Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Study Area
2.1.1. Geology
2.1.2. Phosphate Industry and Environment
2.1.3. Sampling and Methods
3. Results
3.1. Physico-Chemical Parameters
3.2. Major Constituents (Cations and Anions)
3.3. Trace Elements
4. Discussion
4.1. Hydrochemical Characteristics of the Investigated Waters
4.2. Statistical Parameters and Correlation Matrix
Eigenvalues and Variance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, P.; Wu, J.; Tian, R.; He, S. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, Northwest China. Environ. Earth Sci. 2018, 37, 222–237. [Google Scholar] [CrossRef]
- Pandey, A. The realm of microbial lipases in biotechnology. Biotechnol. Appl. Biochem. 1999, 29, 119–131. [Google Scholar] [CrossRef]
- Chkir, N.; Trabelsi, R.; Bahir, M.; Hadj Ammar, F.; Zouari, K.; Chaamchati, H.; Manteito, J.P. Vulnérabilité des ressources en eaux des aquifères côtiers en zones semi-arides–Etude comparative entre les bassins d’Essaouira (Maroc) et de la Jeffara (Tunisie). Comun. Geológicas 2008, 95, 107–121. [Google Scholar]
- Navarro, M.C.; Perez, C.; Martinez, M.J.; Vidal, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. Environ. Pollut. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Qadir, M.; Charma, B.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Ramadam, E. Sustainable water resources management in arid environment: The case of Arabian Gulf. Int. J. Waste Resour. 2015, 5, 3–6. [Google Scholar]
- Salameh, E. Over-exploitation of groundwater resources and their environmental and socio-economic implications: The case of Jordan. Water Int. 2008, 33, 55–68. [Google Scholar] [CrossRef]
- Hamed, Y. The hydro geochemical characterization of groundwater in Gafsa-Sidi Boubaker region (Southwestern Tunisia). Arab. J. Geosci. 2011, 6, 697–710. [Google Scholar] [CrossRef]
- Ncibi, K.; Chaar, H.; Hadji, R.; Baccari, N.; Sebei, A.; Khelifi, F.; Abbes, M.; Hamed, Y. A GIS-based statistical model for assessing groundwater susceptibility index in shallow aquifer in Central Tunisia (Sidi Bouzid basin). Arab. J. Geosci. 2020, 13, 98. [Google Scholar] [CrossRef]
- Gasmi, N.; Bouissou, S.; Piriou, F. Comparison of Potential Dual Formulations Developed with Different Elements. In Electric and Magnetic Fields; Nicolet, A., Bellman, R., Eds.; Springer: Boston, MA, USA, 1995. [Google Scholar] [CrossRef]
- Tarki, M.; Ben Hammadi, M.; El Mejri, H.; Dassi, L. Assessment of hydrochemical processes and groundwater hydrodynamics in a multilayer aquifer system under long-term irrigation condition: A case study of Nefzaoua basin, Southern Tunisia. Appl. Radiat. Isot. 2016, 110, 138–149. [Google Scholar] [CrossRef]
- Dassi, L. Investigation by multivariate analysis of groundwater composition in a multilayer aquifer system from North Africa: A multi-tracer approach. Appl. Geochem. 2011, 26, 1386–1398. [Google Scholar] [CrossRef]
- Naseem, S.; Erum, B.; Ahmed, P.; Rafique, T. Impact of seawater intrusion on the geochemistry of groundwater of Gwadar District, Balochistan and its appraisal for drinking water quality. Environ. Monit. Assess. 2018, 43, 281–293. [Google Scholar] [CrossRef]
