Assessment of Multiple Trace Metal Fluxes in a Semi-Arid Watershed Containing Mine Tailing, Using a Multiple Tool Approach (Zaida Mine, Upper Moulouya Watershed, Morocco)
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Source and Pre-Processing
2.2. Soil Erosion Estimation via the RUSLE Model
2.2.1. The Rainfall Erosivity Factor (R)
2.2.2. The Topographical Factor (LS)
2.2.3. The Soil Erodibility Factor (K)
2.2.4. The Cover Management Factor (C)
2.2.5. The Support Practice Factor (P)
2.3. Trace Elements’ Load Due to the Soil Erosion Model
2.4. Sediment Assessment
2.4.1. Geo-Accumulation Index
2.4.2. Pollutant Load Index (PLI)
2.4.3. Sediment Quality Guidelines
3. Results and Discussion
3.1. Soil Erodibility and Trace Metal Load
3.1.1. RUSLE Factors
3.1.2. Distribution and Classification of Soil Erosion
3.1.3. Spatial Distribution of Trace Metals in Soil
3.1.4. Spatial Distribution of the Trace Metal Loads Caused by Soil Erosion
3.2. Assessment of Sediment Contamination by Trace Metals
3.2.1. Physiochemical Properties of Sediment
3.2.2. Trace Metal Spatial Distribution in Sediments
3.2.3. Assessment of the Sediment Pollution via Indexes
3.2.4. Statistical Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, Challenges and Limitations of Soil Erosion Modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Napoli, M.; Cecchi, S.; Orlandini, S.; Mugnai, G.; Zanchi, C.A. Simulation of Field-Measured Soil Loss in Mediterranean Hilly Areas (Chianti, Italy) with RUSLE. Catena 2016, 145, 246–256. [Google Scholar] [CrossRef]
- Aouichaty, N.; Bouslihim, Y.; Hilali, S.; Zouhri, A.; Koulali, Y. Estimation of Water Erosion in Abandoned Quarries Sites Using the Combination of RUSLE Model and Geostatistical Method. Sci. Afr. 2022, 16, e01153. [Google Scholar] [CrossRef]
- Moustakim, M.; Benmansour, M.; Nouira, A.; Benkdad, A.; Damnati, B. Caesium-137 Re-Sampling Approach and Excess Lead-210 Sediment Dating to Assess the Impacts of Climate Change and Agricultural Practices on Soil Erosion and Sedimentation in Northwest Morocco. Environ. Earth Sci. 2022, 81, 278. [Google Scholar] [CrossRef]
- Gourfi, A.; Daoudi, L.; Rhoujjati, A.; Benkaddour, A.; Fagel, N. Use of Bathymetry and Clay Mineralogy of Reservoir Sediment to Reconstruct the Recent Changes in Sediment Yields from a Mountain Catchment in the Western High Atlas Region, Morocco. Catena 2020, 191, 104560. [Google Scholar] [CrossRef]
- Briak, H.; Mrabet, R.; Moussadek, R.; Aboumaria, K. Use of a Calibrated SWAT Model to Evaluate the Effects of Agricultural BMPs on Sediments of the Kalaya River Basin (North of Morocco). Int. Soil Water Conserv. Res. 2019, 7, 176–183. [Google Scholar] [CrossRef]
- El Jazouli, A.; Barakat, A.; Ghafiri, A.; El Moutaki, S.; Ettaqy, A.; Khellouk, R. Soil Erosion Modeled with USLE, GIS, and Remote Sensing: A Case Study of Ikkour Watershed in Middle Atlas (Morocco). Geosci. Lett. 2017, 4, 25. [Google Scholar] [CrossRef]
