Exploring PCSWMM for Large Mixed Land Use Watershed by Establishing Monitoring Sites to Evaluate Stream Water Quality
Abstract
:1. Introduction
1.1. Theoretical Description
Personal Computer Storm Water Management Model (PCSWMM)
2. Materials and Methods
2.1. Study Area
2.2. Watershed Model Configuration with Input Data
2.3. Hydraulic Model Configuration
2.4. Hydrologic Model Calibration and Validation
2.5. Hydraulic and Water Quality Monitoring
3. Lab Analysis
3.1. Biochemical Oxygen Demand
3.2. Total Suspended Solids
3.3. Soluble Reactive Phosphorus
3.4. Water Quality Calibration
4. Results and Discussion
4.1. Hydraulic and Hydrologic Model Calibration
4.2. Water Quality Calibration
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dressel, L. The Impact of Rochester Storm Sewers on the Water Quality of the Lower Genesee River: A Modeling Approach Using PCSWMM Part of the Water Resource Management Commons. Environ. Sci. Biol. Theses 2014, 89, 69–120. [Google Scholar] [CrossRef]
- Burkartaus, M.R.; Stoner, J.D.; Burkare, M.R. Chapter 7. Nitrogen in Groundwater Associated with Agricultural. In Nitrogen in the Environment: Sources, Problems, and Management, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef] [PubMed]
- Dowd, B.M.; Press, D.; Huertos, M.L. Agricultural nonpoint source water pollution policy: The case of California’s Central Coast. Agric. Ecosyst. Environ. 2008, 128, 151–161. [Google Scholar] [CrossRef]
- Rousseau, A.N.; Savary, S.; Hallema, D.W.; Gumiere, S.J.; Foulon, É. Modeling the effects of agricultural BMPs on sediments, nutrients, and water quality of the Beaurivage River watershed (Quebec, Canada). Can. Water Resour. J. 2012, 38, 99–120. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, X.; Ma, X.Y. Spatio-temporal variation of erosion-type non-point source pollution in a small watershed of hilly and gully region, Chinese Loess Plateau. Environ. Sci. Pollut. Res. 2016, 23, 10957–10967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, X.; Luo, Y.; Zhang, M. Evaluation of water quality in an agricultural watershed as affected by almond pest management practices. Water Res. 2008, 42, 3685–3696. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.O.; Migliaccio, K.W. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems. Environ. Manag. 2009, 44, 205–217. [Google Scholar] [CrossRef]
- Migliaccio, K.W.; Haggard, B.E.; Chaubey, I.; Matlock, M.D. Linking Watershed Subbasin Characteristics to Water Quality Parameters in War Eagle Creek Watershed. Trans. ASABE 2007, 50, 6. [Google Scholar] [CrossRef]
- Hamid, A.; Bhat, S.U.; Jehangir, A. Local determinants influencing stream water quality. Appl. Water Sci. 2020, 10, 24. [Google Scholar] [CrossRef]
- Ramírez, A.; Rosas, K.G.; Lugo, A.E.; Ramos-González, O.M. Spatio-temporal variation in stream water chemistry in a tropical urban watershed. Ecol. Soc. 2014, 19, 2. [Google Scholar] [CrossRef]
- Ahearn, D.S.; Sheibley, R.W.; Dahlgren, R.A.; Anderson, M.; Johnson, J.; Tate, K.W. Land use and land cover influence on water quality in the last free-flowing river draining the western Sierra Nevada, California. J. Hydrol. 2005, 313, 234–247. [Google Scholar] [CrossRef]
- Sharma, R.C.; Singh, N.; Chauhan, A. The influence of physico-chemical parameters on phytoplankton distribution in a head water stream of Garhwal Himalayas: A case study. Egypt. J. Aquat. Res. 2016, 42, 11–21. [Google Scholar] [CrossRef]
- Hooda, P.S.; Edwards, A.C.; Anderson, H.A.; Miller, A. A review of water quality concerns in livestock farming areas. Sci. Total Environ. 2000, 250, 3828–3840. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Liao, Q.; Hong, Q.; Gong, Y. An overview of research on agricultural non-point source pollution modelling in China. Sep. Purif. Technol. 2012, 84, 104–111. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, L.; Hong, Q.; Qiu, J.; Xie, H.; Liu, R. Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area. Sci. Total Environ. 2013, 454–455, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, J. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecol. Indic. 2013, 32, 294–304. [Google Scholar] [CrossRef]
