Field Study and Numerical Modeling to Assess the Impact of On-Site Septic Systems on Groundwater Quality of Jeju Island, South Korea
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. PSTFs and Groundwater Sampling
3.2. Estimation of Discharge and N Loading from the PSTFs Effluents
3.3. Model Settings
4. Results and Discussion
4.1. PSTFs Effluent Quality
4.2. Groundwater Quality
4.3. Calculation of T-N Loading by PSTFs Effluent
4.4. Numerical Modeling Results
4.4.1. Model Calibration
4.4.2. N Species Transport
4.5. Suggestion of PSTFs Management Strategies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lall, U.; Josset, L.; Russo, T.A. Snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 2020, 45, 171–194. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Sources and leaching of nitrate contamination in groundwater. Curr. Sci. 2020, 118, 883–891. Available online: https://www.jstor.org/stable/27226382 (accessed on 7 February 2024). [CrossRef]
- Richa, A.; Touil, S.; Fizir, M. Recent advances in the source identification and remediation techniques of nitrate contaminated groundwater: A review. J. Environ. Manag. 2022, 316, 115265. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.H.; Kaown, D.; Park, S.H.; Kim, H.; Lee, K.K. Nitrate sources, timing, and pathways of a permeable volcanic aquifer system with mixed land use in Jeju Island, South Korea. Sci. Total Environ. 2023, 888, 164129. [Google Scholar] [CrossRef] [PubMed]
- SCF (Scientific Committee on Food). Assessment of dietary intake of nitrates by the population in the European Union, as a consequence of the consumption of vegetables. In Reports on Tasks for Scientific Cooperation: Report of Experts Participating in Task 3.2.3; European Commission: Brussels, Belgium, 1997. [Google Scholar]
- WHO (World Health Organization). World Health Organization (WHO) Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- USEPA (United States Environmental Protection Agency). National Primary Drinking Water Regulations; USEPA: Washington, DC, USA, 2015.
- ME (Ministry of Environment). Groundwater Act Enforcement Rules; Ministry of Environment: Sejong City, Republic of Korea, 2024. Available online: https://www.law.go.kr/lsInfoP.do?lsiSeq=263417&efYd=20240624&ancYnChk=0#0000 (accessed on 7 February 2024).
- Umezawa, Y.; Hosono, T.; Onodera, S.I.; Siringan, F.; Buapeng, S.; Delinom, R.; Yoshimizu, C.; Tayasu, I.; Nagata, T.; Taniguchi, M. Sources of nitrate and ammonium contamination in groundwater under developing Asian megacities. Sci. Total Environ. 2008, 404, 361–376. [Google Scholar] [CrossRef]
- Zhai, Y.; Lei, Y.; Wu, J.; Teng, Y.; Wang, J.; Zhao, X.; Pan, X. Does the groundwater nitrate pollution in China pose a risk to human health? A critical review of published data. Environ. Sci. Pollut. Res. 2017, 24, 3640–3653. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Nie, X.; Sun, Y.; Ran, F. The application and potential non-conservatism of stable isotopes in organic matter source tracing. Sci. Total Environ. 2022, 838, 155946. [Google Scholar] [CrossRef]
- Huno, S.K.; Rene, E.R.; van Hullebusch, E.D.; Annachhatre, A.P. Nitrate removal from groundwater: A review of natural and engineered processes. J. Water Supply Res. Technol.—AQUA 2018, 67, 885–902. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.H.; Lee, E.; Kaown, D.; Green, C.T.; Koh, D.C.; Lee, K.K.; Lee, S.H. Comparison of groundwater age models for assessing nitrate loading, transport pathways, and management options in a complex aquifer system. Hydrol. Process. 2018, 32, 923–938. [Google Scholar] [CrossRef]
- Rawat, M.; Sen, R.; Onyekwelu, I.; Wiederstein, T.; Sharda, V. Modeling of Groundwater Nitrate Contamination Due to Agricultural Activities—A Systematic Review. Water 2022, 14, 4008. [Google Scholar] [CrossRef]
- Badruzzaman, M.; Pinzon, J.; Oppenheimer, J.; Jacangelo, J.G. Source of nutrients impacting surface waters in Florida: A review. J. Environ. Manag. 2012, 109, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Ducci, L.; Rizzo, P.; Pinardi, R.; Solfrini, A.; Maggiali, A.; Pizzati, M.; Balsamo, F.; Celico, F. What is the impact of leaky sewers on groundwater contamination in urban semi-confined aquifers? A test study related to fecal matter and Personal Care Products (PCPs). Hydrology 2022, 10, 3. [Google Scholar] [CrossRef]
