Spatiotemporal Patterns of Inundation in the Nemunas River Delta Using Sentinel-1 SAR: Influence of Land Use and Soil Composition
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Drone Flights
2.3. Hydrological Data
2.4. Image Processing and Inundation Detection
2.5. The Relationship Between Inundation Dynamics, Water Discharge, Land Cover, Lithological and Topographic Factors
2.6. Numerical and Spatial Statistical Analysis
3. Results
3.1. Accuracy of Inundation Mapping
3.2. Inundation Coverage
3.3. Temporal Relationship Between Water Discharge and Flood Extent
3.4. Inundation Dynamics over Land Cover and Lithological Layers
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Edmonds, D.A.; Caldwell, R.L.; Brondizio, E.S.; Siani, S.M. Coastal Flooding Will Disproportionately Impact People on River Deltas. Nat. Commun. 2020, 11, 4741. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of Trend Analysis and Climate Change Projections of Extreme Precipitation and Floods in Europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- Tradowsky, J.S.; Philip, S.Y.; Kreienkamp, F.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; De Cruz, L.; et al. Attribution of the Heavy Rainfall Events Leading to Severe Flooding in Western Europe during July 2021. Clim. Change 2023, 176, 90. [Google Scholar] [CrossRef]
- Anghileri, D.; Pianosi, F.; Soncini-Sessa, R. Trend Detection in Seasonal Data: From Hydrology to Water Resources. J. Hydrol. 2014, 511, 171–179. [Google Scholar] [CrossRef]
- Coopersmith, E.J.; Minsker, B.S.; Sivapalan, M. Patterns of Regional Hydroclimatic Shifts: An Analysis of Changing Hydrologic Regimes. Water Resour. Res. 2014, 50, 1960–1983. [Google Scholar] [CrossRef]
- Fowler, K.; Peel, M.; Saft, M.; Nathan, R.; Horne, A.; Wilby, R.; McCutcheon, C.; Peterson, T. Hydrological Shifts Threaten Water Resources. Water Resour. Res. 2022, 58, e2021WR031210. [Google Scholar] [CrossRef]
- Strohmenger, L.; Ackerer, P.; Belfort, B.; Pierret, M.C. Local and Seasonal Climate Change and Its Influence on the Hydrological Cycle in a Mountainous Forested Catchment. J. Hydrol. 2022, 610, 127914. [Google Scholar] [CrossRef]
- Caballero, I.; Ruiz, J.; Navarro, G. Sentinel-2 Satellites Provide near-Real Time Evaluation of Catastrophic Floods in the West Mediterranean. Water 2019, 11, 2499. [Google Scholar] [CrossRef]
- Goffi, A.; Stroppiana, D.; Brivio, P.A.; Bordogna, G.; Boschetti, M. Towards an Automated Approach to Map Flooded Areas from Sentinel-2 MSI Data and Soft Integration of Water Spectral Features. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101951. [Google Scholar] [CrossRef]
- Huang, M.; Jin, S. Rapid Flood Mapping and Evaluation with a Supervised Classifier and Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 Optical Data. Remote Sens. 2020, 12, 2073. [Google Scholar] [CrossRef]
- Konapala, G.; Kumar, S.V.; Ahmad, S.K. Exploring Sentinel-1 and Sentinel-2 Diversity for Flood Inundation Mapping Using Deep Learning. ISPRS J. Photogramm. Remote Sens. 2021, 180, 163–173. [Google Scholar] [CrossRef]
- Post, P.; Aun, M. Changes in Satellite-Based Cloud Parameters in the Baltic Sea Region during Spring and Summer (1982–2015). Adv. Sci. Res. 2020, 17, 219–225. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Mondini, A.C.; Camici, S. Effectiveness of Sentinel-1 and Sentinel-2 for Flood Detection Assessment in Europe. Nat. Hazards Earth Syst. Sci. 2022, 22, 2473–2489. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Di Simone, A.; Imperatore, P. Flood Detection with SAR: A Review of Techniques and Datasets. Remote Sens. 2024, 16, 656. [Google Scholar] [CrossRef]