- Wang, A.; Tang, L.; Yang, D. Spatial and temporal variability of nitrogen load from catchment and retention along a river network: A case study in the upper Xin’anjiang catchment of China. Hydrol. Res. 2016, 47, 869–887. [Google Scholar] [CrossRef]
- Journal, E.; Lenzi, M.A.; Luzio, M.D. Surface runoff, soil erosion and water quality modelling in the Alpone watershed using AGNPS integrated with a Geographic Information System. Agronomy 1997, 6, 1–14. [Google Scholar] [CrossRef]
- Egodawatta, P.; Thomas, E.; Goonetilleke, A. Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Res. 2007, 41, 3025–3031. [Google Scholar] [CrossRef]
- Hu, H.; Huang, G. Monitoring of non-point source pollutions from an agriculture watershed in South China. Water 2014, 6, 3828–3840. [Google Scholar] [CrossRef]
- Roy, D.; Begam, S.; Ghosh, S.; Jana, S. Calibration and validation of hec-hms model for a river basin in eastern india. ARPN J. Eng. Appl. Sci. 2013, 8, 40–56. [Google Scholar]
- Douglas-Mankin, K.R.; Srinivasan, R.; Arnold, J.G. Soil and water assessment tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Sharma, S.; Srivastava, P.; Fang, X.; Kalin, L. Performance comparison of Adoptive Neuro Fuzzy Inference System (ANFIS) with Loading Simulation Program C++ (LSPC) model for streamflow simulation in El Niño Southern Oscillation (ENSO)-affected watershed. Expert Syst. Appl. 2015, 42, 2213–2223. [Google Scholar] [CrossRef]
- Yan, C.A.; Zhang, W.; Zhang, Z. Hydrological modeling of the Jiaoyi watershed (China) using HSPF model. Sci. World J. 2014, 2014, 672360. [Google Scholar] [CrossRef]
- Sivapalan, M. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Process. 2003, 17, 3163–3170. [Google Scholar] [CrossRef]
- Sivapalan, M.; Takeuchi, K.; Franks, S.W.; Gupta, V.K.; Karambiri, H.; Lakshmi, V.; Liang, X.; McDonnell, J.J.; Mendiondo, E.M.; O’Connell, P.E.; et al. IAHS Decade on Predictions in Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences. Hydrol. Sci. J. 2003, 48, 857–880. [Google Scholar] [CrossRef]
- Ertezaei, B.; Bryant-Friedrich, A. A Thesis Entitled Real-Time Water Depth Logger Data as Input to PCSWMM to Estimate Tree Filter Performance. Master’s Thesis, University of Toledo, Toledo, OH, USA, 2017. [Google Scholar]
- Moynihan, K.; Vasconcelos, J. SWMM Modeling of a Rural Watershed in the Lower Coastal Plains of the United States. J. Water Manag. Model. 2014, 22. [Google Scholar] [CrossRef]
- James, W.; Rossman, L.A.; James, W.R.C. User’s Guide to SWMM 5; CHI: Houston, TX, USA, 2010. [Google Scholar]
- Talbot, M.; McGuire, O.; Olivier, C.; Fleming, R. Parameterization and Application of Agricultural Best Management Practices in a Rural Ontario Watershed Using PCSWMM. J. Water Manag. Model. 2016. [Google Scholar] [CrossRef]
- Akhter, M.S.; Hewa, G.A. The use of PCSWMM for assessing the impacts of land use changes on hydrological responses and performance of WSUD in managing the impacts at myponga catchment, South Australia. Water 2016, 8, 511. [Google Scholar] [CrossRef]
- Rai, P.K.; Chahar, B.R.; Dhanya, C.T. GIS-based SWMM model for simulating the catchment response to flood events. Hydrol. Res. 2017, 48, 384–394. [Google Scholar] [CrossRef]
- Jang, S.; Cho, M.; Yoon, J.; Yoon, Y.; Kim, S.; Kim, G.; Kim, L.; Aksoy, H. Using SWMM as a tool for hydrologic impact assessment. Desalination 2007, 212, 344–356. [Google Scholar] [CrossRef]
- Millcreek Watershed Action Plan. 2007. Available online: https://spcwater.org/wp-content/uploads/2020/06/MillCreek_WAP_2007.pdf (accessed on 3 May 2024).
