Modeling the Impact of Urban and Industrial Pollution on the Quality of Surface Water in Intermittent Rivers in a Semi-Arid Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Water Quality Monitoring
2.3. Pollution Sources
2.4. Modeling Approach
2.5. Model Implementation
- Sequencing and orienting river segments to construct a topologically correct hydrographic network.
- Selection of nodes and generation of altimetric profiles for rivers, imposing a smooth downstream altitude decrease.
- Generation of basin/river connectivity by calculating the steepest path between cells and computing flow parameters on the basin (distances to rivers, altitude differences, etc.).
- Addition of information regarding land use and livestock.
2.6. Model Calibration
- Norm of daily consumption of an inhabitant equivalent.
- Daily distribution of the elements (carbon, nitrogen, and phosphorus) of raw wastewater of an inhabitant equivalent.
- The soil leaching functions for the different land uses of the basin (urban, agricultural, forests, meadows, plantations, and miscellaneous). The concentration levels (i.e., soil leaching functions) for each soil occupancy are mainly projected using data obtained from measurements conducted in the upper part of the watershed.
- The flow of the river downstream km 62 is characterized by water abstraction toward irrigation canals and a consequent decrease in flow caused by soil infiltration (underground). The river flow recharges groundwater reserves by transferring water from the river to the aquifer through permeable zones [44]. These processes have been introduced, taking into account the appropriate abstraction of the river flow (takeoff).
2.7. Model Validation
2.8. Scenario Analyses
3. Results
3.1. Model Calibration 15 June 2021
3.2. Model Validation
3.2.1. Validation in Winter 19 January 2021
3.2.2. Validation in Spring 16 March 2021
3.2.3. Validation in Summer 1 June 2021
3.2.4. Validation at Point 9 at 71.77 km
3.3. Scenario Analyses
3.4. Dissolved Organic Carbon Balance under Two Scenarios
4. Discussion
4.1. Performance of the Model
4.2. Physicochemical Parameters
4.3. Scenario Analysis
4.4. Dissolved Organic Carbon Balance under Two Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, K.; Wu, J.; Fan, J.; Liu, H. Drivers of Regional Environmental Pollution Load and Zoning Control: A Case Study of the Yangtze River Economic Belt, China. Chin. Geogr. Sci. 2022, 32, 31–48. [Google Scholar] [CrossRef]
- Toreti, A.; Bavera, D.; Acosta Navarro, J.; Arias Muñoz, C.; Barbosa, P.; Jager, A.D.; Ferraris, L.; Fioravanti, G.; Grimaldi, S.; Hrast Essenfelder, A.; et al. Drought in the Mediterranean Region: January 2024 GDO Analytical Report; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Sehlaoui, H.; Hassikou, R.; Moussadek, R.; Zouahri, A.; Douaik, A.; Iiach, H.; Ghanimi, A.; Dakak, H. Evaluation of Water Quality for Agricultural Suitability in the Benslimane Region, Morocco. Environ. Monit. Assess. 2020, 192, 587. [Google Scholar] [CrossRef]
- Nizar, Y.; Igouzal, M.; Touazit, A. Water Quality Modelling of the Sebou River Estuary Before and After the Installation of the Kenitra City’s Wastewater Treatment Plant. Ecol. Eng. Environ. Technol. 2022, 23, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Safaa, K.R.; Anouzla, A.; Abrouki, Y.; Loukili, H.; Kastali, M.; Souabi, S. Management of Olive Oil Mill Wastewater in Morocco. In Wastewater from Olive Oil Production: Environmental Impacts, Treatment and Valorisation; Souabi, S., Anouzla, A., Eds.; Springer Water; Springer International Publishing: Cham, Switzerland, 2023; pp. 183–212. ISBN 978-3-031-23449-1. [Google Scholar]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Roy, P.D.; Elizalde-Martínez, I.; Chari, S.V. Surface Water Quality in the Upstream of the Highly Contaminated Santiago River during the COVID-19 Lockdown. Environ. Earth Sci. 2022, 81, 316. [Google Scholar] [CrossRef] [PubMed]
