Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression
Abstract
:1. Introduction
2. Study Area and Data Used
3. Tools and Techniques
3.1. Multiple Linear Regression
3.2. Statistical Downscaling Model (SDSM)
3.3. Principal Component Analysis (PCA)
3.4. Generation of Volterra Series Realization
3.5. Ridge Regression
3.6. Statistical Downscaling Combined with Ridge Regression (SDCRR)
3.7. Fuzzy Clustering
4. Model Development
4.1. Step 1: Normalization
4.2. Step 2: Selection of Predictors
4.3. Step 3: Classification for Climate Predictors for Regression Analysis
4.4. Step 4: Applying Transformation of Membership Values
4.5. Step 4: Explanatory Variables Used as Orthogonal Filters
4.6. Step 4: Calculated Fuzzy Ridge Regression Coefficient
4.7. Step 5: Rainfall Projections Using GCM Simulations
4.8. Step 6: Bias Correction
5. Performance Indices
- (i).
- The expression for RMSE is:
- (ii).
- The expression for MAE is:
- (iii)
- Coefficient of Determination () is expressed as given below:
6. Results and Discussion
6.1. Performance of SDSM and SDCRR
6.2. Identifying Predictors for SDC2R2 Model
6.3. Performance of the SDC2R2 Model over the Calibration and Validation Period
6.4. Application of Bias Correction to the SDC2R2 Model
6.5. Future Projections Using GCM Simulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tahir, T.; Hashim, A.M.; Yusof, K.W. Statistical Downscaling of Rainfall under Transitional Climate in Limbang River Basin by Using SDSM. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012037. [Google Scholar] [CrossRef]
- Singh, S.; Kannan, S.; Timbadiya, P.V. Statistical Downscaling of Multisite Daily Precipitation for Tapi Basin Using Kernel Regression Model. Curr. Sci. 2016, 110, 1468–1484. [Google Scholar]
- Munawar, S.; Rahman, G.; Farhan, M.; Moazzam, U.; Miandad, M.; Ullah, K.; Al-ansari, N.; Thi, N.; Linh, T. Future Climate Projections Using SDSM and LARS-WG Downscaling Methods for CMIP5 GCMs over the Transboundary Jhelum River Basin of the Himalayas Region. Atmosphere 2022, 13, 898. [Google Scholar] [CrossRef]
- Ali, S.; Eum, H.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Nasim, W.; Khan, I.A.; et al. Assessment of Climate Extremes in Future Projections Downscaled by Multiple Statistical Downscaling Methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Hashmi, M.Z.; Shamseldin, A.Y.; Melville, B.W. Statistical Downscaling of Precipitation: State-of-the-Art and Application of Bayesian Multi-Model Approach for Uncertainty Assessment. Hydrol. Earth Syst. Sci. Discuss. 2009, 6, 6535–6579. [Google Scholar] [CrossRef]
- Devak, M.; Dhanya, C.T. Downscaling of Precipitation in Mahanadi Basin, India. Int. J. Civ. Eng. Res. 2014, 5, 111–120. [Google Scholar]
- Salvi, K.; Ghosh, S. High-Resolution Multisite Daily Rainfall Projections in India with Statistical Downscaling for Climate Change Impacts Assessment. J. Geophys. Res. Atmos. 2013, 118, 3557–3578. [Google Scholar] [CrossRef]
- Wetterhall, F. Statistical Downscaling of Precipitation from Large-Scale Atmospheric Circulation. Ph.D. Thesis, Uppala University, Uppsala, Sweden, 2005. Available online: https://www.researchgate.net/publication/260265285_Statistical_Downscaling_of_Precipitation_from_Large scale_Atmospheric_Circulation (accessed on 1 January 2021).
- Singh, P.; Shamseldin, A.Y.; Melville, B.W.; Wotherspoon, L. Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components and Ridge Regression. Model. Earth Syst. Environ. 2023, 9, 3361–3380. [Google Scholar] [CrossRef]
- Ghosh, S.; Mujumdar, P.P. Statistical Downscaling of GCM Simulations to Streamflow Using Relevance Vector Machine. Adv. Water Resour. 2008, 31, 132–146. [Google Scholar] [CrossRef]
- Govindaraju, R.S. Bayesian Learning and Relevance Vector Machines for Hydrologic Applications. In Proceedings of the 2nd Indian International Conference on Artificial Intelligence IICAI 2005, Pune, India, 20–22 December 2005; pp. 1078–1093. Available online: https://www.researchgate.net/publication/220887942_Bayesian_Learning_and_Relevance_Vector_Machines_for_Hydrologic_Applications_keynote_speech_of_the_session (accessed on 1 January 2021).
