A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Nitrate Data
2.3. DRASTIC Inputs
2.4. Machine Learning Software
3. Results
3.1. Model Performance
3.2. DRASTIC Recalculated Weights and Model Insights
3.3. Spatial Predictions
4. Discussion
4.1. Machine Learning Approach: Performance, Advantages, and Limitations
4.2. Practical Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vrba, J.; Zaporožec, A. Guidebook on mapping groundwater vulnerability. In International Association of Hydrogeologists; Heise, H., Ed.; The International Association of Hydrogeologists: Hannover, Germany, 1994. [Google Scholar]
- Katyal, D.; Tomer, T.; Joshi, V. Recent trends in groundwater vulnerability assessment techniques: A review. Int. J. Appl. Res. 2017, 3, 646–655. [Google Scholar]
- Goyal, D.; Haritash, A.K.; Singh, S.K. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. J. Environ. Manag. 2021, 296, 113161. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.A.L.; Pires, L.M.G.R.; Santos, R.M.B.; Sanches-Fernandes, L.F. Factor weighting in DRASTIC modeling. Sci. Total Environ. 2015, 505, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Fannakh, A.; Farsang, A. DRASTIC, GOD, and SI approaches for assessing groundwater vulnerability to pollution: A review. Environ. Sci. Eur. 2022, 34, 77. [Google Scholar] [CrossRef]
- Patel, P.; Mehta, D.; Sharma, N. A review on the application of the DRASTIC method in the assessment of groundwater vulnerability. Water Supply 2022, 22, 5190–5205. [Google Scholar] [CrossRef]
- Aller, L.; Lehr, J.H.; Petty, R.; Bennett, T. DRASTIC—A Standardized System to Evaluate Groundwater Pollution Potential Using Hydrogeologic Setting. J. Geol. Soc. India 1987, 29, 23–37. [Google Scholar]
- Civita, M. La valutazione della vulnerabilità degli acquiferi all’inquinamamento. In Atti 1° Conv. Naz. “Protezione e Gestione delle Acque Sotterranee: Metodologie, Tecnologie e Obiettivi”; IRIS: Marano sul Panaro, Italy, 1990; Volume 3, pp. 39–86. [Google Scholar]
- Hernández-Espriú, A.; Reyna-Gutiérrez, J.A.; Sánchez-León, E.; Cabral-Cano, E.; Carrera-Hernández, J.; Martínez-Santos, P.; Falorni, G.; Colombo, D. DRASTIC-Sg Model, a new extension to the DRASTIC approach for mapping groundwater vulnerability in aquifers subject to differential land subsidence. Application to Mexico City. Hydrogeol. J. 2014, 22, 1469–1485. [Google Scholar] [CrossRef]
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Barbulescu, A. Assessing Groundwater Vulnerability: DRASTIC and DRASTIC-Like Methods: A Review. Water 2020, 12, 1356. [Google Scholar] [CrossRef]
- Albinet, M.; Margat, J. Cartographie de la vulnerabilité a la pollution des nappes d’eau souterraine. Bull. Bur. Rech. Géologiques Minières 1970, 3, 13–22. [Google Scholar]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.C.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Bui, D.T.; Pham, B.T. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci. Total Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Alcaide, S.; Martínez-Santos, P. Review: Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324. [Google Scholar] [CrossRef]
- Moges, S.S.; Dinka, M.O. Assessment of groundwater vulnerability mapping methods for sustainable water resource management: An overview. J. Water Land Dev. 2022, 52, 186–198. [Google Scholar] [CrossRef]
- Elzain, H.E.; Chung, S.Y.; Venkatramanan, S.; Selvam, S.; Ahemd, H.A.; Seo, Y.K.; Bhuyan, M.S.; Yassin, M.A. Novel machine learning algorithms to predict the groundwater vulnerability index to nitrate pollution at two levels of modeling. Chemosphere 2023, 314, 137671. [Google Scholar] [CrossRef]
- Raisa, S.S.; Sarkar, S.K.; Sadiq, M.A. Advancing groundwater vulnerability assessment in Bangladesh: A compre-hensive machine learning approach. Groundw. Sustain. Dev. 2024, 25, 101128. [Google Scholar] [CrossRef]