- Morsy, A.; Ebeid, M.; Soliman, A.; Halim, A.A.; Ali, A.E.; Fahmy, M. Evaluation of the Water Quality and the Eutrophication Risk in Mediterranean Sea Area: A Case Study of the Port Said Harbour, Egypt. Environ. Chall. 2022, 7, 100484. [Google Scholar] [CrossRef]
- Tornés, E.; Alández-Rodríguez, J.; Corrochano, A.; Nolla-Querol, P.; Trapote, M.C.; Sabater, S. Impacts of Climate Change on Stream Benthic Diatoms—A Nation-Wide Perspective of Reference Conditions. Hydrobiologia 2022, 849, 1821–1837. [Google Scholar] [CrossRef]
- El Mouine, Y.; El Hamdi, A.; Morarech, M.; Valles, V.; Yachou, H.; Dakak, H. Groundwater Contamination Due to Landfill Leachate—A Case Study of Tadla Plain. Environ. Sci. Proc. 2022, 16, 53. [Google Scholar] [CrossRef]
- Nahli, A.; Oubraim, S.; Chlaida, M. Application of the Biotic Indices for Water Quality and Resilience Assessment of a Disturbed Stream. Biologia 2022, 77, 2887–2904. [Google Scholar] [CrossRef]
- Oubane, M.; Khadra, A.; Ezzariai, A.; El Fels, L.; Kouisni, L.; Hafidi, M. Micronucleus Assay Based on Vicia Faba Roots as a Tool to Assess the Performances of Wastewater Treatment Systems. Environ. Technol. Innov. 2020, 19, 100903. [Google Scholar] [CrossRef]
- Aziz, A.; Basheer, F.; Sengar, A.; Irfanullah; Khan, S.U.; Farooqi, I.H. Biological Wastewater Treatment (Anaerobic-Aerobic) Technologies for Safe Discharge of Treated Slaughterhouse and Meat Processing Wastewater. Sci. Total Environ. 2019, 686, 681–708. [Google Scholar] [CrossRef]
- Saadoun, L.; Campitelli, A.; Kannengiesser, J.; Stanojkovski, D.; El Alaoui El Fels, A.; Mandi, L.; Ouazzani, N. Potential of Medium Chain Fatty Acids Production from Municipal Solid Waste Leachate: Effect of Age and External Electron Donors. Waste Manag. 2021, 120, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Zahi, M.R.; Zam, W.; El Hattab, M. State of Knowledge on Chemical, Biological and Nutritional Properties of Olive Mill Wastewater. Food Chem. 2022, 381, 132238. [Google Scholar] [CrossRef] [PubMed]
- Smeti, E.; Kalogianni, E.; Karaouzas, I.; Laschou, S.; Tornés, E.; De Castro-Català, N.; Anastasopoulou, E.; Koutsodimou, M.; Andriopoulou, A.; Vardakas, L.; et al. Effects of Olive Mill Wastewater Discharge on Benthic Biota in Mediterranean Streams. Environ. Pollut. 2019, 254, 113057. [Google Scholar] [CrossRef] [PubMed]
- Bouriqi, A. Typology and Classification of Water Quality in an Intermittent River in a Semi-Arid Mediterranean Climate. Environ. Monit. Assess. 2024, 196, 381. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Merritt, W.S.; Croke, B.F.W.; Weber, T.R.; Jakeman, A.J. A Review of Catchment-Scale Water Quality and Erosion Models and a Synthesis of Future Prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Zhang, Z.; Tian, Z. Assessment and a Review of Research on Surface Water Quality Modeling. Ecol. Model. 2022, 466, 109888. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A Review of Water Quality Index Models and Their Use for Assessing Surface Water Quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Ejigu, M.T. Overview of Water Quality Modeling. Cogent Eng. 2021, 8, 1891711. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Jia, P.; Qi, C.; Ding, F. A Review of Surface Water Quality Models. Sci. World J. 2013, 2013, e231768. [Google Scholar] [CrossRef]
- Herrera, P.A.; Marazuela, M.A.; Hofmann, T. Parameter Estimation and Uncertainty Analysis in Hydrological Modeling. WIREs Water 2022, 9, e1569. [Google Scholar] [CrossRef]
- Cox, B.A. A Review of Currently Available In-Stream Water-Quality Models and Their Applicability for Simulating Dissolved Oxygen in Lowland Rivers. Sci. Total Environ. 2003, 314–316, 335–377. [Google Scholar] [CrossRef] [PubMed]
- Deliège, J.-F. Method to Integrate Models, Adapted to Multicompartimented Hydrological Systems. Ph.D. Thesis, Liege University, Liege, Belgium, 2013. Available online: https://hdl.handle.net/2268/145793 (accessed on 9 January 2024).