- Pelich, R.; Chini, M.; Hostache, R.; Matgen, P.; Delgado, J.M.; Sabatino, G. Towards a Global Flood Frequency Map from SAR Data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; IEEE: Fort Worth, TX, USA, 2017; pp. 4024–4027. [Google Scholar]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A Deep Fully Convolutional Network for Pixel-Level Sea-Land Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef]
- Long, S.; Fatoyinbo, T.E.; Policelli, F. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR. Environ. Res. Lett. 2014, 9, 035002. [Google Scholar] [CrossRef]
- Landuyt, L.; Van Coillie, F.M.; Vogels, B.; Dewelde, J.; Verhoest, N.E. Towards Operational Flood Monitoring in Flanders Using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11004–11018. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. A Local Thresholding Approach to Flood Water Delineation Using Sentinel-1 SAR Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Uddin, K.; Matin, M.A.; Meyer, F.J. Operational Flood Mapping Using Multi-Temporal Sentinel-1 SAR Images: A Case Study from Bangladesh. Remote Sens. 2019, 11, 1581. [Google Scholar] [CrossRef]
- Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-Based Detection of Flooded Vegetation—A Review of Characteristics and Approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [Google Scholar] [CrossRef]
- Misra, A.; White, K.; Nsutezo, S.F.; Straka III, W.; Lavista, J. Mapping Global Floods with 10 Years of Satellite Radar Data. Nat. Commun. 2025, 16, 5762. [Google Scholar] [CrossRef]
- Alonso-Sarria, F.; Valdivieso-Ros, C.; Molina-Pérez, G. Detecting Flooded Areas Using Sentinel-1 SAR Imagery. Remote Sens. 2025, 17, 1368. [Google Scholar] [CrossRef]
- Manakos, I.; Kordelas, G.A.; Marini, K. Fusion of Sentinel-1 Data with Sentinel-2 Products to Overcome Non-Favourable Atmospheric Conditions for the Delineation of Inundation Maps. Eur. J. Remote Sens. 2020, 53, 53–66. [Google Scholar] [CrossRef]
- Martinis, S.; Plank, S.; Ćwik, K. The Use of Sentinel-1 Time-Series Data to Improve Flood Monitoring in Arid Areas. Remote Sens. 2018, 10, 583. [Google Scholar] [CrossRef]
- Tran, K.H.; Menenti, M.; Jia, L. Surface Water Mapping and Flood Monitoring in the Mekong Delta Using Sentinel-1 SAR Time Series and Otsu Threshold. Remote Sens. 2022, 14, 5721. [Google Scholar] [CrossRef]
- Greifeneder, F.; Wagner, W.; Sabel, D.; Naeimi, V. Suitability of SAR Imagery for Automatic Flood Mapping in the Lower Mekong Basin. In Remote Sensing the Mekong; Routledge: Oxfordshire, UK, 2018; pp. 111–128. [Google Scholar]
- Hong Quang, N.; Tuan, V.A.; Thi Thu Hang, L.; Manh Hung, N.; Thi The, D.; Thi Dieu, D.; Duc Anh, N.; Hackney, C.R. Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin. Water 2019, 12, 71. [Google Scholar] [CrossRef]
- Pandey, A.C.; Kaushik, K.; Parida, B.R. Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin. Sustainability 2022, 14, 4210. [Google Scholar] [CrossRef]
- Kjerfve, B. Coastal Lagoons. In Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 1–8. [Google Scholar]
- Lang, F.; Zhu, Y.; Zhao, J.; Hu, X.; Shi, H.; Zheng, N.; Zha, J. Flood Mapping of Synthetic Aperture Radar (SAR) Imagery Based on Semi-Automatic Thresholding and Change Detection. Remote Sens. 2024, 16, 2763. [Google Scholar] [CrossRef]
- Li, Y.; Martinis, S.; Wieland, M.; Schlaffer, S.; Natsuaki, R. Urban Flood Mapping Using SAR Intensity and Interferometric Coherence via Bayesian Network Fusion. Remote Sens. 2019, 11, 2231. [Google Scholar] [CrossRef]
- Žaromskis, R. Nemuno Delta: Monografija; Klaipėdos Universiteto Leidykla: Klaipeda, Lithuania, 2013. [Google Scholar]
- Dubra, V.; Abromas, J.; Dumbrauskas, A. Impact of Ice Regime in the Nemunas River and the Curonian Lagoon on Floods in the Delta Area. Rural Dev. Proc. 2013, 6, 239–244. [Google Scholar]