- Echogdali, F.Z.; Boutaleb, S.; Taia, S.; Ouchchen, M.; Id-Belqas, M.; Kpan, R.B.; Abioui, M.; Aswathi, J.; Sajinkumar, K.S. Assessment of Soil Erosion Risk in a Semi-Arid Climate Watershed Using SWAT Model: Case of Tata Basin, South-East of Morocco. Appl. Water Sci. 2022, 12, 137. [Google Scholar] [CrossRef]
- Ahmad, W.S.; Jamal, S.; Taqi, M.; El-Hamid, H.T.A.; Norboo, J. Estimation of Soil Erosion and Sediment Yield Concentrations in Dudhganga Watershed of Kashmir Valley Using RUSLE & SDR Model. Environ. Dev. Sustain. 2022, 26, 215–238. [Google Scholar] [CrossRef]
- Mahoney, D.; Blandford, B.; Fox, J. Coupling the Probability of Connectivity and RUSLE Reveals Pathways of Sediment Transport and Soil Loss Rates for Forest and Reclaimed Mine Landscapes. J. Hydrol. 2021, 594, 125963. [Google Scholar] [CrossRef]
- Hao, G.R.; Li, J.K.; Li, S.; Li, K.B.; Zhang, Z.H.; Li, H.E. Quantitative Assessment of Non-Point Source Pollution Load of PN/PP Based on RUSLE Model: A Case Study in Beiluo River Basin in China. Environ. Sci. Pollut. Res. 2020, 27, 33975–33989. [Google Scholar] [CrossRef] [PubMed]
- Fressard, M.; Cossart, E.; Chaize, B. Pluri-Decennial Erosion Rates Using SUM/ISUM and Sediment Traps Survey in the Mercurey Vineyards (Burgundy, France). Geomorphology 2022, 403, 108181. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, M. A Framework for Risk Assessment on Soil Erosion by Water Using an Integrated and Systematic Approach. J. Hydrol. 2007, 337, 11–21. [Google Scholar] [CrossRef]
- Shi, W.; Wang, J.; Li, X.; Xu, Q.; Jiang, X. Multi-Fractal Characteristics of Reconstructed Landform and Its Relationship with Soil Erosion at a Large Opencast Coal-Mine in the Loess Area of China. Geomorphology 2021, 390, 107859. [Google Scholar] [CrossRef]
- Tansel, B.; Rafiuddin, S. Heavy Metal Content in Relation to Particle Size and Organic Content of Surficial Sediments in Miami River and Transport Potential. Int. J. Sediment Res. 2016, 31, 324–329. [Google Scholar] [CrossRef]
- Ma, Y.; Qin, Y.; Zheng, B.; Zhang, L.; Zhao, Y. Seasonal Variation of Enrichment, Accumulation and Sources of Heavy Metals in Suspended Particulate Matter and Surface Sediments in the Daliao River and Daliao River Estuary, Northeast China. Environ. Earth Sci. 2015, 73, 5107–5117. [Google Scholar] [CrossRef]
- Elouadihi, N.; Laghlimi, M.; Moussadek, R.; Laghrour, M.; Bouabdli, A.; Baghdad, B. Phytoremediation Study of Mining Soils: Case of the Mibladen and Zaida Mine (High Moulouya, Morocco). J. Exp. Biol. Agric. Sci. 2022, 10, 1391–1400. [Google Scholar] [CrossRef]