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and Verification of SWMM for Low Impact Development. J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Tu, M.C.; Smith, P. Modeling Pollutant Buildup and Washoff Parameters for SWMM Based on Land Use in a Semiarid Urban Watershed. Water Air Soil Pollut. 2018, 229, 1–15. [Google Scholar] [CrossRef]
- James, W. Stormwater and Water Quality Management Modelling Conference (1992: Toronto, Ont.). In New Techniques for Modelling the Management of Stormwater Quality Impacts; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Temprano, J.; Arango, Ó.; Cagiao, J.; Suárez, J.; Tejero, I. Stormwater Quality Calibration by SWMM: A Case Study in Northern Spain. 2006. Available online: http://www.wrc.org.za (accessed on 1 January 2023).
- Niyonkuru, P.; Sang, J.K.; Nyadawa, M.O.; Munyaneza, O. Calibration and validation of EPA SWMM for stormwater runoff modelling in Nyabugogo catchment, Rwanda. Open Access J. J. Sustain. Res. Eng. 2018, 4, 152–159. [Google Scholar]
- Zakizadeh, F.; Moghaddam Nia, A.; Salajegheh, A.; Sañudo-Fontaneda, L.A.; Alamdari, N. Efficient Urban Runoff Quantity and Quality Modelling Using SWMM Model and Field Data in an Urban Watershed of Tehran Metropolis. Sustainability 2022, 14, 1086. [Google Scholar] [CrossRef]
- Sidek, L.M.; Chua, L.H.C.; Azizi, A.S.M.; Basri, H.; Jaafar, A.S.; Moon, W.C. Application of pcswmm for the 1-d and 1-d–2-d modeling of urban flooding in damansara catchment, malaysia. Appl. Sci. 2021, 11, 9300. [Google Scholar] [CrossRef]
- Xiao, H.; Vasconcelos, J.G. Evaluating Curve Number Implementation Alternatives for Peak Flow Predictions in Urbanized Watersheds Using SWMM. Water 2023, 15, 41. [Google Scholar] [CrossRef]
- Choi, K.-S.; Ball, J.E. Parameter Estimation for Urban Runoff Modelling. Available online: www.elsevier.com/locate/urbwat (accessed on 1 January 2023).
- Standard Methods for the Examination 23th Edition. Available online: https://www.academia.edu/105197442/Standard_Methods_For_the_Examination_23th_edition (accessed on 1 January 2023).
- Gaume, E.; Villeneuve, J.-P.; Desbordes, M. Uncertainty assessment and analysis of the calibrated parameter values of an urban storm water quality model. J. Hydrol. 1998, 210, 38–50. [Google Scholar] [CrossRef]
- Niazi, M.; Nietch, C.; Maghrebi, M.; Jackson, N.; Bennett, B.R.; Tryby, M.; Massoudieh, A. Storm Water Management Model: Performance Review and Gap Analysis. J. Sustain. Water Built Environ. 2017, 3, 04017002. [Google Scholar] [CrossRef]
- Heineman, M.; Eichenwald, Z.; Gamache, M.; Miner, R.; Keohan, P. A Comprehensive Water Quality Model of Boston’s Drainage Systems. In World Environmental and Water Resources Congress 2013: Showcasing the Future; American Society of Civil Engineers: Reston, VA, USA, 2013. [Google Scholar]
- Charbeneau, R.J.; Barrett, M.E. Evaluation of methods for estimating stormwater pollutant loads. Water Environ. Res. 1998, 70, 1295–1302. [Google Scholar] [CrossRef]
- Pitt, R. Innovative Urban Wet-Weather Flow Management Systems. 2000. Available online: https://www.researchgate.net/publication/268256295 (accessed on 1 January 2023).