- Stonevičius, E.; Rimkus, E.; Štaras, A.; Kažys, J.; Valiuškevičius, G. Climate Change Impact on the Nemunas River Basin Hydrology in the 21st Century. Boreal Environ. Res. 2017, 22, 49. [Google Scholar]
- Čerkasova, N.; Mėžinė, J.; Idzelytė, R.; Lesutienė, J.; Ertürk, A.; Umgiesser, G. Exploring Variability in Climate Change Projections on the Nemunas River and Curonian Lagoon: Coupled SWAT and SHYFEM Modeling Approach. Ocean Sci. 2024, 20, 1123–1147. [Google Scholar] [CrossRef]
- Čerkasova, N.; Mėžinė, J.; Idzelytė, R.; Lesutienė, J.; Erturk, A.; Umgiesser, G. Modeling Climate Change Uncertainty and Its Impact on the Nemunas River Watershed and Curonian Lagoon Ecosystem. EGUsphere 2024, 2024, 1–28. [Google Scholar] [CrossRef]
- Idzelytė, R.; Čerkasova, N.; Mėžinė, J.; Dabulevičienė, T.; Razinkovas-Baziukas, A.; Ertürk, A.; Umgiesser, G. Coupled Hydrological and Hydrodynamic Modelling Application for Climate Change Impact Assessment in the Nemunas River Watershed–Curonian Lagoon–Southeastern Baltic Sea Continuum. Ocean Sci. 2023, 19, 1047–1066. [Google Scholar] [CrossRef]
- Dumbrauskas, A.; Punys, P. Character of Floods of the Nemunas River Delta. In Proceedings of the International Conference Towards Natural Flood Reduction Strategies, Warsaw, Poland, 6–13 September 2003; pp. 1–7. [Google Scholar]
- Grimaldi, S.; Xu, J.; Li, Y.; Pauwels, V.R.; Walker, J.P. Flood Mapping under Vegetation Using Single SAR Acquisitions. Remote Sens. Environ. 2020, 237, 111582. [Google Scholar] [CrossRef]
- Iqbal, U.; Riaz, M.Z.B.; Zhao, J.; Barthelemy, J.; Perez, P. Drones for Flood Monitoring, Mapping and Detection: A Bibliometric Review. Drones 2023, 7, 32. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- UN-SPIDER Step-by-Step: Recommended Practice: Flood Mapping and Damage Assessment Using Sentinel-1 SAR Data in Google Earth Engine|UN-SPIDER Knowledge Portal. Available online: https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-google-earth-engine-flood-mapping/step-by-step (accessed on 18 February 2022).
- ESRI Environmental Systems Research Institute (ESRI). ArcGIS Pro Release 3.0.1.; ESRI: Redlands, CA, USA, 2022. [Google Scholar]
- Lietuvos Geologijos Tarnyba Lietuvos Geologijos Tarnybos El. Paslaugos. Available online: https://www.lgt.lt/epaslaugos/index.xhtml (accessed on 16 June 2025).
- European Environment Agency (EEA) Corine Land Cover 2018. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018 (accessed on 4 June 2025).
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer Topics in Signal Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. ISBN 978-3-642-00295-3. [Google Scholar]
- Haynes, W. Wilcoxon Rank Sum Test. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; pp. 2354–2355. ISBN 978-1-4419-9863-7. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2025. [Google Scholar]
- Wood, S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar]
- Marchetti, G.; Manconi, A.; Comiti, F. Limitations in the Use of Sentinel-1 Data for Morphological Change Detection in Rivers. Int. J. Remote Sens. 2023, 44, 6642–6669. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Chini, M.; Pierdicca, N.; Guerriero, L.; Ferrazzoli, P. Flood Monitoring Using Multi-Temporal COSMO-SkyMed Data: Image Segmentation and Signature Interpretation. Remote Sens. Environ. 2011, 115, 990–1002. [Google Scholar] [CrossRef]
- Valiuskevičius, G.; Stonevičius, E.; Stankunavičius, G.; Brastovickyté-Stankevič, J. Severe Floods in Nemunas River Delta. Baltica 2018, 31, 89. [Google Scholar] [CrossRef]
- Osman, K.T. Physical Properties of Forest Soils. In Forest Soils; Springer International Publishing: Cham, Switzerland, 2013; pp. 19–44. ISBN 978-3-319-02540-7. [Google Scholar]