- Everbecq, E.; Grard, A.; Magermans, P.; Deliège, J.-F. Water Framework Directive and Modelling Using PEGOPERA Simulation Software. J. Model. Optim. 2019, 11, 36–50. [Google Scholar] [CrossRef]
- Sharma, D.; Kansal, A. Assessment of River Quality Models A Review. Rev. Environ. Sci. Biotechnol. 2013, 12, 285–311. [Google Scholar] [CrossRef]
- Mateus, M.; Vieira, R.D.S.; Almeida, C.; Silva, M.; Reis, F. ScoRE—A Simple Approach to Select a Water Quality Model. Water 2018, 10, 1811. [Google Scholar] [CrossRef]
- Romano, O.; Akhmouch, A. Water Governance in Cities: Current Trends and Future Challenges. Water 2019, 11, 500. [Google Scholar] [CrossRef]
- Grard, A.; Everbecq, E.; Magermans, P.; Bourouag, M.; Deliège, J.-F. Transnational Modelling of the Meuse District with PegOpera Simulation Software. Int. J. River Basin Manag. 2014, 12, 251–263. [Google Scholar] [CrossRef]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S.; et al. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef]
- Boukari, A.; Everbecq, E.; Ben Abdallah, S.; Magermans, P.; Grard, A.; Habaieb, H.; Deliège, J.-F. Modelling Catchment Scale Agricultural Pollution in North Tunisia Using the PEGASE Model. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions; Kallel, A., Ksibi, M., Ben Dhia, H., Khélifi, N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 835–837. [Google Scholar]
- Deliege, J.-F.; Everbecq, E.; Magermans, P.; Grard, A.; Bourouag, T.; Blockx, C.; Smitz, J. Pegase, an Integrated River/Basin Model Dedicated to Surface Water Quality Assessment: Application to Cocaine. Acta Clin. Belg. 2010, 65, 42–48. [Google Scholar] [CrossRef]
- Grard, A.; Everbecq, E.; Magermans, P.; Deliège, J.-F. Modelling a Severe Transient Anoxia of Continental Freshwaters Due to a Scheldt Accidental Release. Hydrology 2021, 8, 175. [Google Scholar] [CrossRef]
- Safiolea, E.; Baki, S.; Makropoulos, C.; Deliège, J.F.; Magermans, P.; Everbecq, E.; Gkesouli, A.; Stamou, A.; Mimikou, M. Integrated Modelling for River Basin Management Planning. Proc. Inst. Civ. Eng. Water Manag. 2015, 164, 405–419. [Google Scholar] [CrossRef]
- Dufatanye, I.; Lee, Y.; Kim, H.; Lee, S. Industrial Wastewater Discharge and Compliance Investigation for Environmentally Resilient Rwanda. Water 2022, 14, 3100. [Google Scholar] [CrossRef]
- Lemessa, F.; Simane, B.; Seyoum, A.; Gebresenbet, G. Assessment of the Impact of Industrial Wastewater on the Water Quality of Rivers around the Bole Lemi Industrial Park (BLIP), Ethiopia. Sustainability 2023, 15, 4290. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Cao, S.; Han, B.; Liu, S.; Chen, D. Copula-Based Framework for Integrated Evaluation of Water Quality and Quantity: A Case Study of Yihe River, China. Sci. Total Environ. 2022, 804, 150075. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhang, J.; Liu, H.; Zhu, W. Predictive Simulation Study on the Effect of Small and Medium River Basin Outfall Treatment Measures on Water Quality Improvement. Water 2023, 15, 2359. [Google Scholar] [CrossRef]