- Mezzacapo, M.; Donohue, M.J.; Smith, C.; El-Kadi, A.; Falinski, K.; Lerner, D.T. Review Article: Hawai‘i’s Cesspool Problem: Review and Recommendations for Water Resources and Human Health. J. Contem. Water Res. Ed. 2020, 170, 35–75. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, C.; Chen, J.; Sakura, Y. Impact of septic tank systems on local groundwater quality and water supply in the Pearl River Delta, China: Case study. Hydrol. Process. Int. J. 2008, 22, 443–450. [Google Scholar] [CrossRef]
- Kroeger, K.D.; Cole, M.L.; York, J.K.; Valiela, I. Nitrogen loads to estuaries from waste water plumes: Modeling and isotopic approaches. Ground Water 2006, 44, 188–200. [Google Scholar] [CrossRef]
- Markey, P.G. Report for Evaluation of Existing Data and Sampling Protocol; Leggette, Brashears&Graham, Inc.: Washington, DC, USA, 2006. [Google Scholar]
- Mester, T.; Szabó, G.; Sajtos, Z.; Baranyai, E.; Szabó, G.; Balla, D. Environmental Hazards of an Unrecultivated Liquid Waste Disposal Site on Soil and Groundwater. Water 2022, 14, 226. [Google Scholar] [CrossRef]
- Kookana, R.S.; Drechsel, P.; Jamwal, P.; Vanderzalm, J. Urbanisation and emerging economies: Issues and potential solutions for water and food security. Sci. Total Environ. 2020, 732, 139057. [Google Scholar] [CrossRef]
- Harman, J.; Robertson, W.D.; Cherry, J.A.; Zanini, L. Impacts on a sand aquifer from an old septic system: Nitrate and phosphate. Groundwater 1996, 34, 1105–1114. [Google Scholar] [CrossRef]
- Heatwole, K.K.; McCray, J.E. Modeling potential vadose-zone transport of nitrogen from onsite wastewater systems at the development scale. J. Contam. Hydrol. 2007, 91, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Mori-Sánchez, O.L.; Ramos-Fernández, L.; Lluén-Chero, W.E.; Pino-Vargas, E.; Flores del Pino, L. Application of the Iber two-dimensional model to recover the water quality in the Lurín River. Hydrology 2023, 10, 84. [Google Scholar] [CrossRef]
- Karlović, I.; Posavec, K.; Larva, O.; Marković, T. Numerical groundwater flow and nitrate transport assessment in alluvial aquifer of Varaždin region, NW Croatia. J. Hydrol. Reg. Stud. 2022, 41, 101084. [Google Scholar] [CrossRef]
- Okuhata, B.K.; El-Kadi, A.I.; Henrietta, D.; Lee, J.; Wada, C.A.; Bremer, L.L.; Burnett, K.M.; Delevaus, J.M.S.; Shuler, C.K. A density-dependent multi-species model to assess groundwater flow and nutrient transport in the coastal Keauhou aquifer, Hawaii, USA. Hydrogeol. J. 2022, 30, 231–250. [Google Scholar] [CrossRef]
- Pang, L.; Nokes, C.; Šimůnek, J.; Kikkert, H.; Hector, R. Modeling the impact of clustered septic tank systems on groundwater quality. Vadose Zone J. 2006, 5, 599–609. [Google Scholar] [CrossRef]
- MacQuarrie, K.T.B.; Edward, A.S.; William, D.R. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: II. Model application to a field site. J. Contam. Hydrol. 2001, 47, 85–104. [Google Scholar] [CrossRef]
- Humphrey, C.; O’Driscoll, M.A.; Armstrong, M.C. Onsite wastewater system nitrogen loading to groundwater in the Newport River watershed, North Carolina. Environ. Nat. Resour. 2012, 2, 70–79. [Google Scholar] [CrossRef]
- Koh, D.C.; Ko, K.S.; Kim, Y.; Lee, S.G.; Chang, H.W. Effect of agricultural land use on the chemistry of groundwater from basaltic aquifers, Jeju Island, South Korea. Hydrogeol. J. 2007, 15, 727–743. [Google Scholar] [CrossRef]
- Koh, E.H.; Lee, S.H.; Kaown, D.; Moon, H.S.; Lee, E.; Lee, K.K.; Kang, B.R. Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea. Environ. Earth Sci. 2017, 76, 176. [Google Scholar] [CrossRef]
- Kwon, E.; Park, J.; Park, W.B.; Kang, B.R.; Woo, N.C. Nitrate contamination of coastal groundwater: Sources and transport mechanisms along a volcanic aquifer. Sci. Total Environ. 2021, 768, 145204. [Google Scholar] [CrossRef] [PubMed]
- KOSIS (Korean Statistical Information Service). Statistics Korea, KOSIS, Daejeon City, Republic of Korea. 2024. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1B040A3&conn_path=I2 (accessed on 24 July 2024).