- Lakhanpal, A.; Sehgal, V.; Maheswaran, R.; Khosa, R.; Sridhar, V. A Non-Linear and Non-Stationary Perspective for Downscaling Mean Monthly Temperature: A Wavelet Coupled Second Order Volterra Model. Stoch. Environ. Res. Risk Assess. 2017, 31, 2159–2181. [Google Scholar] [CrossRef]
- Machiwal, D.; Kumar, S.; Meena, H.M.; Santra, P.; Singh, R.K.; Singh, D.V. Clustering of Rainfall Stations and Distinguishing Influential Factors Using PCA and HCA Techniques over the Western Dry Region of India. Meteorol. Appl. 2019, 26, 300–311. [Google Scholar] [CrossRef]
- Suhaila, J.; Jemain, A.A. A Comparison of the Rainfall Patterns between Stations on the East and the West Coasts of Peninsular Malaysia Using the Smoothing Model of Rainfall Amounts. Meteorol. Appl. 2009, 16, 391–401. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Movahedi, S.; Asakereh, H.; Maryanaji, Z.; Masoodian, S.A. Geographical Factors Affecting Variability of Precipitation Regime in Iran. Theor. Appl. Climatol. 2015, 120, 367–376. [Google Scholar] [CrossRef]
- Gupta, A.; Kamble, T.; Machiwal, D. Comparison of Ordinary and Bayesian Kriging Techniques in Depicting Rainfall Variability in Arid and Semi-Arid Regions of North-West India. Environ. Earth Sci. 2017, 76, 512. [Google Scholar] [CrossRef]
- Machiwal, D.; Dayal, D.; Kumar, S. Long-Term Rainfall Trends and Change Points in Hot and Cold Arid Regions of India. Hydrol. Sci. J. 2017, 62, 1050–1066. [Google Scholar] [CrossRef]
- Medina-Cobo, M.T.; García-Marín, A.P.; Estévez, J.; Jiménez-Hornero, F.J.; Ayuso-Muñoz, J.L. Obtaining Homogeneous Regions by Determining the Generalized Fractal Dimensions of Validated Daily Rainfall Data Sets. Water Resour. Manag. 2017, 31, 2333–2348. [Google Scholar] [CrossRef]
- Lin, F.R.; Wu, N.J.; Tsay, T.K. Applications of Cluster Analysis and Pattern Recognition for Typhoon Hourly Rainfall Forecast. Adv. Meteorol. 2017, 2017, 5019646. [Google Scholar] [CrossRef]
- Amissah-Arthur, A.; Jagtap, S.S. Geographic Variation in Growing Season Rainfall during Three Decades in Nigeria Using Principal Component and Cluster Analyses. Theor. Appl. Climatol. 1999, 63, 107–116. [Google Scholar] [CrossRef]
- Ghosh, S.; Mujumdar, P.P. Future rainfall scenario over Orissa with GCM projections by statistical downscaling. Curr. Sci. 2006, 90, 396–404. [Google Scholar]
- Bas, E.; Egrioglu, E.; Yolcu, U.; Grosan, C. Type 1 Fuzzy Function Approach Based on Ridge Regression for Forecasting. Granul. Comput. 2019, 4, 629–637. [Google Scholar] [CrossRef]
- Watanabe, A. The Volterra Series Expansion of Functionals Defined on the Finite-dimensional Vector Space and Its Application to Saving of Computational Effort for Volterra Kernels. Electron. Commun. Jpn. 1986, 69, 37–46. [Google Scholar] [CrossRef]
- Chou, C. ming Efficient Nonlinear Modeling of Rainfall-Runoff Process Using Wavelet Compression. J. Hydrol. 2007, 332, 442–455. [Google Scholar] [CrossRef]
- Sehgal, V.; Lakhanpal, A.; Maheswaran, R.; Khosa, R.; Sridhar, V. Application of Multi-Scale Wavelet Entropy and Multi-Resolution Volterra Models for Climatic Downscaling. J. Hydrol. 2018, 556, 1078–1095. [Google Scholar] [CrossRef]
- Hoerl, A.E.; Kennard, R.W. American Society for Quality Ridge Regression : Biased Estimation for Nonorthogonal Problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Eoerl, A.E.; Kaanard, R.W.; Baldwin, K.F. Ridge Regression: Some Simouxions. Commun. Stat. 1975, 4, 105–123. [Google Scholar] [CrossRef]
- Hermans, O.F. Flood Management in New Zealand: Exploring Management and Practice in Otago and the Manawatu. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2017. [Google Scholar]