- Benkirane, M.; Laftouhi, N.-E.; Khabba, S.; de la Hera-Portillo, Á. Hydro Statistical Assessment of TRMM and GPM Precipitation Products against Ground Precipitation over a Mediterranean Mountainous Watershed (in the Moroccan High Atlas). Appl. Sci. 2022, 12, 8309. [Google Scholar] [CrossRef]
- Boudhar, A.; Duchemin, B.; Hanich, L.; Jarlan, L.; Chaponnière, A.; Maisongrande, P.; Boulet, G.; Chehbouni, A. Long-Term Analysis of Snow-Covered Area in the Moroccan High-Atlas through Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, S109–S115. [Google Scholar] [CrossRef]
- Chehbouni, A.; Escadafal, R.; Duchemin, B.; Boulet, G.; Simonneaux, V.; Dedieu, G.; Mougenot, B.; Khabba, S.; Kharrou, H.; Maisongrande, P.; et al. An Integrated Modelling and Remote Sensing Approach for Hydrological Study in Arid and Semi-arid Regions: The SUDMED Programme. Int. J. Remote Sens. 2008, 29, 5161–5181. [Google Scholar] [CrossRef]
- Bouaida, J.; Witam, O.; Ibnoussina, M.; Delmaki, A.E.F.; Benkirane, M. Contribution of Remote Sensing and GIS to Analysis of the Risk of Flooding in the Zat Basin (High Atlas-Morocco). Nat. Hazards 2021, 108, 1835–1851. [Google Scholar] [CrossRef]
- Benkirane, M.; Laftouhi, N.-E.; Mansouri, B.E.; Salik, I.; Snineh, M.; Ghazali, F.E.E.; Kamal, S.; Zamrane, Z. An Approach for Flood Assessment by Numerical Modeling of Extreme Hydrological Events in the Zat Watershed (High Atlas, Morocco). Urban Water J. 2020, 17, 381–389. [Google Scholar] [CrossRef]
- Bouimouass, H.; Fakir, Y.; Tweed, S.; Leblanc, M. Groundwater Recharge Sources in Semiarid Irrigated Mountain Fronts. Hydrol. Process. 2020, 34, 1598–1615. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.C.; Allen, R. Assessment of Reference Evapotranspiration Methods in Semi-Arid Regions: Can Weather Forecast Data Be Used as Alternate of Ground Meteorological Parameters? J. Arid. Environ. 2010, 74, 1587–1596. [Google Scholar] [CrossRef]
- El Ghadraoui, A.; Ouazzani, N.; Saf, C.; Ahmali, A.; Hejjaj, A.; Aziz, F.; Bubba, M.; Mandi, L. Behaviour of Physicochemical and Microbiological Characteristics of Vertical Flow Constructed Wetland Substrate after Treating a Mixture of Urban and Olive Mill Wastewaters. Environ. Sci. Pollut. Res. 2021, 28, 55433–55445. [Google Scholar] [CrossRef] [PubMed]
- Mahlathi, C.D.; Brink, I.; Wilms, J.M. Comparative Analysis of Hydrodynamic Flowrate Sources as Drivers of Water Quality Models for Nitrogenous Compounds in Complex Ungauged South African Rivers. Water Pract. Technol. 2024, 19, 1710–1725. [Google Scholar] [CrossRef]
- Wu, X.; Marshall, L.; Sharma, A.; Duan, Q. Identifying Input and Output Data Errors in the Calibration of a Water Quality Model Using Bayesian Error Analysis with Reordering (BEAR) Method. In Proceedings of the Copernicus Meetings, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Miller, O.; Ator, S.; Hess, M.; Jones, D.; Longley, P.; McDonnell, M.; Miller, M.; Putman, A.; Robertson, D.; Saad, D.; et al. Perspectives on Dynamic Water Quality Modeling across Continental and Watershed Scales. In Proceedings of the Copernicus Meetings, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Najjar-Ghabel, S.; Piadeh, F.; Behzadian, K.; Ardakanian, A. Integrated Data-Driven Approach for Early Pollution Detection and Management in the Thames River Ecosystem. In Proceedings of the Copernicus Meetings, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Rong, Y.; Qin, C.; Yen, H.; Sun, F.; Du, P.; Zeng, S. Taking Full Advantage of ‘Low-Quality’ Datasets in Watershed Modeling and Management: From a Perspective of Parameter Calibration. J. Environ. Manag. 