- Sharaf, M.; Amin, M. Major elements hydrochemistry and groundwater quality of Wadi Fatimah, West Central Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2013, 6, 2633–2653. [Google Scholar] [CrossRef]
- Benmarce, K.; Hadji, R.; Hamed, Y.; Zahri, F.; Zighmi, K.; Hamad, A.; Gentilucci, M.; Ncibi, K.; Besser, H. Hydrogeological and water quality analysis of thermal springs in the Guelma region of North- Eastern Algeria: A study using hydrochemical, statistical, and isotopic approaches. J. Afr. Earth Sci. 2023, 205, 105011. [Google Scholar] [CrossRef]
- WHO. Fluoride in Drinking-Water, Background Document for Development of Who Guidelines For Drinking-Water Quality; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- WHO. Fluor et Santé, Série de Monographie, Genève, 59; WHO: Geneva, Switzerland, 1972. [Google Scholar]
- Cidu, R.; Ridou, R.; Fanfani, L.; Luca, F. Impact of past mining activity on SW Sardinia (Italy) groundwater quality. J. Geochem. Explor. 2009, 100, 125–132. [Google Scholar] [CrossRef]
- Hamdi, M.; Goïta, K.; Karaouli, F.; Zagrarni, M.F. Hydrodynamic groundwater modeling and hydro chemical conceptualization of the mining area of Moulares Redeyef (southwestern of Tunisia): New local insights. Phys. Chem. Earth Parts A/B/C 2021, 121, 102974. [Google Scholar] [CrossRef]
- Mokadem, N.; Hamed, Y.; Ben Sâad, A.; Gargouri, I. Atmospheric pollution in North Africa (ecosystems–atmosphere interactions): A case study in the mining basin of El Guettar–M’Dilla (southwestern Tunisia). Atmos. Pollut. Res. 2014, 7, 2071–2079. [Google Scholar] [CrossRef]
- Yermani, M.; Zouari, K.; Michelot, J.L.; Mamou, A.; Moumni, L. Approche géochimique du fonctionnement de la nappe profonde de Gafsa Nord (Tunisie centrale). Hydrol. Sci. J. 2003, 48, 95–108. [Google Scholar] [CrossRef]
- Farhat, H.; Moumni, L. Etude Hydrogéologique de la Nappe de Gafsa Nord; DGRE: Tunis, Tunisia, 1989. [Google Scholar]
- Malik, N.; Slim, N.; Shimi, N. Etude de la vulnérabilité des eaux souterraines de la ville de Gafsa (Sud-Ouest de la Tunisie): Effets anthropiques et conséquences. Alger. J. Environ. Sci. Technol. 2019, 5, 1127–1134. [Google Scholar]
- Majdoub, R.; Dridi, L.; M’nasri, S. Caractérisation de la nappe profonde Gafsa nord suite à la surexploitation des eaux souterraines. Larhyss J. 2014, 17, 179–192. [Google Scholar]
- Hamed, Y.; Dassi, L.; Ahmadi, R.; Dhia, H.B. Geochemical and isotopic study of the multilayer aquifer system in the Moulares-Redayef basin, southern Tunisia / Etude géochimique ET isotopique du système aquifère multicouche du bassin de Moulares-Redayef, sud tunisien. Hydrol. Sci. J. 2008, 53, 1241–1252. [Google Scholar] [CrossRef]
- Hamed, Y.; Dassi, L.; Tarki, M.; Ahmadi, R.; Mehdi, K.; Dhia, H.B. Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: A chemical and isotopic approach. Environ. Earth Sci. 2010, 63, 1355–1368. [Google Scholar] [CrossRef]