- JSSGP (Jeju Special Self-Governing Province). Statistics of JSSGP; Jeju Special Self-Governing Province: Jeju City, Republic of Korea, 2024. (In Korean)
- JRI (Jeju Research Institute). A Basic Study on the Improvement of Individual Sewage Treatment Facilities on Jeju Island; JRI: Jeju City, Republic of Korea, 2019. [Google Scholar]
- JSSGP (Jeju Special Self-Governing Province); Korea University. Jeju Special Self-Governing Province Tap Water Source Characteristics Survey and Efficient Management Strategy Research; Korea University: Seoul City, Republic of Korea, 2021; p. 70. (In Korean)
- Brenna, M.; Cronin, S.J.; Smith, I.E.; Sohn, Y.K.; Maas, R. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 2012, 148, 337–352. [Google Scholar] [CrossRef]
- Won, J.H.; Lee, J.Y.; Kim, J.W.; Koh, G.W. Groundwater occurrence on Jeju island, Korea. Hydrogeol. J. 2006, 14, 253–265. [Google Scholar] [CrossRef]
- JSSGP (Jeju Special Self-Governing Province). Basic Plan for Integrated Water Management in Jeju Special Self-Governing Province (2023–2032); Jeju Special Self-Governing Province: Jeju City, Republic of Korea, 2022.
- Koh, G.W. Characteristics of the Groundwater and Hydrogeologic Implications of the Seoguipo Formation in Cheju Island. Ph.D. Thesis, Pusan National University, Pusan City, Republic of Korea, 1997; pp. 126–161, (In Korean with English Abstract). [Google Scholar]
- ME (Ministry of Environment). Land Cover Map, Environmental Spatial Information System; Ministry of Envirionment: Sejong City, Republic of Korea, 2022. Available online: https://egis.me.go.kr/intro/land.do (accessed on 7 February 2024). (In Korean)
- ME (Ministry of Environment). Calculate the Amount of Water and Sewage Generation in a Housing Complex in Unit Intensity and Study the Cost of Sewage; ME: Sejong City, Republic of Korea, 2001. (In Korean)
- Therrien, R.; McLaren, R.; Sudicky, E.; Panday, S.M. A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport; User Guide; University of Waterloo: Waterloo, ON, Canada, 2010. [Google Scholar]
- Jeju Water Resources Management Office. Data Collection Book of Geological Logs of Jeju Island; Jeju Special Self-Governing Province: Jeju City, Republic of Korea, 2001. (In Korean)
- Batu, V. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis; LNC John Wiley and Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Hodnett, M.G.; Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soil. Goederma 2002, 108, 155–180. [Google Scholar] [CrossRef]
- Gelhar, L.W. Stochastic subsurface hydrology from theory to application. Water Resour. Res. 1986, 22, 161–180. [Google Scholar] [CrossRef]
- Jeju-do Report on the Overall Investigation of Hydrogeology and the Groundwater Resource in Jeju Island (III); Jeju Provincial Government: Jeju City, Republic of Korea, 2003. (In Korean)
- Peña-Haro, S.; Pulido-Velazquez, M.; Sahuquillo, A. A hydro-economic modelling framework for optimal management of groundwater nitrate pollution from agriculture. J. Hydrol. 2009, 373, 193–203. [Google Scholar] [CrossRef]
- Ceazan, M.L.; Thurman, E.M.; Smith, R.L. Retardation of ammonium and potassium transport through a contaminated sand and gravel aquifer: The role of cation exchange. Environ. Sci. Technol. 1989, 23, 1402–1408. [Google Scholar] [CrossRef]
- Alshameri, A.; He, H.; Zhu, J.; Xi, Y.; Zhu, R.; Ma, L.; Tao, Q. Adsorption of ammonium by different natural clay minerals: Characterization, kinetics and adsorption isotherms. Appl. Clay Sci. 2018, 159, 83–93. [Google Scholar] [CrossRef]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Univ. Calif.-Riverside Res. Rep. 2005, 3, 1–240. [Google Scholar]