2024, 351, 119955. [Google Scholar] [CrossRef]
- van Leeuwen, C.C.E.; Mulder, V.L.; Batjes, N.H.; Heuvelink, G.B.M. Effect of Measurement Error in Wet Chemistry Soil Data on the Calibration and Model Performance of Pedotransfer Functions. Geoderma 2024, 442, 116762. [Google Scholar] [CrossRef]
- Cameron, D.; Hartig, F.; Minnuno, F.; Oberpriller, J.; Reineking, B.; Van Oijen, M.; Dietze, M. Issues in Calibrating Models with Multiple Unbalanced Constraints: The Significance of Systematic Model and Data Errors. Methods Ecol. Evol. 2022, 13, 2757–2770. [Google Scholar] [CrossRef]
- Adedeji, I.C.; Ahmadisharaf, E.; Sun, Y. Predicting In-Stream Water Quality Constituents at the Watershed Scale Using Machine Learning. J. Contam. Hydrol. 2022, 251, 104078. [Google Scholar] [CrossRef]
- Djagba, J.F.; Johnson, J.-M.; Saito, K. Can Soil Fertility Properties in Rice Fields in Sub-Saharan Africa Be Predicted by Digital Soil Information? A Case Study of AfSoilGrids250m. Geoderma Reg. 2022, 30, e00563. [Google Scholar] [CrossRef]
- Das, B.; Jain, S.; Singh, S.; Thakur, P. Evaluation of Multisite Performance of SWAT Model in the Gomti River Basin, India. Appl. Water Sci. 2019, 9, 134. [Google Scholar] [CrossRef]
- Pérez-Sánchez, J.; Senent-Aparicio, J.; Segura-Méndez, F.; Pulido-Velazquez, D.; Srinivasan, R. Evaluating Hydrological Models for Deriving Water Resources in Peninsular Spain. Sustainability 2019, 11, 2872. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Di Bucchianico, A. Coefficient of Determination (2). In Encyclopedia of Statistics in Quality and Reliability; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; ISBN 978-0-470-06157-2. [Google Scholar]
- Hodson, T.O. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not 2022. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Tikhanychev, O. The Phenomenon of “Bias of Assessment” as the Basis of a Behavioral Model and a Potential Source of Problems. In Proceedings of the Networked Control Systems for Connected and Automated Vehicles; Guda, A., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 841–848. [Google Scholar]
- Lahcen, M.; Fetnassi, N.; Ghamizi, M. Floristic Study and Assessment of the Environmental Factors Governing the Distribution of Riparian Plants in the Zat Sub-Basin: Tensift Watershed, Morocco. J. Anim. Plant Sci. 2020, 45, 7900–7915. [Google Scholar] [CrossRef]
- Caissie, D.; El-Jabi, N.; Satish, M.G. Modelling of Maximum Daily Water Temperatures in a Small Stream Using Air Temperatures. J. Hydrol. 2001, 251, 14–28. [Google Scholar] [CrossRef]
- Sleziak, P.; Jančo, M.; Danko, M. Dynamics of Water Temperature in a Small Mountain Catchment. Adv. Hydrol. Sci. 2023, 24, 43–51. [Google Scholar] [CrossRef]