- Umer, M.F. A Systematic Review on Water Fluoride Levels Causing Dental Fluorosis. Sustainability 2023, 15, 12227. [Google Scholar] [CrossRef]
- El Hasnaoui, B.; Younsi, A.; Mountadar, M.; Garmes, H.; Mouhab, I. Impacts négatifs d’une zone industrielle sur les eaux souterraines et sur le cheptel (Cas du Jorf Lasfar, Maroc): Approches pluridisciplinaires. Déchets Sci. Tech. 2011, 59, 2945. [Google Scholar]
- Jiries, A.; El-Hasan, T.; Al-Hweiti, M.; Seiler, K.-P. Evaluation of the Effluent Water Quality Produced at Phosphate Mines in Central Jordan. Mine Water Environ. 2004, 23, 133–137. [Google Scholar] [CrossRef]
- Khelifi, F.; Besser, H.; Ayadi, Y.; Liu, G. Evaluation of potentially toxic elements’ (PTEs) vertical distribution in sediments of Gafsa–Metlaoui mining basin (Southwestern Tunisia) using geochemical and multivariate statistical analysis approaches. Environ. Earth Sci. 2019, 78, 53. [Google Scholar] [CrossRef]
- Burollet, P.F. Contribution à l‘étude Stratigraphique de la Tunisie Centrale. Ann. Mines Geol. 1956, 18, 352. [Google Scholar]
- Sassi, S. La Sedimentation Phosphatee au Paléocène dans le Sud et le Centre Ouest de la Tunisie. Ph.D. Thesis, Université de Paris Sud, Orsay, France, 1974. [Google Scholar]
- Dlala, M.; Hfaiedh, M. Le séisme du 7 novembre 1989 à Metlaoui (Tunisie méridionale): Une tectonique active en compression. Comptes Rendus L‘Académie Sci. Série 2 HFAIEDH Mécanique Phys. Chim. Sci. L‘Univers Sci. Terre 1993, 317, 1297–1302. [Google Scholar]
- Hamed, Y. Caractérisation Hydrogéologique, Hydrochimique et Isotopique du Système Aquifère de Moularès-Tamerza. Ph.D. Thesis, University of Sfax, Sfax, Tunisia, 2009. [Google Scholar]
- Chraiti, R.; Raddaoui, M.; Hafiane, A. Effluent Water Quality at Phosphate Mines in M’Dhilla, Tunisia and its Potential Environmental Effects. Mine Water Environ. 2016, 35, 462–468. [Google Scholar] [CrossRef]
- Salem, M.; Souissi, R.; Souissi, F.; Abbes, N.; Moutte, J. Phosphoric acid purification sludge: Potential in heavy metals and rare earth elements. Waste Manag. 2019, 83, 46–56. [Google Scholar] [CrossRef]
- Smida, O.; Souissi, R.; Marzougui, S.; Souissi, F. Geochemical Assessment and Mobility of Undesired Elements in the Sludge of the Phosphate Industry of Gafsa-Metlaoui Basin, (Southern Tunisia). Minerals 2021, 11, 1075. [Google Scholar] [CrossRef]
- Souissi, R.; Souissi, F.; Chakroun, H.K.; Bouchardon, J.L. Mineralogical and geochemical characterization of mine tailings and Pb, Zn, and Cd mobility in a carbonate setting (Northern Tunisia). Environ. Earth Sci. 2013, 32, 16–27. [Google Scholar] [CrossRef]
- Bocoum, M. Méthodes D’analyses des Sols. Document de Travail; Institut National de Pédologie: Dakar, Sénégal, 2004; 55p. [Google Scholar]
- Rodier, J. L‘Analyse de l‘Eau, Eaux Naturelles, Eaux Résiduaires, Eaux de Mer; Edition Dunod: Malakoff, France, 1996; 1434p. [Google Scholar]
- Banton, O.; Bangoy, L.M.; Chevalier, S.; Houenou, P.; Lafrance, P.; Rivard, C. Hydrogéologie: Multi Science Environnementale des Eaux Souterraines; Presses de l’Université du Québec/AUPELF: Quebec, Canada, 1997; 460p. [Google Scholar]