- Shashikanth, K.; Madhusoodhanan, C.G.; Ghosh, S.; Eldho, T.I.; Rajendran, K.; Murtugudde, R. Comparing Statistically Downscaled Simulations of Indian Monsoon at Different Spatial Resolutions. J. Hydrol. 2014, 519, 3163–3177. [Google Scholar] [CrossRef]
- Yang, C.; Wang, N.; Wang, S.; Zhou, L. Performance Comparison of Three Predictor Selection Methods for Statistical Downscaling of Daily Precipitation. Theor. Appl. Climatol. 2018, 131, 43–54. [Google Scholar] [CrossRef]
- Chim, K.; Tunnicliffe, J.; Shamseldin, A.; Chan, K. Identifying Future Climate Change and Drought Detection Using CanESM2 in the Upper Siem Reap River, Cambodia. Dyn. Atmos. Ocean. 2020, 94, 101182. [Google Scholar] [CrossRef]
- Rashid, M.M.; Beecham, S.; Chowdhury, R.K. Statistical Downscaling of Rainfall: A Non-Stationary and Multi-Resolution Approach. Theor. Appl. Climatol. 2016, 124, 919–933. [Google Scholar] [CrossRef]
- Agarwal, A.; Marwan, N.; Rathinasamy, M.; Merz, B.; Kurths, J. Multi-Scale Event Synchronization Analysis for Unravelling Climate Processes: A Wavelet-Based Approach. Nonlinear Process. Geophys. 2017, 24, 599–611. [Google Scholar] [CrossRef]
- Karim, S.A.A.; Kamsani, N.F. Fuzzy Multiple Linear Regression. In Water Quality Index Prediction Using Multiple Linear Fuzzy Regression Model: SpringerBriefs in Water Science and Technology; Springer: Singapore, 2020; pp. 11–21. [Google Scholar] [CrossRef]
- Wetterhall, F.; Bádossy, A.; Chen, D.; Halldin, S.; Xu, C.Y. Daily Precipitation-Downscaling Techniques in Three Chinese Regions. Water Resour. Res. 2006, 42, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, C.; Huang, J.; Zhang, J.; Yao, J.; Wang, B. Estimation of Future Precipitation Change in the Yangtze River Basin by Using Statistical Downscaling Method. Stoch. Environ. Res. Risk Assess. 2010, 25, 781–792. [Google Scholar] [CrossRef]
- Williams, A.N. Diagnostic Evaluation in Aspirin-Exacerbated Respiratory Disease. Immunol. Allergy Clin. N. Am. 2016, 36, 657–668. [Google Scholar] [CrossRef]
- Rajab, J.M.; MatJafri, M.Z.; Lim, H.S. Combining Multiple Regression and Principal Component Analysis for Accurate Predictions for Column Ozone in Peninsular Malaysia. Atmos. Environ. 2013, 71, 36–43. [Google Scholar] [CrossRef]
- Rahman, A.S.; Rahman, A. Application of Principal Component Analysis and Cluster Analysis in Regional Flood Frequency Analysis: A Case Study in New South Wales, Australia. Water 2020, 12, 781. [Google Scholar] [CrossRef]
- Dogruparmak, S.C.; Keskin, G.A.; Yaman, S.; Alkan, A. Using Principal Component Analysis and Fuzzy C-Means Clustering for the Assessment of Air Quality Monitoring. Atmos. Pollut. Res. 2014, 5, 656–663. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, T.; Chen, J. A Robust Bias-Correction Fuzzy Weighted C-Ordered-Means Clustering Algorithm. Math. Probl. Eng. 2019, 2019, 5984649. [Google Scholar] [CrossRef]
- Engineering, H. Downscaling from GCMs to Local Climate through Stochastic Andra s Ba Rdossy. J. Environ. Manag. 1997, 49, 7–17. [Google Scholar]
- Bardossy, A.; Duckstein, L.; Bogardi, I. Fuzzy Rule-based Classification of Atmospheric Circulation Patterns. Int. J. Climatol. 1995, 15, 1087–1097. [Google Scholar] [CrossRef]
- Bárdossy, A.; Pegram, G.; Sinclair, S.; Pringle, J.; Stretch, D. Circulation Patterns Identified by Spatial Rainfall and Ocean Wave Fields in Southern Africa. Front. Environ. Sci. 2015, 3, 31. [Google Scholar] [CrossRef]