- Abba, S.I.; Yassin, M.A.; Jibril, M.M.; Tawabini, B.; Soupios, P.; Khogali, A.; Shah, S.M.H.; Usman, J.; Aljundi, I.H. Nitrate concentrations tracking from multi-aquifer groundwater vulnerability zones: Insight from machine learning and spatial mapping. Process Saf. Environ. Prot. 2024, 184, 1143–1157. [Google Scholar] [CrossRef]
- Subbarayan, S.; Thiyagarajan, S.; Karuppanan, S.; Panneerselvam, B. Enhancing groundwater vulnerability assessment: Comparative study of three machine learning models and five classification schemes for Cuddalore district. Environ. Res. 2024, 242, 117769. [Google Scholar] [CrossRef]
- Gómez-Escalonilla, V.; Martínez-Santos, P.; Martín-Loeches, M. Preprocessing approaches in machine-learning-based groundwater potential mapping: An application to the Koulikoro and Bamako regions, Mali. Hydrol. Earth Syst. Sci. 2022, 26, 221–243. [Google Scholar] [CrossRef]
- Elzain, H.E.; Chung, S.Y.; Senapathi, V.; Sekar, S.; Lee, S.Y.; Roy, P.D.; Hassan, A.; Sabarathinam, C. Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination. Ecotoxicol. Environ. Saf. 2022, 229, 113061. [Google Scholar] [CrossRef]
- Khan, Q.; Liaqat, M.U.; Mohamed, M.M. A comparative assessment of modeling groundwater vulnerability using DRASTIC method from GIS and a novel classification method using machine learning classifiers. Geocarto Int. 2021, 37, 5832–5850. [Google Scholar] [CrossRef]
- Motlagh, Z.K.; Derakhshani, R.; Sayadi, M.H. Groundwater vulnerability assessment in central Iran: Integration of GIS-based DRASTIC model and a machine learning approach. Groundw. Sustain. Dev. 2023, 23, 101037. [Google Scholar] [CrossRef]
- Tachi, S.E.; Bouguerra, H.; Benaroussi, O. Assessing the Risk of Groundwater Pollution in Northern Algeria through the Evaluation of Influencing Parameters and Ensemble Methods. Dokl. Earth Sci. 2023, 513, 1233–1243. [Google Scholar] [CrossRef]
- MOPTMA-MINER. Libro Blanco de las Aguas Subterráneas; Ministerio de Obras Publicas, Transportes y Medio Ambiente: Madrid, Spain, 1994; p. 136. [Google Scholar]
- Sahun, B.; Gómez, J.J.; Lillo, J.; Olmo, P. Arsénico en aguas subterráneas e interacción agua-roca: Un ejemplo en la cuenca terciaria del Duero (Castilla y León, España). Rev. De La Soc. Geológica De España 2004, 17, 137–155. [Google Scholar]
- CHD. Plan Hidrológico de la parte española de la Demarcación Hidrográfica del Duero. In Revisión de Tercer Ciclo (2022–2027); Technical Report; Confederación Hidrográfica del Duero: Segovia, España, 2022; 276p. [Google Scholar]
- López-Geta, J.A.; Barrio, V.; Vega, L. Explotación de las aguas subterráneas en el Duero: Los retos de la cuenca. In Congreso Homenaje al Douro/Duero y sus ríos. Memoria, Cultura y Porvenir; Fundación Nueva Cultura del Agua: Zamora, Spain, 2006. [Google Scholar]
- Ministerio de la Presidencia, Relaciones con las Cortes y Memoria Demo-crática. MPRCMD Real Decreto 47/2022, de 18 de enero, sobre protección de las aguas contra la contaminación difusa producida por los nitratos procedentes de fuentes agrarias. Boletín Of. Del Estado 2022, 17, 5664–5684. [Google Scholar]
- Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling imbalanced datasets: A review. GESTS Int. Trans-Actions Comput. Sci. Eng. 2006, 30, 25–36. [Google Scholar]
- Alam, F.; Rashid, U.; Shakeel, A.; Dar, F. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab. J. Geosci. 2021, 2, 7. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583. [Google Scholar] [CrossRef]
- NASA Shuttle Radar Topography Mission (SRTM) Global. Digital Elevation Model Dataset. 2013. [CrossRef]
- Estrela, T.; Quintas, L. El sistema integrado de modelización Precipitación-Aportación SIMPA. Ing. Civ. 1996, 104, 43–52. [Google Scholar]
- MITECO Recarga de acuíferos anual (Media período 1940/41-2005/06); Modelo SIMPA; Ministerio para la Transición Ecológica: Madrid, Spain, 2015.
- CHD Mirame Duero. Online Utility. Confederación Hidrográfica del Duero. 2023. Available online: https://mirame.chduero.es/chduero/public/home (accessed on 6 June 2024).