- Hamed, Y.; Gentilucci, M.; Mokadem, N.; Khalil, R.; Ayadi, Y.; Hadji, R.; Elaloui, E. Assessment and Mitigation of Groundwater Contamination from Phosphate Mining in Tunisia: Geochemical and Radiological Analysis. Hydrology 2024, 11, 84. [Google Scholar] [CrossRef]
- Backer, L.C. Assessing the acute gastrointestinal effects of ingesting naturally occurring, high levels of sulfate in drinking water. Crit. Rev. Clin. Lab. Sci. 2000, 37, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Ben Nasr, K.; Walha, C.; Charcosset, R. Ben Amar, Removal of fluoride ions using cuttlefish bones. J. Fluor. Chem. 2011, 132, 57–62. [Google Scholar] [CrossRef]
- Guissouma, W.; Tarhouni, J. Fluoride in Tunisian Drinking Tap Water. J. Water Resour. Prot. 2015, 7, 860. [Google Scholar] [CrossRef]
- Essouli, O.F. Impact de la Décharge Publique du lac Mbeubeuss sur la Ressource en eau de L’aquifère des Sables Quaternaires de Thiaroye (Dakar, Sénégal). Ph.D. Thesis, Département de Géologie, Faculté des Sciences de Sénégal, Dakar, Senegal, 2005. [Google Scholar]
- Guissouma, W.; Hakami, O.; Al-Rajab, A.J.; Tarhouni, J. Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere 2017, 177, 102–108. [Google Scholar] [CrossRef]
Locality | Borehole Reference | X_UTM | Y_UTM | Depth (m) | T °C | pH | EC (µs·cm−1) | TDS (mg·L−1) | Na+ (mg·L−1) | K+ (mg·L−1) | Ca2+ (mg·L−1) | Mg2+ (mg·L−1) | Cl− (mg·L−1) | SO42− (mg·L−1) | HCO3− (mg·L−1) | NO3− (mg·L−1) | IB% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January 2020 (a) | |||||||||||||||||
Metlaoui | Bh1 | 451,522 | 3,783,603 | 186 | 27.1 | 7.73 | 6000 | 5315 | 910 | 4.68 | 413 | 300 | 1431 | 1899 | 299 | 41 | −4 |
Bh2 | 374,046 | 3,798,126 | 249 | 27.1 | 7.35 | 7000 | 6184.5 | 1260 | 8.85 | 497 | 250 | 1899 | 1860 | 436.7 | 21.6 | +0 | |
Moulares | Bh3 | 432,239 | 3,813,085 | 197 | 26.1 | 7.27 | 4000 | 4282.4 | 779 | 3.9 | 375 | 184.3 | 967.6 | 1664 | 270.3 | 13.25 | +1 |
Bh4 | 437,821 | 3,816,611 | 210 | 26.8 | 7.39 | 4000 | 4880.6 | 709 | 4.55 | 455 | 270 | 1220 | 1890 | 291 | 41 | −3 | |
Rdeyef | Bh5 | 426,959 | 3,808,056 | 80 | 25.7 | 7.41 | 3900 | 4076 | 740 | 8.7 | 355 | 174 | 946 | 1612 | 230 | 10.1 | +0 |
Bh6 | 440,695 | 3,807,689 | 150 | 26.8 | 7.17 | 3700 | 3986 | 700 | 4.43 | 325 | 220 | 990 | 1500 | 231.6 | 60 | +1 | |
M’dhilla | Bh7 | 479,595 | 3,797,186 | 175 | 27.5 | 7.76 | 7100 | 5890.5 | 1400 | 10.54 | 325 | 234 | 1840 | 1830 | 210.6 | 40.5 | +1 |
June 2021 (b) | |||||||||||||||||
Metlaoui | Bh1 | 451,522 | 3,783,603 | 186 | 25.01 | 7.76 | 6400 | 4828.7 | 970 | 9.7 | 360 | 220 | 1320 | 1650 | 278.2 | 20.3 | −3 |
Bh2 | 374,046 | 3,798,126 | 249 | 24.6 | 7.83 | 6520 | 6603.2 | 1420 | 8.85 | 488 | 264 | 1900 | 2100 | 394 | 28.6 | +3 | |
Moulares | Bh3 | 432,239 | 3,813,085 | 197 | 28.1 | 7.45 | 5900 | 4668.5 | 880 | 4.4 | 390 | 202.9 | 1040 | 1833 | 299.4 | 18.6 | +2 |
Bh4 | 437,821 | 210,611 | 210 | 26.7 | 7.61 | 5400 | 5062.8 | 879 | 6.1 | 440 | 240 | 1250 | 1900 | 299 | 30.7 | +1 | |
