google Scholar] [CrossRef]
- Grant, G.E.; Dietrich, W.E. The frontier beneath our feet. Water Resour. Res. 2017, 53, 2605–2609. [Google Scholar] [CrossRef]
- McDonnell, J.J.; Evaristo, J.; Bladon, K.D.; Buttle, J.; Creed, I.F.; Dymond, S.F.; Grant, G.; Iroume, A.; Jackson, C.R.; Jones, J.; et al. Water sustainability and watershed storage. Nat. Sustain. 2018, 1, 378–379. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Carey, S.K.; McNamara, J.P.; Laudon, H.; Soulsby, C. The essential value of long-term experimental data for hydrology and water management. Water Resour. Res. 2017, 53, 2598–2604. [Google Scholar] [CrossRef]
- Ebel, B.A.; Rengers, F.K.; Tucker, G.E. Observed and simulated hydrologic response for a first-order catchment during extreme rainfall three years after wildfire disturbance. Water Resour. Res. 2016, 52, 9367–9389. [Google Scholar] [CrossRef]
Impact | References | Magnitude | Consequence for Drinking Water |
---|---|---|---|
Deforestation favors the runoff and erosion of surface litter and soil. Macro-porosity closes due to soil destructuration, compaction and macropore clogging by soil particles. This reduces infiltration and groundwater recharge. | [12,38,39,40,41,42,43,44,45,46,47,48,49,50,51] | Infiltration rates can be reduced by several orders of magnitude. A reduction in recharge of up to 50% has been reported. | Lower infiltration and groundwater recharge, and consequently lower amount of groundwater available as a source of raw water. This impact can last for many years. This can also result in reduced river and spring flow during periods of low water. |
The recolonization of soils by woody plants does not immediately lead to the recovery of the soil’s infiltration capacity. In fact, it can further reduce groundwater recharge due to the removal of soil water by roots. | [52,53,54,55,56,57,58,59] | A 32% decrease in recharge has been reported over several years following the re-establishment of woody vegetation. |
Impact | References | Magnitude | Consequence for Drinking Water |
---|---|---|---|
Deforestation promotes the circulation of ions (both anions and cations), which contributes to changes in electrical conductivity and pH of waters. | [60,61,63] | No drastic changes have been reported. | Effect on disinfection efficiency, coagulation and flocculation |
Sharp increase in turbidity and bacterial load in surface waters during rainy periods. Could also affect the groundwater in fractured or karstic aquifers. | [64,66,67,68,69,72] | Increase in load by several orders of magnitude. | Requires increased monitoring, filtration and disinfection, the latter of which is also losing its effectiveness. |
Increased nitrogen and phosphorus concentrations due to a significant reduction in uptake by vegetation and mineralization of soil organic matter, affecting both surface water and groundwater. | [60,61,62,63,64,65,66,69,71] | A significant increase in nitrate levels in groundwater was reported, with 50% of wells showing concentrations that exceed the drinking water standard. | May cause drinking water standards to be exceeded, requiring appropriate treatment. |
Impact | References | Magnitude | Consequence for Drinking Water |
---|---|---|---|
Wildfires significantly impact the distribution of rainfall between runoff and infiltration. Runoff is generally exacerbated. This impact can last for several years. It is most significant during the first two years, but it can last up to seven years. Depending on the climatic context, wildfires can lead to an increase or decrease in the rate of groundwater recharge and the levels of the water table. | [73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118] | Runoff may increase from 6.3% to 10.0% for unburned forests, around 8.9% for forests subjected to low fire severity and from 33.6% to 37.4% for forests subjected to moderate or high fire severity. Increases or decreases in groundwater are highly context-specific. | If there is a decline in groundwater recharge, there will be less groundwater available as a source of raw water. The resulting drop in the water table can cause wells to dry up or pumps to stop. This impact can last for many years. This can also result in reduced river and spring flow during periods of low water. |
The severity of the fire determines the extent to which burning the soil and clogging its pores with ash reduces its permeability. This has a significant impact on infiltration and groundwater recharge. More frequent fires exacerbate impacts due to the difficulty of vegetation in reinstating itself and helping soils to recover their hydrological functionality. | [80,84,108,110,111] | Severe fire can exacerbate the changes and frequent fires can quadruple the impacts. |
Impact | References | Magnitude | Consequence for Drinking Water |
---|---|---|---|
Wildfires can alter the chemistry of water. This often results in a decrease in pH level. | [86,89,119] | Concentrations of ions can increase by up to sevenfold. | Effect on disinfection efficiency, coagulation and flocculation. |
Wildfires can carry significant amounts of suspended matter into waterways due to the removal of the vegetation cover and humus layer that would normally protect the soil from erosion. | [120,121,122,123,124] | Suspended sediment rates up to 1000 times higher in streamflows. | Requires increased monitoring, filtration and disinfection, the latter of which is also losing its effectiveness |
Wildfires can cause significant losses of nutrients (Nitrogen and Phosphorus). | [122,125,126,127,128,129,130,131,132,133] | Mean increases of 40–60% in nitrogen and phosphorus concentrations in rivers. Concentrations up to 400 times higher in the first year. | May cause drinking water standards to be exceeded, requiring appropriate treatment. |
The combustion of plants releases polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). | [119,132,135] | Found at much higher concentrations than normal for several years. | Increased monitoring and treatment if necessary. |
Fire retardants may release nitrogen, phosphorus and sulfur. Water additives may also provide pollutants such as perfluoroalkyl substances (PFAS). | [136,137,138,139,140,141,142] | N, P and S concentrations may approach standards. | Increased monitoring and treatment if necessary. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banton, O.; St-Pierre, S.; Banton, G.; Laures, N.; Triganon, A. A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water. Hydrology 2025, 12, 271. https://doi.org/10.3390/hydrology12100271
Banton O, St-Pierre S, Banton G, Laures N, Triganon A. A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water. Hydrology. 2025; 12(10):271. https://doi.org/10.3390/hydrology12100271
Chicago/Turabian StyleBanton, Olivier, Sylvie St-Pierre, Guillaume Banton, Nicolas Laures, and Anne Triganon. 2025. "A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water" Hydrology 12, no. 10: 271. https://doi.org/10.3390/hydrology12100271
APA StyleBanton, O., St-Pierre, S., Banton, G., Laures, N., & Triganon, A. (2025). A Review of the Key Impacts of Deforestation and Wildfires on Water Resources with Regard to the Production of Drinking Water. Hydrology, 12(10), 271. https://doi.org/10.3390/hydrology12100271