- JSSGP (Jeju Special Self-Governing Province). Study on Groundwater Water Quality Improvement and Pollution Control; JSSGP and Jeju Research Institute: Jeju City, Republic of Korea, 2019. (In Korean)
- Koh, E.H.; Lee, E.; Lee, K.K. Impact of leaky wells on nitrate cross-contamination in a layered aquifer system: Methodology for and demonstration of quantitative assessment and prediction. J. Hydrol. 2016, 541, 1133–1144. [Google Scholar] [CrossRef]
- Geary, P.; Lucas, S. Contamination of estuaries from failing septic tank systems: Difficulties in scaling up from monitored individual systems to cumulative impact. Environ. Sci. Pollut. Res. 2019, 26, 2132–2144. [Google Scholar] [CrossRef] [PubMed]
- Ferris, G.; Szponar, N.; Edwards, B. Groundwater Microbiology; Groundwater Project: Guelph, ON, Canada, 2021; pp. 7–26. [Google Scholar]
- Cey, E.E.; Rudolph, D.L.; Aravena, R.; Parkin, G. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario. J. Contam. Hydrol. 1999, 37, 45–67. [Google Scholar] [CrossRef]
- Hiscock, K.M.; Lloyd, J.W.; Lerner, D.N. Review of natural and artificial denitrification of groundwater. Water Res. 1991, 25, 1099–1111. [Google Scholar] [CrossRef]
- Koh, D.C.; Chae, G.T.; Yoon, Y.Y.; Kang, B.R.; Koh, G.W.; Park, K.H. Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: Implications for degree of mineralization and nitrate contamination. J. Hydrol. 2009, 376, 81–93. [Google Scholar] [CrossRef]
- Jeju-do, Report on the Overall Investigation of Hydrogeology and the Groundwater Resources in Jeju Island (I); Jeju Provincial Government: Jeju City, Republic of Korea, 2001. (In Korean)
- Hyun, I.H.; Seo, B.W.; Kim, T.H.; Song, B.H.; Kang, S.K.; Kim, S.J.; Yun, S.T.; Oh, S.S. Tracking sources of nitrate in groundwater around livestock manure spill area. Rep. JIHE (Jeju Inst. Health Environ.) 2017, 28, 111–124. (In Korean) [Google Scholar]
- Kim, S.H.; Kim, H.R.; Yu, S.; Kang, H.J.; Hyun, I.H.; Song, Y.C.; Kim, H.; Yun, S.T. Shift of nitrate sources in groundwater due to intensive livestock farming on Jeju Island, South Korea: With emphasis on legacy effects on water management. Water Res. 2021, 191, 116814. [Google Scholar] [CrossRef]
- Koh, E.H.; Kaown, D.; Mayer, B.; Kang, B.R.; Moon, H.S.; Lee, K.K. Hydrogeochemistry and isotopic tracing of nitrate contamination of two aquifer systems on Jeju Island, Korea. J. Environ. Qual. 2012, 41, 1835–1845. [Google Scholar] [CrossRef]
- McCray, J.E.; Kirkland, S.L.; Siegrist, R.L.; Thyne, G.D. Model parameters for simulating fate and transport of on-site wastewater nutrients. Groundwater 2005, 43, 628–639. [Google Scholar] [CrossRef]
- Jeju-do, Report on the General Investigation of the Mountainous Area in Jeju Island; Jeju Provincial Government: Jeju City, Republic of Korea, 1997.
- Koh, D.C.; Chang, H.W.; Lee, K.S.; Ko, K.S.; Kim, Y.J.; Park, W.B. Hydrogeochemistry and environmental isotopes of groundwater in Jeju volcanic island, Korea: Implications for nitrate contamination. Hydrol. Process. 2005, 19, 2225–2245. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, M.; Roeder, E.; Hicks, R.W.; Shi, L.; Yang, J. Estimating ammonium and nitrate load from septic systems to surface water bodies within ArcGIS environments. J. Hydrol. 2016, 532, 177–192. [Google Scholar] [CrossRef]