Rdeyef | Bh5 | 426,959 | 3,808,056 | 80 | 26.2 | 7.68 | 4100 | 4393.9 | 800 | 8.9 | 381 | 200 | 1110 | 1630 | 259 | 14.4 | +1 |
Bh6 | 440,695 | 3,807,689 | 150 | 26.2 | 7.2 | 4000 | 4544.3 | 780 | 5.41 | 360 | 256 | 1200 | 1648 | 255.6 | 48.3 | +0 | |
M’dhilla | Bh7 | 479,595 | 3,797,186 | 175 | 27.5 | 7.76 | 7200 | 5390.4 | 1250 | 9.7 | 310 | 220 | 1650 | 1720 | 210.4 | 40.5 | +2 |
WHO Guidelines (2011) | - | - | - | - | 6.5–8.5 | - | 1000 | 200 | 20 | 200 | 50 | 250 | 500 | - | 50 | - |
Area | Borehole Reference | F− (mg·L−1) | Fe (µg/L−1) | Mn (µg/L−1) | Al (µg/L−1) | Zn (µg/L−1) | Cr (µg/L−1) | Pb (µg/L−1) |
---|---|---|---|---|---|---|---|---|
January 2020 (a) | ||||||||
Metlaoui | BH1 | 2.193 | 0.018 | 0.035 | 0.106 | 0.02 | <0.01 | 0.001 |
BH2 | 1.724 | 0.061 | 0.029 | 0.083 | <0.01 | 0.036 | 0.002 | |
Moulares | BH3 | 1.802 | 0.091 | 0.011 | 0.102 | 0.015 | 0.056 | 0.003 |
BH4 | 1.611 | 0.085 | <0.01 | 0.111 | <0.01 | 0.061 | 0.004 | |
Rdeyef | BH5 | 2.247 | 0.041 | 0.036 | 0.099 | 0.013 | <0.01 | 0.002 |
BH6 | 2.931 | 0.099 | 0.032 | 0.091 | 0.021 | <0.01 | 0.005 | |
M’dhilla | BH7 | 2.944 | 0.072 | <0.01 | 0.102 | 0.013 | <0.01 | 0.005 |
June 2021 (b) | ||||||||
Métlaoui | BH1 | 2.432 | 0.011 | 0.033 | 0.098 | 0.02 | <0.01 | 0.001 |
BH2 | 1.955 | 0.053 | 0.036 | 0.074 | <0.01 | 0.029 | 0.004 | |
Moulares | BH3 | 2.012 | 0.072 | 0.016 | 0.089 | 0.012 | 0.048 | 0.002 |
BH4 | 1.876 | 0.067 | <0.01 | 0.101 | <0.01 | 0.059 | 0.003 | |
Rdeyef | BH5 | 2.675 | 0.033 | 0.022 | 0.078 | 0.015 | <0.01 | 0.001 |
BH6 | 2.981 | 0.077 | 0.028 | 0.086 | 0.029 | <0.01 | 0.004 | |
M’dhilla | BH7 | 2.991 | 0.092 | <0.01 | 0.095 | 0.011 | <0.01 | 0.003 |
WHO Guidelines (2011) | 1.5 | <0.3 | <0.5 | 0.2 | <0.5 | 0.05 | <0.05 |
EC (µS·cm−1) | TDS (mg·L−1) | Na+ (mg·L−1) | K+ (mg·L−1) | Ca2+ (mg·L−1) | Mg2+ (mg·L−1) | Cl− (mg·L−1) | SO42− (mg·L−1) | HCO3− (mg·L−1) | NO3− (mg·L−1) | |
---|---|---|---|---|---|---|---|---|---|---|
January 2020 (a) | ||||||||||
Average | 5100 | 4933 | 928 | 6.5 | 386 | 226 | 1328 | 1751 | 282 | 32.5 |
SD | 1541 | 885 | 286 | 2.73 | 61 | 42 | 408 | 158 | 76 | 18 |
Min | 3700 | 3986 | 700 | 3.9 | 325 | 174 | 946 | 1500 | 211 | 10.1 |
Max | 7100 | 6185 | 1400 | 10.54 | 497 | 300 | 1899 | 1899 | 437 | 60 |
CV% | 30.2 | 18 | 31 | 42 | 15.77 | 18.62 | 30.75 | 9 | 27 | 55.56 |
June 2021 (b) | ||||||||||
Average | 5646 | 5073 | 997 | 7.58 | 390 | 229 | 1353 | 1783 | 285 | 29 |
SD | 1223 | 755 | 244 | 2.23 | 58 | 25 | 311 | 173 | 57 | 12.3 |
Min | 4000 | 4394 | 780 | 4.4 | 310 | 200 | 1040 | 1630 | 211 | 14.4 |
Max | 7200 | 6603 | 1420 | 9.7 | 488 | 264 | 1900 | 2100 | 394 | 48.3 |
CV% | 21.66 | 14.88 | 24.47 | 29.18 | 14.95 | 10.93 | 23 | 9.71 | 19.94 | 43 |
(a) | ||||||||||
CE (µS·cm−1) | TDS (mg·L−1) | Na+ (mg·L−1) | K+ (mg·L−1) | Ca2+ (mg·L−1) | Mg2+ (mg·L−1) | Cl− (mg·L−1) | SO42− (mg·L−1) | HCO3− (mg·L−1) | NO3− (mg·L−1) | |
CE (µs·cm−1) | 1 | |||||||||
TDS (mg·L−1) | 0.960257 | 1 | ||||||||
Na+ (mg·L−1) | 0.948736 | 0.898261 | 1 | |||||||