- De Jonge, L.W.; Jacobsen, O.H.; Moldrup, P. Soil Water Repellency: Effects of Water Content, Temperature, and Particle Size. Soil Sci. Soc. Am. J. 1999, 63, 437–442. [Google Scholar] [CrossRef]
- Tian, Y.Q.; McDowell, R.; Yu, Q.; Sheath, G.W.; Carlson, W.T.; Gong, P. Modelling to Analyse the Impacts of Animal Treading Effects on Soil Infiltration. Hydrol. Process. 2007, 21, 1106–1114. [Google Scholar] [CrossRef]
- Blackburn, S.R.; Stanley, E.H. Floods Increase Carbon Dioxide and Methane Fluxes in Agricultural Streams. Freshw. Biol. 2021, 66, 62–77. [Google Scholar] [CrossRef]
- Kapović Solomun, M.; Ferreira, C.S.S.; Zupanc, V.; Ristić, R.; Drobnjak, A.; Kalantari, Z. Flood Legislation and Land Policy Framework of EU and non-EU Countries in Southern Europe. WIREs Water 2022, 9, e1566. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I.; Brakenridge, G.R. Changes in River Flood Hazard in Europe: A Review. Hydrol. Res. 2017, 49, 294–302. [Google Scholar] [CrossRef]
- Paprotny, D.; Sebastian, A.; Morales-Nápoles, O.; Jonkman, S.N. Trends in Flood Losses in Europe over the Past 150 Years. Nat. Commun. 2018, 9, 1985. [Google Scholar] [CrossRef]
- Sofia, G.; Nikolopoulos, E.I. Floods and Rivers: A Circular Causality Perspective. Sci. Rep. 2020, 10, 5175. [Google Scholar] [CrossRef]
- Wu, P.; Wang, T.; Wang, Z.; Song, C.; Chen, X. Impact of Drainage Network Structure on Urban Inundation Within a Coupled Hydrodynamic Model. Water 2025, 17, 990. [Google Scholar] [CrossRef]
- Pallard, B.; Castellarin, A.; Montanari, A. A Look at the Links between Drainage Density and Flood Statistics. Hydrol. Earth Syst. Sci. 2009, 13, 1019–1029. [Google Scholar] [CrossRef]
- Aplinkos Apsaugos Agentūra Potvynių Grėsmės Ir Rizikos Žemėlapis. Available online: https://experience.arcgis.com/experience/7f2d4ca0c74c4857a0620967e530fa4d (accessed on 16 June 2025).
- Aplinkos Apsaugos Agentūra Potvynių Grėsmės Ir Rizikos Žemėlapių Duomenų Atnaujinimo Paslaugų Ataskaita. Available online: https://aaa.lrv.lt/uploads/aaa/documents/files/Metodika_20220509.pdf (accessed on 15 November 2024).
Characteristics of the Used Sentinel-1 Data | |
---|---|
Wavelength | 5.6 cm |
Mode | IW |
Polarization | VV, VH |
Frequency | C-Band (GHz) |
Resolution | 20 × 22 m (ground range and azimuth) |
Pixel resolution | 10 × 10 m |
Incidence angle | 29–46° |
Product level | Level-1 GRDH |
Pass direction | Descending, Ascending |
Relative orbit | 29 and 51 |
SAR | |||
---|---|---|---|
True | False | ||
Drone | Positive | 38.39% ± 14.21% | 6.47% ± 6.74% |
Negative | 47.52% ± 13.82% | 1.91% ± 7.34% |
Type of Data | Correlation Coefficient |
---|---|
no lag | 0.57 |
5 days lag | 0.61 |
10 days lag | 0.68 |
10 days cumulative | 0.54 |
15 days cumulative | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gintauskas, J.; Bučas, M.; Vaičiūtė, D.; Tiškus, E. Spatiotemporal Patterns of Inundation in the Nemunas River Delta Using Sentinel-1 SAR: Influence of Land Use and Soil Composition. Hydrology 2025, 12, 245. https://doi.org/10.3390/hydrology12100245
Gintauskas J, Bučas M, Vaičiūtė D, Tiškus E. Spatiotemporal Patterns of Inundation in the Nemunas River Delta Using Sentinel-1 SAR: Influence of Land Use and Soil Composition. Hydrology. 2025; 12(10):245. https://doi.org/10.3390/hydrology12100245
Chicago/Turabian StyleGintauskas, Jonas, Martynas Bučas, Diana Vaičiūtė, and Edvinas Tiškus. 2025. "Spatiotemporal Patterns of Inundation in the Nemunas River Delta Using Sentinel-1 SAR: Influence of Land Use and Soil Composition" Hydrology 12, no. 10: 245. https://doi.org/10.3390/hydrology12100245
APA StyleGintauskas, J., Bučas, M., Vaičiūtė, D., & Tiškus, E. (2025). Spatiotemporal Patterns of Inundation in the Nemunas River Delta Using Sentinel-1 SAR: Influence of Land Use and Soil Composition. Hydrology, 12(10), 245. https://doi.org/10.3390/hydrology12100245