- Harper, H.H.; David, P.E.; Baker, M.; Harvey, P.E.; Harper, H. Evaluation of Current Stormwater Design Criteria within the State of Florida Evaluation of Current Stormwater Design Criteria within the State of Florida Final Report Final Report. 2007, pp. 4–12. Available online: http://www.erd.org/ERD%20Publications/EVAL%20OF%20CURRENT%20SW%20DESIGN%20CRITERIA%20WITHIN%20THE%20STATE%20OF%20FLA-2007.pdf (accessed on 1 January 2023).
- Sharma, D.; Gupta, R.; Singh, R.K.; Kansal, A. Characteristics of the event mean concentration (EMCs) from rainfall runoff on mixed agricultural land use in the shoreline zone of the Yamuna River in Delhi, India. Appl. Water Sci. 2012, 2, 55–62. [Google Scholar] [CrossRef]
- Guk, C. Barniso, Determination of EMC and Washoff Characteristics of Stormwater Runoff from Broad-Leaved Forest Areas. J. Environ. Impact Assess. 2009, 18, 393–399. [Google Scholar]
- Pollution Control Agency. Minnesota Stormwater Manual; Pollution Control Agency: Saint Paul, MN, USA, 2005. [Google Scholar]
- Nazari, S.; Ormsbee, L. Asce, Urban and Agricultural Nutrient Event Mean Concentration and Export Load Data for Watershed Quality Assessment Models. In World Environmental and Water Resources Congress; ASCE: Reston, VA, USA, 2017; p. 274. [Google Scholar] [CrossRef]
- Inamdar, S.P.; Mostaghimi, S.; Mcclellan, P.W.; Brannan, K.M. Bmp Impacts on Sediment and Nutrient Yields from an Agricultural Watershed in the Coastal Plain Region. Trans. ASAE 2001, 44, 1191–1200. [Google Scholar] [CrossRef]
- Cinque, K.; Jayasuriya, N. Catchment process affecting drinking water quality, including the significance of rainfall events, using factor analysis and event mean concentrations. J. Water Health 2010, 8, 751–763. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Result of the Nationwide Urban Runoff Program; USEPA: Washington, DC, USA, 1983. [Google Scholar]
- Line, D.E.; White, N.M.; Osmond, D.L.; Jennings, G.D.; Mojonnier, C.B. Pollutant Export from Various Land Uses in the Upper Neuse River Basin. Water Environ. Res. 2002, 74, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Smullen, J.T.; Shallcross, A.L.; Cave, K.A. Updating the U.S. nationwide urban runoff quality data base. Water Sci. Technol. 1999, 39, 9–16. [Google Scholar] [CrossRef]
- Bannerman, R.T.; Legg, A.D.; Greb, S.R. Quality of Wisconsin Stormwater, 1989–94; Prepared in Cooperation with the Wisconsin Department of Natural Resources; US Geological Survey: Reston, VA, USA, 1996. [Google Scholar]
- Butcher, J.B. Buildup, washoff, and event mean concentrations. J. Am. Water Resour. Assoc. 2003, 39, 1521–1528. [Google Scholar] [CrossRef]
- Tuomela, C.; Sillanpää, N.; Koivusalo, H. Assessment of stormwater pollutant loads and source area contributions with storm water management model (SWMM). J. Environ. Manag. 2019, 233, 719–727. [Google Scholar] [CrossRef]