- Katz, B.G.; Eberts, S.M.; Kauffman, L.J. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. J. Hydrol. 2011, 397, 151–166. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, K.Y.; Hamm, S.Y.; Kim, M.; Kim, H.K.; Oh, J.E. Occurrence and distribution of pharmaceutical and personal care products, artificial sweeteners, and pesticides in groundwater from an agricultural area in Korea. Sci. Total Environ. 2019, 659, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Nitka, A.L.; DeVita, W.M.; McGinley, P.M. Evaluating a chemical source-tracing suite for septic system nitrate in household wells. Water Res. 2019, 148, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Widory, D.; Petelet-Giraud, E.; Négrel, P.; Ladouche, B. Tracking the sources of nitrate in groundwater using coupled nitrogen and boron isotopes: A synthesis. Environ. Sci. Technol. 2005, 39, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Applied Ecology. The Breeze Swept Septic to Sewer Conversion Project Analysis Report for the City of Rockledge; Applied Ecology: Rockledge City, FL, USA, 2019. [Google Scholar]
- Mester, T.; Balla, D.; Karancsi, G.; Bessenyei, É.; Szabó, G. Effects of nitrogen loading from domestic wastewater on groundwater quality. Water SA 2019, 45, 349–358. [Google Scholar] [CrossRef]
- Buszka, T.T.; Reeves, D.M. Pathways and timescales associated with nitrogen transport from septic systems in coastal aquifers intersected by canals. Hydrogeol. J. 2021, 29, 1953–1964. [Google Scholar] [CrossRef]
- The State of Hawaii. Report to the Twenty-Ninth Legislature State of Hwaii 2018; Relationg to Cesspools and Prioritization for Replacement; Department of Health and Environmental Management Division: Pearl City, HI, USA, 2017. [Google Scholar]
Geological Layer | Hydraulic Conductivity | Porosity | Specific Storage | Van Genuchten Function Parameter | Dispersivity | ||||
---|---|---|---|---|---|---|---|---|---|
Kx = Ky (m/s) | Kz (m/s) | n (−) | Ss (m−1) | Swr | α (m−1) | β | aL (m) | aT (m) | |
Volcanic rocks | 4.0 × 10−4 | 9.0 × 10−5 | 0.35 | 1.0 × 10−5 | 0.38 | 3.50 | 3.18 | 100 | 10 |
SGF | 5.0 × 10−7 | 5.0 × 10−8 | 0.40 | 1.0 × 10−4 | 0.49 | 0.70 | 1.68 | 30 | 3 |
Water Quality Parameter | Unit | Mean | Median | STDEV | MIN | MAX |
---|---|---|---|---|---|---|
Temperature | °C | 19.9 | 20.1 | 4.3 | 11.1 | 27.2 |
EC | μS/cm | 764 | 670 | 344 | 119 | 1711 |
pH | - | 7.1 | 7.2 | 0.6 | 4.3 | 7.9 |
DO | mg/L | 2.6 | 2.0 | 2.2 | 0.1 | 8.9 |
BOD | mg/L | 106.3 | 76.5 | 99.4 | 0.8 | 387.0 |
T-N | mg/L | 48.9 | 43.9 | 28.5 | 3.2 | 131.1 |
NH4+ | mg/L | 43.7 | 31.8 | 33.5 | ND 1 | 125.5 |
Water Quality Component | Unit | Mean | Median | STDEV | MIN | MAX |
---|---|---|---|---|---|---|
Temperature | °C | 14.9 | 15.3 | 1.8 | 8.8 | 16.7 |
EC | μS/cm | 98 | 97 | 22 | 68 | 157 |
pH | - | 7.9 | 7.9 | 0.4 | 7.0 | 8.6 |
DO | mg/L | 10.2 | 10.1 | 1.0 | 7.8 | 12.3 |
BOD | mg/L | 1.1 | 1.0 | 0.5 | 0.2 | 2.2 |
T-N | mg/L | 1.2 | 1.1 | 0.8 | 0.1 | 2.9 |
NH4+ | mg/L | ND 1 | ND | |||
NO2− | mg/L | ND | ND | |||
NO3− | mg/L | 5.2 | 4.3 | 3.2 | 1.7 | 12.2 |
Cl− | mg/L | 8.7 | 8.8 | 1.1 | 7.1 | 11.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Koh, E.-H.; Kim, J. Field Study and Numerical Modeling to Assess the Impact of On-Site Septic Systems on Groundwater Quality of Jeju Island, South Korea. Hydrology 2024, 11, 146. https://doi.org/10.3390/hydrology11090146
Kim M, Koh E-H, Kim J. Field Study and Numerical Modeling to Assess the Impact of On-Site Septic Systems on Groundwater Quality of Jeju Island, South Korea. Hydrology. 2024; 11(9):146. https://doi.org/10.3390/hydrology11090146
Chicago/Turabian StyleKim, Mijin, Eun-Hee Koh, and Jinkeun Kim. 2024. "Field Study and Numerical Modeling to Assess the Impact of On-Site Septic Systems on Groundwater Quality of Jeju Island, South Korea" Hydrology 11, no. 9: 146. https://doi.org/10.3390/hydrology11090146
APA StyleKim, M., Koh, E. -H., & Kim, J. (2024). Field Study and Numerical Modeling to Assess the Impact of On-Site Septic Systems on Groundwater Quality of Jeju Island, South Korea. Hydrology, 11(9), 146. https://doi.org/10.3390/hydrology11090146