- El Azhari, A.; Rhoujjati, A.; EL Hachimi, M.L. Assessment of Heavy Metals and Arsenic Contamination in the Sediments of the Moulouya River and the Hassan II Dam Downstream of the Abandoned Mine Zeïda (High Moulouya, Morocco). J. Afr. Earth Sci. 2016, 119, 279–288. [Google Scholar] [CrossRef]
- Bouabdli, A.; Saidi, N.; M’Rabet, S.; Escarre, J.; Leblanc, M. Heavy Metal Transport by the Moulouya River (Morocco). Rev. Sci. l’Eau 2005, 18, 199–213. [Google Scholar] [CrossRef]
- Ech-Charef, A.; Dekayir, A.; Jordán, G.; Rouai, M.; Chabli, A.; Qarbous, A.; El Houfy, F.Z. Soil Heavy Metal Contamination in the Vicinity of the Abandoned Zeïda Mine in the Upper Moulouya Basin, Morocco. Implications for Airborne Dust Pollution under Semi-Arid Climatic Conditions. J. Afr. Earth Sci. 2023, 198, 104812. [Google Scholar] [CrossRef]
- Hoepffner, C. La Tectonique Hercynienne Dans l’Est Du Maroc. PhD Thesis, Universite Louis Pasteur, Strasbourg, France, 1987. [Google Scholar]
- Iavazzo, P.; Adamo, P.; Boni, M.; Hillier, S.; Zampella, M. Mineralogy and Chemical Forms of Lead and Zinc in Abandoned Mine Wastes and Soils: An Example from Morocco. J. Geochemical Explor. 2012, 113, 56–67. [Google Scholar] [CrossRef]
- Jébrak, M.; Marcoux, É.; Nasloubi, M.; Zaharaoui, M. From Sandstone- to Carbonate-Hosted Strata Bound Deposits: An Isotope Study of Galena in the Upper-Moulouya District (Morocco). Miner. Depos. 1998, 33, 406–415. [Google Scholar] [CrossRef]
- Iavazzo, P.; Ducci, D.; Adamo, P.; Trifuoggi, M.; Migliozzi, A.; Boni, M. Impact of Past Mining Activity on the Quality of Water and Soil in the High Moulouya Valley (Morocco). Water Air Soil Pollut. 2012, 223, 573–589. [Google Scholar] [CrossRef]
- Hachimi, M.L.E.; Bouabdli, A.; Fekhaoui, M. Les Rejets Miniers de Traitement: Caractérisation, Capacité Polluante et Impacts Environnementaux, Mine Zeïda, Mine Mibladen, Haute Moulouya (Maroc). Environ. Ingénierie Dev. 2013, N°63-mars 2013, 23–42. [Google Scholar] [CrossRef]
- Chahboune, M.; Chahlaoui, A.; Zaid, A. Contribution to Comparative Study of the Physico-Chemical Quality of Waters of Moulouya and Ansegmir Rivers in Upstream of Hassan II Dam (Province of Midelt, Morocco). J. Biodivers. Environ. Sci. 2014, 2014, 278–288. [Google Scholar]
- Thomas, G. Soil PH and Soil Acidity. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; John Wiley and Sons: Hoboken, NJ, USA, Soil Science Society of America and American Society of Agronomy, USA; 1996; pp. 475–489. ISBN 978-0-891-18825-4. [Google Scholar]
- Smith, J.; Doran, J. Measurement and Use of PH and Electrical Conductivity for Soil Quality Analysis. In Methods for Assessing Soil Quality; Doran, W., Jones, A.J., Eds.; Soil Science Society of America Special Publication: Madison, WI, USA, 1996; pp. 169–186. [Google Scholar]
- AFNOR NF P94-048 Sols; Reconnaissance et Essais-Détermination de La Teneur En Carbonate—Méthode Du Calcimètre. Association Française de Normalisation: Paris, France, 1996.