- Raje, D.; Mujumdar, P.P. A Conditional Random Field-Based Downscaling Method for Assessment of Climate Change Impact on Multisite Daily Precipitation in the Mahanadi Basin. Water Resour. Res. 2009, 45, 1–20. [Google Scholar] [CrossRef]
- Pavan, Y.; Maheswaran, R.; Agarwal, A.; Sivakumar, B. Intercomparison of Downscaling Methods for Daily Precipitation with Emphasis on Wavelet-Based Hybrid Models. J. Hydrol. 2021, 599, 126373. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moradkhani, H.; Wherry, S.A. Statistical Downscaling of Precipitation Using Machine Learning with Optimal Predictor Selection. J. Hydrol. Eng. 2011, 16, 650–664. [Google Scholar] [CrossRef]
- Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for Simulating and Downscaling of Rainfall and Temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [Google Scholar] [CrossRef]
- Kannan, S.; Ghosh, S. A Nonparametric Kernel Regression Model for Downscaling Multisite Daily Precipitation in the Mahanadi Basin. Water Resour. Res. 2013, 49, 1360–1385. [Google Scholar] [CrossRef]
- Celikyilmaz, A.; Türksen, I.B. Improved Fuzzy Clustering. Stud. Fuzziness Soft Comput. 2009, 240, 51–104. [Google Scholar] [CrossRef]
- Roy Bhowmik, S.K.; Sen Roy, S. Principal Component Analysis to Study Spatial Variability of Errors in the INSAT Derived Quantitative Precipitation Estimates over Indian Monsoon Region. Atmosfera 2006, 19, 255–265. [Google Scholar]
- Gadgil, S.; Narayana Iyengar, R. Cluster Analysis of Rainfall Stations of the Indian Peninsula. Q. J. R. Meteorol. Soc. 1980, 106, 873–886. [Google Scholar] [CrossRef]
- Rabiei, M.R.; Arashi, M.; Farrokhi, M. Fuzzy Ridge Regression with Fuzzy Input and Output. Soft Comput. 2019, 23, 12189–12198. [Google Scholar] [CrossRef]
- Salvi, K.; Ghosh, S.; Ganguly, A.R. Credibility of Statistical Downscaling under Nonstationary Climate; Springer: Berlin/Heidelberg, Germany, 2016; Volume 46, ISBN 0038201526. [Google Scholar]
- Maraun, D.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; Venema, V.K.C.; Chun, K.P. Precipitation Downscaling under Climate Change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1–34. [Google Scholar] [CrossRef]
- Mishra, V.; Lihare, R. Hydrologic sensitivity of Indian sub-continental river basins to climate change. Glob. Planet. Chang. 2016, 139, 78–96. [Google Scholar] [CrossRef]
- Osman, Y.Z.; Abdellatif, M.E. Improving accuracy of downscaling rainfall by combining predictions of different statistical downscale models. Water Sci. 2016, 30, 61–75. [Google Scholar] [CrossRef]
- Hashmi, M.Z.; Shamseldin, A.Y.; Melville, B.W. Downscaling of Future Rainfall Extreme Events: A Weather Generator Based Approach. In Proceedings of the 18th World IMACS Congress MODSIM09 International Congress Modelling and Simulation, Cairns, Australia, 13–17 July 2009; pp. 3928–3934. [Google Scholar]
Station Name | Model | Year Length | Goodness of Fit (R2) Obtained by SDSM | Goodness of Fit (R2) Obtained by SDCRR |
---|---|---|---|---|
Palmerston | Calibration | 1961–1990 | 0.28 | 0.66 |
Marton | Calibration | 1965–1995 | 0.22 | 0.75 |
Opiki | Calibration | 1965–1995 | 0.31 | 0.82 |
TeRehunga | Calibration | 1961–1990 | 0.25 | 0.76 |
WR Predictors | ||||
---|---|---|---|---|
Level | Palmerston | Marton | Opiki | TeRehunga |
Surface | Mean sea level (mslp) | Mean sea level pressure (mslp) | Mean sea level (mslp) | Mean sea level pressure (mslp) |
Wind Speed (p_f) | Wind Speed (p_f) | Wind Speed (p_f) | Wind Speed (p_f) | |
Vorticity (p_z) | Vorticity (p_z) | Vorticity (p_z) | Vorticity (p_z) | |
Divergence of True Wind (p_zh) | Divergence of True Wind (p_zh) | Divergence of True Wind (p_zh) | Divergence of True Wind (p_zh) | |