- IGN Sistema de Ocupación del Suelo de España. Digital Cartography. 1:25,000; Instituto Geográfico Nacional: Madrid, Spain, 2014.
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. Mach Learn Python. 2011, 12, 2825–2830. [Google Scholar]
- Díaz-Alcaide, S.; Martínez-Santos, P. Mapping fecal pollution in rural groundwater supplies by means of artificial intelligence classifiers. J. Hydrol. 2019, 577, 124006. [Google Scholar] [CrossRef]
- Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of machine learning in groundwater quality modeling-A comprehensive review. Water Res. 2023, 233, 119745. [Google Scholar] [CrossRef] [PubMed]
- Knoll, L.; Breuer, L.; Bach, M. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef]
- Podgorski, J.; Wu, R.; Chakravorty, B.; Polya, D.A. Groundwater arsenic distribution in India by machine learning geospatial modeling. Int. J. Environ. Res. Public Health 2020, 17, 7119. [Google Scholar] [CrossRef]
- Cardenas-Martinez, A.; Rodriguez-Galiano, V.; Luque-Espinar, J.A.; Mendes, M.P. Predictive modelling benchmark of nitrate Vulnerable Zones at a regional scale based on Machine learning and remote sensing. J. Hydrol. 2021, 603, 127092. [Google Scholar] [CrossRef]
- Podgorski, J.; Araya, D.; Berg, M. Geogenic manganese and iron in groundwater of Southeast Asia and Bangladesh–machine learning spatial prediction modeling and comparison with arsenic. Sci. Total Environ. 2022, 833, 155131. [Google Scholar] [CrossRef]
- Gómez-Escalonilla, V. Metodologías de Aprendizaje Automático para la Optimización de Campañas de Prospección Hidrogeológica y Mejora del Acceso al Agua en el Sahel. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2024; 376p. [Google Scholar]
- Zaresefat, M.; Derakhshani, R. Revolutionizing groundwater management with hybrid AI models: A practical review. Water 2023, 15, 1750. [Google Scholar] [CrossRef]
- Guo, X.; Luo, J.; Lu, W.; Dong, G.; Pan, Z. Optimal design of groundwater pollution monitoring network based on a back-propagation neural network surrogate model and grey wolf optimizer algorithm under uncertainty. Environ. Monit. Assess. 2024, 196, 132. [Google Scholar] [CrossRef]
- Trabelsi, F.; Bel Hadj Ali, S. Exploring machine learning models in predicting irrigation groundwater quality indices for effective decision making in Medjerda River Basin, Tunisia. Sustain. 2022, 14, 2341. [Google Scholar] [CrossRef]
- Khan, J.; Lee, E.; Balobaid, A.S.; Kim, K. A comprehensive review of conventional, machine leaning, and deep learning models for groundwater level (GWL) forecasting. Appl. Sci. 2023, 13, 2743. [Google Scholar] [CrossRef]
Layer | Source | Resolution | Reclassified Values | Layer Weight (Original) | Layer Weight (Machine Learning) | |
---|---|---|---|---|---|---|
Depth | Groundwater monitoring network | 100 × 100 m | Raw values | 5 | Algorithm dependent | |
Recharge | SIMPA model | 500 × 500 m | Raw values | 4 | Algorithm dependent | |
Aquifer media | Online dashboard of the Duero Basin Authority | 100 × 100 m | Massive shale | 2 | 3 | Algorithm dependent |
Metamorphic/igneous | 3 | |||||
Weatheredmetamorphic/igneous | 4 | |||||
Thin-bedded sandstone, limestone, shale sequences | 6 | |||||
Massive sandstone | 6 | |||||
Massive limestone | 8 | |||||
Sand and gravel | 8 | |||||
Karst limestone | 10 | |||||
Soil media | Online dashboard of the Duero Basin Authority | 100 × 100 m | Clay loam | 3 | 2 | Algorithm dependent |
Silty loam | 4 | |||||
Loam | 5 | |||||
Sandy loam | 6 | |||||
Sand | 9 | |||||
Gravel | 10 | |||||
Thin or absent | 10 | |||||
Topography | Shuttle Radar Topography Mission | 30 × 30 m | Raw values | 1 | Algorithm dependent | |