K+ (mg·L−1) | 0.639910 | 0.561176 | 0.765793 | 1 | ||||||
Ca2+ (mg·L−1) | 0.389599 | 0.552566 | 0.222530 | 0.001241 | 1 | |||||
Mg2+ (mg·L−1) | 0.646318 | 0.644785 | 0.642620 | −0.040302 | 0.419687 | 1 | ||||
Cl− (mg·L−1) | 0.966586 | 0.987053 | 0.935567 | 0.63150 | 0.459418 | 0.610774 | 1 | |||
SO42− (mg·L−1) | 0.658052 | 0.791295 | 0.505068 | 0.183585 | 0.615489 | 0.645925 | 0.704453 | 1 | ||
HCO3− (mg·L−1) | 0.415895 | 0.565311 | 0.279600 | 0.024971 | 0.976418 | 0.404011 | 0.496045 | 0.512013 | 1 | |
NO3− (mg·L−1) | 0.018844 | 0.018501 | −0.033818 | −0.275180 | −0.306015 | 0.478721 | 0.091080 | −0.013506 | −0.237463 | 1 |
(b) | ||||||||||
CE (µS·cm−1) | TDS (mg·L−1) | Na+ (mg·L−1) | K+ (mg·L−1) | Ca2+ (mg·L−1) | Mg2+ (mg·L−1) | Cl− (mg·L−1) | SO42− (mg·L−1) | HCO3− (mg·L−1) | NO3− (mg·L−1) | |
CE (µs·cm−1) | 1 | |||||||||
TDS (mg·L−1) | 0.631522 | 1 | ||||||||
Na+ (mg·L−1) | 0.78406 | 0.937732 | 1 | |||||||
K+ (mg·L−1) | 0.436903 | 0.368669 | 0.547816 | 1 | ||||||
Ca2+ (mg·L−1) | −0.02407 | 0.574666 | 0.286034 | −0.16743 | 1 | |||||
Mg2+ (mg·L−1) | 0.004762 | 0.604856 | 0.392455 | −0.07183 | 0.50503 | 1 | ||||
Cl− (mg·L−1) | 0.652598 | 0.936914 | 0.961069 | 0.585113 | 0.298669 | 0.572488 | 1 | |||
SO42−(mg·L−1) | 0.410439 | 0.828729 | 0.637077 | −0.11055 | 0.848166 | 0.524135 | 0.58587 | 1 | ||
HCO3−(mg·L−1) | 0.150898 | 0.661284 | 0.427053 | −0.09422 | 0.937969 | 0.501414 | 0.400993 | 0.853222 | 1 | |
NO3− (mg·L−1) | −0.01437 | 0.167201 | 0.149081 | −0.15447 | −0.24711 | 0.64831 | 0.312676 | −0.03033 | −0.27571 | 1 |
January 2020 | June 2021 | |||||
---|---|---|---|---|---|---|
F1 | F2 | F3 | F1 | F2 | F3 | |
Eigenvalue | 5.749703827 | 1.874768305 | 1.599105973 | 5.198406086 | 2.29595319 | 1.657048015 |
Variability% | 57.49703827 | 18.74768305 | 15.99105973 | 51.98406086 | 22.9595319 | 16.57048015 |
Cumulative% | 57.49703827 | 76.24472132 | 92.23578105 | 51.98406086 | 74.94359275 | 91.5140729 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasri, N.; Souissi, F.; Ben Attia, T.; Ismailia, A.; Smida, O.; Tangour, D.; López Maldonado, E.A.; Souissi, R. Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia. Hydrology 2024, 11, 142. https://doi.org/10.3390/hydrology11090142
Nasri N, Souissi F, Ben Attia T, Ismailia A, Smida O, Tangour D, López Maldonado EA, Souissi R. Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia. Hydrology. 2024; 11(9):142. https://doi.org/10.3390/hydrology11090142
Chicago/Turabian StyleNasri, Nada, Fouad Souissi, Takoua Ben Attia, Amina Ismailia, Olfa Smida, Dhouha Tangour, Eduardo Alberto López Maldonado, and Radhia Souissi. 2024. "Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia" Hydrology 11, no. 9: 142. https://doi.org/10.3390/hydrology11090142
APA StyleNasri, N., Souissi, F., Ben Attia, T., Ismailia, A., Smida, O., Tangour, D., López Maldonado, E. A., & Souissi, R. (2024). Hydro Geochemical Characteristics and Mineralization Process of Groundwater in the Phosphatic Basin of Gafsa, Southwestern Tunisia. Hydrology, 11(9), 142. https://doi.org/10.3390/hydrology11090142