- St-Hilaire, A.; Ouarda, T.B.M.J.; Bargaoui, Z.; Daigle, A.; Bilodeau, L. Daily River Water Temperature Forecast Model with a K-Nearest Neighbour Approach. Hydrol. Process. 2012, 26, 1302–1310. [Google Scholar] [CrossRef]
- Tavares, M.H.; Cunha, A.H.F.; Motta-Marques, D.; Ruhoff, A.L.; Fragoso, C.R.; Munar, A.M.; Bonnet, M.-P. Derivation of Consistent, Continuous Daily River Temperature Data Series by Combining Remote Sensing and Water Temperature Models. Remote Sens. Environ. 2020, 241, 111721. [Google Scholar] [CrossRef]
- Rego, F.; Rocha, M.S. Climatic Patterns in the Mediterranean Region. Ecol. Mediterr. 2014, 40, 49–59. [Google Scholar] [CrossRef]
- Rajwa-Kuligiewicz, A.; Bialik, R.; Rowiński, P. Dissolved Oxygen and Water Temperature Dynamics in Lowland Rivers over Various Timescales. J. Hydrol. Hydromech. 2015, 63, 353–363. [Google Scholar] [CrossRef]
- Cox, B.A. A Review of Dissolved Oxygen Modelling Techniques for Lowland Rivers. Sci. Total Environ. 2003, 314–316, 303–334. [Google Scholar] [CrossRef]
- Benaddi, R.; Bouriqi, A.; Ouazzani, N. The Environmental Problem of Olive Mill Waste Water in Morocco: Data Analysis and Characterization. Int. J. Curr. Sci. Res. Rev. 2022, 05, i5–i51. [Google Scholar] [CrossRef]
- Bellos, D.; Sawidis, T. Chemical Pollution Monitoring of the River Pinios (Thessalia—Greece). J. Environ. Manag. 2005, 76, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Sidabutar, N.V.; Namara, I.; Hartono, D.M.; Soesilo, T.E.B. The Effect of Anthropogenic Activities to the Decrease of Water Quality. IOP Conf. Ser. Earth Environ. Sci. 2017, 67, 012034. [Google Scholar] [CrossRef]
- Fouzi, T.A.; Youness, M.; Bouchra, L.; Ali, B. Spatio-Temporal Typology of the Physico-Chemical Parameters of a Large North African River: The Moulouya and Its Main Tributaries (Morocco). Afr. J. Aquat. Sci. 2020, 45, 1–11. [Google Scholar] [CrossRef]
- Kumar, B.; Singh, U.K.; Ojha, S.N. Evaluation of Geochemical Data of Yamuna River Using WQI and Multivariate Statistical Analyses: A Case Study. Int. J. River Basin Manag. 2019, 17, 143–155. [Google Scholar] [CrossRef]
- Pavlidou, A.; Anastasopoulou, E.; Dassenakis, Μ.; Hatzianestis, I.; Paraskevopoulou, V.; Simboura, N.; Rousselaki, E.; Drakopoulou, P. Effects of Olive Oil Wastes on River Basins and an Oligotrophic Coastal Marine Ecosystem: A Case Study in Greece. Sci. Total Environ. 2014, 497–498, 38–49. [Google Scholar] [CrossRef]
- Benaddi, R.; Ferkan, Y.; Bouriqi, A.; Ouazzani, N. Impact of Landfill Leachate on Groundwater Quality–A Comparison Between Three Different Landfills in Morocco. J. Ecol. Eng. 2022, 23, 89–94. [Google Scholar] [CrossRef]
- El Hmaidi, A.; Talhaoui, A.; Manssouri, I.; Jaddi, H.; Ousmana, H. Contribution of the Pollution Index and GIS in the Assessment of the Physico-Chemical Quality of the Surface Waters of Moulouya River (NE, Morocco). Water Ind. Biotechnol. 2020, 106, 45–54. [Google Scholar] [CrossRef]