Data | Source | Additional Information |
---|---|---|
Land use, NLCD 2014 | https://www.mrlc.gov/data/nlcd-2013-land-cover-conus accessed on 3 May 2024 | |
Soil | https://websoilsurvey.nrcs.usda.gov/app/ accessed on 3 May 2024 | SSURGO soil data base |
DEM | https://apps.nationalmap.gov/downloader/ accessed on 3 May 2024 | 10 m resolution |
Weather gage station | https://www.ncdc.noaa.gov/cdo-web/datasets accessed on 3 May 2024 | Station No: -USW00014852 |
Stream flow | https://waterdata.usgs.gov/nwis/sw accessed on 3 May 2024 | (USGS Gage 03098513&03098500) |
Hydrologic (stream network) data | https://www.usgs.gov/streamstats accessed on 3 May 2024 | |
Water quality data | Youngstown State University | 8 stations |
Parameters | Initial Value | Calibrated Value from Literature | Land Use | Reference |
---|---|---|---|---|
N-imperv | 0.01 | 0.015 | Mixed land use | [37] |
0.016 (+23%) | Mixed land use | [38] | ||
0.022–0.025 | Mixed land use | [39] | ||
0.02 | Urbanized | [40] | ||
0.015 | Mixed land use | [41] | ||
0.012 | Urbanized | [42] | ||
N-Perv | 0.1 | 0.15 | Mixed land use | [37] |
0.10 (−23%) | Mixed land use | [38] | ||
0.32–0.33 | Urbanized | [39] | ||
0.3 | Residential urban | [40] | ||
0.4 | Urbanized | [41] | ||
0.131 | Mixed land use | [42] | ||
Dstore-Perv | 0.05mm | 5.08 | Mixed land use | [37] |
7.62 (mm) +52% | Mixed land use | [38] | ||
8.0–9.9 | Mixed land use | [39] | ||
5.0 mm | Residential urban | [40] | ||
6 | Mixed land use | [41] | ||
3.8 | Mixed land use | [42] | ||
Dstore-imperv | 0.05 | 2.54 | Mixed land use | [37] |
2.5–4.5 | Mixed land use | [39] | ||
2.5 mm | Mixed land use | [40] | ||
3 | Mixed land use | [41] | ||
1.35 | Mixed land use | [42] | ||
Impervious percentage | 25 | −10% | Mixed land use | [38] |
15.90% | Residential urban | [40] | ||
±15% | Mixed land use | [42] | ||
Manning’s n for open channels | 0.01 | 0.031 (+3%) | Mixed land use | [38] |
0.035–0.050 | 76.9% residential | [43] | ||
0.05 | Urban and mixed | [44] |
Land Use Category | TSS (mg/L) | BOD (mg/L) | TP (mg/L) | NO3–N (mg/L) | Sources |
---|---|---|---|---|---|
Forest | 11 | 1 | 0.05 | 0.31 | [51] |
8.4 | 1.4 | 0.055 | -- | [52] | |
-- | 1.79 | 0.034 | 0.63 | [53] | |
5 | -- | 0.28 | 4 | [35] | |
31.7 | 1.53 | 0.20 | 0.76 | [54] | |
72 | -- | 0.09 | 0.75 | [55] | |
-- | -- | 0.1 | -- | [56] | |
Agriculture | 55 | 4 | 0.34 | 0.58 | [51] |
77.60 | 21.82 | -- | 0.23 | [53] | |
55.3 | 3.8 | 0.344 | -- | [52] | |
58.31 | 3.14 | 0.26 | -- | [22] | |
-- | -- | 0.71 | 0.81 | [57] | |
-- | -- | 0.25 | -- | [55] | |
36.29 | -- | -- | 0.98 | [58] | |
84 | -- | 0.533 | -- | [56] | |
Residential | 59 | 9 | 0.45 | 0.27 | [51] |