Total Precipitation (prcp) | Total Precipitation (prcp) | Total Precipitation (prcp) | Total Precipitation (prcp) | |
Specific Humidity (shum) | Specific Humidity (shum) | Specific Humidity (shum) | ||
Meridonal Wind Component (p_v) | ||||
500 hpa | Geopotential Height (p500) | Geopotential Height (p500) | Geopotential Height (p500) | Geopotential Height (p500) |
Wind Speed (p5_f) | Wind Speed (p5_f) | Wind Speed (p5_f) | Wind Speed (p5_f) | |
Zonal Wind Component (p5_u) | Zonal Wind Component (p5_u) | Zonal Wind Component (p5_u) | Zonal Wind Component (p5_u) | |
Meridonal Wind Component (p5_v) | Meridonal Wind Component (p5_v) | Meridonal Wind Component (p5_v) | Meridonal Wind Component (p5_v) | |
Vorticity (p5_z) | Vorticity (p5_z) | Vorticity (p5_z) | Vorticity (p5_z) | |
Divergence of True Wind (p5_zh) | Divergence of True Wind (p5_zh) | Divergence of True Wind (p5_zh) | ||
Specific Humidity (shum500) | Specific Humidity (shum500) | Specific Humidity (shum500) | Specific Humidity (shum500) | |
850 hpa | Geopotential Height (p850) | Geopotential Height (p850) | Geopotential Height (p850) | Geopotential Height (p850) |
Wind Speed (p8_f) | Wind Speed (p8_f) | Wind Speed (p8_f) | ||
Zonal Wind Components (p8_u) | Zonal Wind Components (p8_u) | Zonal Wind Components (p8_u) | ||
Vorticity (p8_z) | Vorticity (p8_z) | Vorticity (p8_z) | Vorticity (p8_z) | |
Wind Direction (p8th) | Wind Direction (p8th) | Wind Direction (p8th) | ||
Divergence of True Wind (p8_zh) | Divergence of True Wind (p8_zh) | Divergence of True Wind (p8_zh) | Divergence of True Wind (p8_zh) | |
Specific Humidity (shum850) | Specific Humidity (shum850) | Specific Humidity (shum850) | Specific Humidity (shum850) |
Station Name | Downscaling Model | Year Length | (SDCRR) | (SDC2R2) |
---|---|---|---|---|
Palmerston | Calibration | 1961–1990 | 0.66 | 0.78 |
Validation | 1991–2001 | 0.77 | 0.88 | |
Marton | Calibration | 1965–1995 | 0.74 | 0.84 |
Validation | 1996–2005 | 0.75 | 0.81 | |
Opiki | Calibration | 1965–1995 | 0.60 | 0.77 |
Validation | 1996–2005 | 0.82 | 0.84 | |
TeRehunga | Calibration | 1961–1990 | 0.52 | 0.72 |
Validation | 1991–2001 | 0.76 | 0.76 |
Station Name | SDCRR Model | Year Length | NRMSE | NMAE |
---|---|---|---|---|
Palmerston | Calibration | 1961–1990 | 0.089 | 0.031 |
Validation | 1991–2001 | 0.107 | 0.042 | |
Marton | Calibration | 1965–1995 | 0.093 | 0.032 |
Validation | 1996–2005 | 0.083 | 0.029 | |
Opiki | Calibration | 1965–1995 | 0.1395 | 0.055 |
Validation | 1996–2005 | 0.1441 | 0.055 | |
TeRehunga | Calibration | 1961–1990 | 0.1029 | 0.039 |
Validation | 1991–2001 | 0.0981 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Shamseldin, A.Y.; Melville, B.W.; Wotherspoon, L. Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression. Hydrology 2024, 11, 144. https://doi.org/10.3390/hydrology11090144
Singh P, Shamseldin AY, Melville BW, Wotherspoon L. Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression. Hydrology. 2024; 11(9):144. https://doi.org/10.3390/hydrology11090144
Chicago/Turabian StyleSingh, Pooja, Asaad Y. Shamseldin, Bruce W. Melville, and Liam Wotherspoon. 2024. "Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression" Hydrology 11, no. 9: 144. https://doi.org/10.3390/hydrology11090144
APA StyleSingh, P., Shamseldin, A. Y., Melville, B. W., & Wotherspoon, L. (2024). Development of Statistical Downscaling Model Based on Volterra Series Realization, Principal Components, Climate Classification, and Ridge Regression. Hydrology, 11(9), 144. https://doi.org/10.3390/hydrology11090144