- Talhaoui, A.; El Hmaidi, A.; Jaddi, H.; Ousmana, H.; Manssouri, I. Calcul De L’indice De Qualité De L’eau (IQE) Pour L’évaluation De La Qualité Physico-Chimique Des Eaux Superficielles De L’Oued Moulouya (NE, Maroc). Eur. Sci. J. 2020, 16. [Google Scholar] [CrossRef]
- Vatanpour, N.; Malvandi, A.M.; Hedayati Talouki, H.; Gattinoni, P.; Scesi, L. Impact of Rapid Urbanization on the Surface Water’s Quality: A Long-Term Environmental and Physicochemical Investigation of Tajan River, Iran (2007–2017). Env. Sci. Pollut. Res. 2020, 27, 8439–8450. [Google Scholar] [CrossRef]
- Qalmoun, A.; Bouzrarf, K.; Belqat, B. Assessment of the Ecological Status of the Oum Er-Rabie River Basin (Central Morocco) through Physicochemical, Bacteriological Parameters and Biotic Indices. Biologia 2022, 77, 1–15. [Google Scholar] [CrossRef]
- Khdair, A.; Abu-Rumman, G. Evaluation of Environmental Pollution from Olive Mill Wastewater. Fresenius Environ. Bull. 2017, 26, 2537–2540. [Google Scholar]
- Khdair, A.; Abu-Rumman, G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 2020, 8, 671. [Google Scholar] [CrossRef]
- Mansour, T.; Mandi, L.; Ahmali, A.; El Ghadraoui, A.; Faissal, A.; Hejjaj, A.; Del Bubba, M.; Ouazzani, N. Effect of Poly-Phenols on Activated Sludge Biomass during the Treatment of Highly Diluted Olive Mill Wastewaters: Biomass Dynamics and Purifying Performances. Water Sci. Technol. Water Supply 2020, 82, 1416–1429. [Google Scholar] [CrossRef]
Data | Format | Period/Frequency | Data Source |
---|---|---|---|
Hydro-geographical data | Shapefile | 2021 | Tensift Hydraulic Basin Agency |
Digital terrain model 30 m | Rasters | 2021 | Tensift Hydraulic Basin Agency |
Land use map | Shapefile | 2021 | Tensift Hydraulic Basin Agency |
Flow measurement | Excel file | Daily from 1990 to 2021 | Tensift Hydraulic Basin Agency |
Rainfall | Excel file | Daily from 1990 to 2021 | Tensift Hydraulic Basin Agency |
River temperature | Excel file | Daily from 2021 | Tensift Hydraulic Basin Agency |
Insolations | Excel file | Every 30 min from 2021 | Tensift Hydraulic Basin Agency |
Withdrawals | Excel file | 2021 | Tensift Hydraulic Basin Agency |
Discharge data | Excel file | 2021 | Tensift Hydraulic Basin Agency |
Quality data | Excel file | Every 15 days for 6 months until 2021 | Sampling campaign and laboratory analysis |
Parameters | Units | Discharge Limit Values in River | EU | SW | OMW | LL |
---|---|---|---|---|---|---|
Discharge volume | m3/d | --------- | 3072 | 110 | 52 | 50 |
pH | 5.5–9.5 | 8.01 ± 0.22 | 7.74 ± 0.12 | 5.76 ± 0.31 | 7.52 ± 0.15 | |
CE | µs/cm | 2700 | 1474 ± 144.31 | 2580 ± 175.11 | 18,590 ± 250.12 | 8490 ± 310.04 |
COD | mgO2/L | 250 | 1342 ± 30.91 | 2509 ± 44.2 | 193,565 ± 500.32 | 2576 ± 120.41 |
NH4+ | mg/L | NTK = 40 | 90 ± 0.87 | 46.13 ± 1.47 | 74.01 ± 1.61 | 73.40 ± 2.01 |
NO3− | mg/L | 3.02 ± 0.16 | 9.48 ± 0.62 | 20.01 ± 0.41 | 12.19 ± 0.86 | |
NO2− | mg/L | 6.11 ± 1.01 | 11.35 ± 0.96 | 62.20 ± 2.05 | 12.46 ± 0.51 | |
PO43− | mg/L | Pt = 15 | 4.04 ± 0.26 | 21.22 ± 2.41 | 34.58 ± 0.11 | 3.01 ± 0.09 |
COD Pollutant load | KgO2/d | --------- | 4123 | 276 | 10.151 | 129 |
Parameter (g/m3) | Miscellaneous | Urban | Agricultural | Meadow | Plantation | Forest |