101 | 10 | 0.38 | 0.52 | [59] | |
77.8 | 11.3 | 0.52 | 7 | [56] | |
73 | -- | 0.59 | -- | [60] | |
78.4 | 14.1 | 0.315 | 0.79 | [61] | |
73 | -- | 0.325 | 0.65 | [55] | |
-- | 18 | 0.45 | 8 | [62] | |
-- | -- | 0.4 | -- | [56] |
USGS Station | Period | NSE | R2 |
---|---|---|---|
(a) | |||
3098513 | 01/01/2000 to 06/10/2000 | 0.54 | 0.72 |
3098500 | 01/01/2000 to 06/10/2000 | 0.51 | 0.71 |
(b) | |||
03098513 | 01/02/2000 to 06/10/2000 | 0.53 | 0.73 |
01/02/2000 to 01/10/2000 | 0.761 | 0.905 | |
03/31/2000 to 04/06/2000 | 0.911 | 0.948 | |
04/06/2000 to 04/12/2000 | 0.293 | 0.601 |
Events | Period | NSE | R2 |
---|---|---|---|
1 | 2/12/1950 to 2/27/1950 | 0.458 | 0.804 |
2 | 01/03/1951 to 06/04/1951 | 0.585 | 0.914 |
3 | 04/07/1951 to 04/21/1951 | 0.626 | 0.846 |
4 | 10/14/1954 to 10/23/1954 | 0.584 | 0.867 |
5 | 02/24/1956 to 03/02/1956 | 0.614 | 0.754 |
6 | 08/04/1956 to 08/11/1956 | 0.46 | 0.732 |
7 | 04/06/1957 to 04/16/1956 | 0.783 | 0.954 |
8 | 04/24/1958 to 05/05/1958 | 0.792 | 0.965 |
9 | 12/11/1959 to 01/31/1960 | 0.565 | 0.75 |
10 | 02/16/1961 to 04/12/1961 | 0.633 | 0.808 |
11 | 04/15/1963 to 04/27/1963 | 0.492 | 0.952 |
12 | 03/03/1964 to 04/24/1964 | 0.698 | 0.791 |
13 | 01/20/1965 to 02/05/1965 | 0.548 | 0.773 |
14 | 04/26/1967 to 04/02/1967 | 0.642 | 0.848 |
15 | 01/26/1968 to 02/14/1968 | 0.546 | 0.968 |
16 | 12/26/1968 to 01/05/1969 | 0.6 | 0.889 |
17 | 01/26/1969 to 02/07/1969 | 0.747 | 0.926 |
18 | 03/02/1970 to 03/10/1970 | 0.805 | 0.893 |
19 | 03/30/1970 to 04/18/1970 | 0.425 | 0.514 |
20 | 10/27/1970 to 11/09/1970 | 0.509 | 0.934 |
21 | 11/27/1970 to 12/03/1970 | 0.89 | 0.891 |
22 | 12/10/1970 to 12/26/1970 | 0.505 | 0.679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, M.S.; Sharma, S.; Armstrong, F.P.; Delisio, M.; Ehsani, S. Exploring PCSWMM for Large Mixed Land Use Watershed by Establishing Monitoring Sites to Evaluate Stream Water Quality. Hydrology 2024, 11, 104. https://doi.org/10.3390/hydrology11070104
Ansari MS, Sharma S, Armstrong FP, Delisio M, Ehsani S. Exploring PCSWMM for Large Mixed Land Use Watershed by Establishing Monitoring Sites to Evaluate Stream Water Quality. Hydrology. 2024; 11(7):104. https://doi.org/10.3390/hydrology11070104
Chicago/Turabian StyleAnsari, Mohd Sohib, Suresh Sharma, Felicia P. Armstrong, Mark Delisio, and Sahar Ehsani. 2024. "Exploring PCSWMM for Large Mixed Land Use Watershed by Establishing Monitoring Sites to Evaluate Stream Water Quality" Hydrology 11, no. 7: 104. https://doi.org/10.3390/hydrology11070104
APA StyleAnsari, M. S., Sharma, S., Armstrong, F. P., Delisio, M., & Ehsani, S. (2024). Exploring PCSWMM for Large Mixed Land Use Watershed by Establishing Monitoring Sites to Evaluate Stream Water Quality. Hydrology, 11(7), 104. https://doi.org/10.3390/hydrology11070104