Impact of vadose zone | Online dashboard of the Duero Basin Authority | 100 × 100 m | Silt/clay | 1 | 5 | Algorithm dependent |
Shale | 3 | |||||
Metamorphic/igneous | 4 | |||||
Limestone | 6 | |||||
Sandstone | 6 | |||||
Bedded limestone, sandstone, shale | 6 | |||||
Sand and gravel with significant silt and clay | 6 | |||||
Sand and gravel | 8 | |||||
Karst limestone | 10 | |||||
Hydraulic conductivity | Online dashboard of the Duero Basin Authority | 100 × 100 m | Very low permeability or impermeable | 1 | 3 | Algorithm dependent |
Low permeability | 2 | |||||
Medium permeability | 5 | |||||
High permeability | 8 | |||||
Very high permeability | 10 | |||||
Land use | Instituto Geográfico Nacional | 100 × 100 m | Urban/industrial areas—1 Agricultural areas—2 Natural areas—3 | 5 | Algorithm dependent |
DRASTIC Parameters | Original DRASTIC Approach | Machine Learning DRASTIC Approach | |||
---|---|---|---|---|---|
Layer Weight (Original Weights) | Layer Weight (Normalized Weights) | ETC Recalculated Weights | RFC Recalculated Weights | Ensemble Recalculated Weights | |
Depth | 5 | 0.179 | 0.035 | 0.080 | 0.058 |
Recharge | 4 | 0.143 | 0.210 | 0.230 | 0.220 |
Aquifer media | 3 | 0.107 | 0.300 | 0.150 | 0.225 |
Soil media | 2 | 0.071 | 0.095 | 0.100 | 0.098 |
Topography | 1 | 0.036 | 0.085 | 0.130 | 0.108 |
Impact of vadose zone | 5 | 0.179 | 0.110 | 0.110 | 0.110 |
Hydraulic conductivity | 3 | 0.107 | 0.095 | 0.110 | 0.103 |
Land use | 5 | 0.179 | 0.070 | 0.090 | 0.080 |
Total sum | 28 | 1 | 1.000 | 1.000 | 1.000 |
DRASTIC Vulnerability Classes | Machine Learning Probability Prediction | DRASTIC |
---|---|---|
Very Low | <0.35 | <105 |
Low | 0.35–0.45 | 105–125 |
Moderate | 0.45–0.55 | 126–147 |
High | 0.55–0.65 | 148–177 |
Very high | >=0.65 | >177 |
Original DRASTIC Method | ||||||
---|---|---|---|---|---|---|
DRASTIC Vulnerability Prediction Class | Total Points | Positive Points (>37.5 mg/L Nitrate) | Average Nitrate Concentration | |||
Number | % | Number | % of Total Positive Points | % of Points in the Area | ||
Very low | 51 | 17.5 | 24 | 30.8 | 47.1 | 46.23 |
Low | 48 | 16.5 | 14 | 17.9 | 29.2 | 30.01 |
Moderate | 87 | 29.9 | 24 | 30.8 | 27.6 | 38.47 |
High | 74 | 25.4 | 11 | 14.1 | 14.9 | 23.09 |
Very high | 31 | 10.7 | 5 | 6.4 | 16.1 | 19.00 |
TOTAL | 294 | 100 | 78 | 100 | ----- | --------- |
Ensemble Prediction Probability Map of Exceeding 37.5 mg/L of Nitrate When Using the Best-Performing Algorithms | ||||||
---|---|---|---|---|---|---|
DRASTIC Vulnerability Prediction Class | Total Points | Positive Points (>37.5 mg/L Nitrate) | Average Nitrate Concentration | |||
Number | % | Number | % of Total Positive Points | % of Points in the Area | ||
Very low | 70 | 23.8 | 3 | 3.8 | 4.3 | 4.97 |
Low | 52 | 17.7 | 4 | 5.1 | 7.7 | 10.38 |
Moderate | 82 | 27.9 | 19 | 24.4 | 23.2 | 35.73 |
High | 35 | 11.9 | 17 | 21.8 | 48.6 | 45.46 |
Very high | 55 | 18.7 | 35 | 44.9 | 63.6 | 73.37 |
TOTAL | 294 | 100 | 78 | 100 | ----- | --------- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Escalonilla, V.; Martínez-Santos, P. A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination. Hydrology 2024, 11, 153. https://doi.org/10.3390/hydrology11090153
Gómez-Escalonilla V, Martínez-Santos P. A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination. Hydrology. 2024; 11(9):153. https://doi.org/10.3390/hydrology11090153
Chicago/Turabian StyleGómez-Escalonilla, Victor, and Pedro Martínez-Santos. 2024. "A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination" Hydrology 11, no. 9: 153. https://doi.org/10.3390/hydrology11090153
APA StyleGómez-Escalonilla, V., & Martínez-Santos, P. (2024). A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination. Hydrology, 11(9), 153. https://doi.org/10.3390/hydrology11090153