---|---|---|---|---|---|---|
Dissolved Organic Carbon Rapidly Degradable | 0.03 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Dissolved Organic Carbon Slowly Degradable | 0.06 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
Dissolved Organic Carbon Non-Degradable | 0.14 | 0.28 | 0.28 | 0.28 | 0.28 | 0.48 |
Particulate Organic Carbone Rapidly Degradable | 0.04 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 |
Particulate Organic Carbone Slowly Degradable | 0.02 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Particulate Organic Carbon Non-Degradable | 0.09 | 0.18 | 0.18 | 0.18 | 0.18 | 0.38 |
Nitrate | 0.00008 | 0.0004 | 0.0006 | 0.0006 | 0.0015 | 0.00016 |
Nitrite | 0.0002 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.0004 |
Ammonium | 0.003 | 0.006 | 0.01 | 0.01 | 0.01 | 0.004 |
Dissolved Organic Nitrogen Degradable | 0.005 | 0.01 | 0.01 | 0.01 | 0.01 | 0.006 |
Dissolved Organic Nitrogen Non-Degradable | 0.04 | 0.08 | 0.08 | 0.08 | 0.08 | 0.12 |
Particulate Organic Nitrogen | 0.01 | 0.02 | 0.024 | 0.024 | 0.02 | 0.016 |
Dissolved Orthophosphate | 0.002 | 0.006 | 0.008 | 0.008 | 0.01 | 0.0012 |
Linked Orthophosphate | 0 | 0 | 0 | 0 | 0 | 0 |
Dissolved Organic Phosphorus | 0.0005 | 0.001 | 0.002 | 0.002 | 0.002 | 0.001 |
Particulate Organic Phosphorus | 0.0015 | 0.003 | 0.004 | 0.004 | 0.006 | 0.004 |
Scenario | Description | COD Pollutant Load (KgO2/d) | Months |
---|---|---|---|
1 | Olive oil factories release 100% of COD load daily production into the river over a two-month period. | 10,151 | January, February |
2 | Olive oil factories release 10% of COD load daily production into the river over a two-month period. | 1015.1 | January, February |
3 | Olive oil factories release 20% of their daily production into the river over a six-month period. | 2030.2 | January to June |
4 | Olive oil factories release 50% of their wastewater production into the river over a six-month period. | 5075.5 | January to June |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouriqi, A.; Ouazzani, N.; Deliege, J.-F. Modeling the Impact of Urban and Industrial Pollution on the Quality of Surface Water in Intermittent Rivers in a Semi-Arid Mediterranean Climate. Hydrology 2024, 11, 150. https://doi.org/10.3390/hydrology11090150
Bouriqi A, Ouazzani N, Deliege J-F. Modeling the Impact of Urban and Industrial Pollution on the Quality of Surface Water in Intermittent Rivers in a Semi-Arid Mediterranean Climate. Hydrology. 2024; 11(9):150. https://doi.org/10.3390/hydrology11090150
Chicago/Turabian StyleBouriqi, Abdelillah, Naaila Ouazzani, and Jean-François Deliege. 2024. "Modeling the Impact of Urban and Industrial Pollution on the Quality of Surface Water in Intermittent Rivers in a Semi-Arid Mediterranean Climate" Hydrology 11, no. 9: 150. https://doi.org/10.3390/hydrology11090150
APA StyleBouriqi, A., Ouazzani, N., & Deliege, J. -F. (2024). Modeling the Impact of Urban and Industrial Pollution on the Quality of Surface Water in Intermittent Rivers in a Semi-Arid Mediterranean Climate. Hydrology, 11(9), 150. https://doi.org/10.3390/hydrology11090150