- Hoenig, M. Spectrométrie d’absorption Atomique Électrothermique: Contribution a l’établissement d’une Méthodologie Rationnelle Pour La Détermination Des Éléments Traces Dans Les Milieux Naturels. Ph.D. Thesis, L’université des Sciences et Techniques de Lille Flandres Artois, Lille, France, 1990. [Google Scholar]
- Laghlimi, M.; Douaik, A.; Baghdad, B.; Hassan, E.H.; Rachid, M.; Meryem, T. Spatial Distribution of Soil Heavy Metals in the Zaida Mine (Morocco) Based on Geostatistical Methods. Int. J. Adv. Res. 2015, 3, 337–349. [Google Scholar]
- Renard, K.G.; Foster, G.; Weesies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997. [Google Scholar]
- Panagos, P.; Ballabio, C.; Borrelli, P.; Meusburger, K.; Klik, A.; Rousseva, S.; Tadić, M.P.; Michaelides, S.; Hrabalíková, M.; Olsen, P.; et al. Rainfall Erosivity in Europe. Sci. Total Environ. 2015, 511, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Arnoldus, H.M.J. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation. In An Approximation of the Rainfall Factor in the Universal Soil Loss Equation; John Wiley and Sons Ltd.: Chichester, UK, 1980; pp. 127–132. [Google Scholar]
- Di Lena, B.; Curci, G.; Vergni, L. Analysis of Rainfall Erosivity Trends 1980–2018 in a Complex Terrain Region (Abruzzo, Central Italy) from Rain Gauges and Gridded Datasets. Atmosphere 2021, 12, 657. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of Soil Loss Estimation Using the RUSLE Model and SCS-CN Method in Hillslope Mining Areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [Google Scholar] [CrossRef]
- Desmet, P.J.J.; Govers, G. A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar]
- Zhu, M.; He, W.; Zhang, Q.; Xiong, Y.; Tan, S.; He, H. Spatial and Temporal Characteristics of Soil Conservation Service in the Area of the Upper and Middle of the Yellow River, China. Heliyon 2019, 5, e02985. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. (Eds.) EPIC—Erosion/Productivity Impact Calculator: 1. Model Documentation; U.S. Department of Agriculture Technical Bulletin No. 1768: Washington, DC, USA, 1990; 235p, Available online: https://epicapex.tamu.edu/media/h2gkyznv/epicmodeldocumentation.pdf (accessed on 16 June 2024).
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute Technical Report: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar] [CrossRef]
- van der Knijff, J.; Jones, R.; Montanarella, L. Soil Erosion Risk Assessment in Italy; EPIC: Redwood City, CA, USA, 2000. [Google Scholar]
- Rendana, M.; Idris, W.M.R.; Rahim, S.A. The Variation of Riverine Heavy Metal Flux Using RUSLE Model in the Ranau Sub-Basins, Malaysia. Adjacent to Ultrabasic Soil. Water Air Soil Pollut. 2022, 233, 495. [Google Scholar] [CrossRef]
- Bella Atangana, M.S.; Dam Ngoupayou, J.R.; Deliege, J.F. Hydrogeochemistry and Mercury Contamination of Surface Water in the Lom Gold Basin (East Cameroon): Water Quality Index, Multivariate Statistical Analysis and Spatial Interpolation. Water 2023, 15, 2502. [Google Scholar] [CrossRef]
- USDA United States Department of Agriculture Soil Conservation Service. National Engineering Handbook; Section 3; USDA United States Department of Agriculture Soil Conservation Service: Washington, DC, USA, 1972. [Google Scholar]
- Zhang, H.; Luo, Y.; Makino, T.; Wu, L.; Nanzyo, M. The Heavy Metal Partition in Size-Fractions of the Fine Particles in Agricultural Soils Contaminated by Waste Water and Smelter Dust. J. Hazard. Mater. 2013, 248–249, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Menzel, R.G. Enrichment Ratios For Water Quality Modeling. In CREAMS a Field Scale Model for Chemicals/Runoff, and Erosion from Agricultural Management Systems NATURAL; Forgotten Books: London, UK, 1980; pp. 486–492. ISBN 0364976101. [Google Scholar]
- Mueller, G. Schwermetalle in Den Sedimenten Des Rheins—Veranderungen Seit 1971. Umsch. Wissensch. Techn. 1979, 79, 778–783. [Google Scholar]
- Förstner, U.; Müller, G. Concentrations of Heavy Metals and Polycyclic Aromatic Hydrocarbons in River Sediments: Geochemical Background, Man’s Influence and Environmental Impact. GeoJournal 1981, 5, 417–432. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Radziuk, H.; Switoniak, M. Soil Erodibility Factor (K) in Soils under Varying Stages of Truncation. Soil Sci. Annu. 2021, 72, 134621. [Google Scholar] [CrossRef]
- Mhaske, S.N.; Pathak, K.; Dash, S.S.; Nayak, D.B. Assessment and Management of Soil Erosion in the Hilltop Mining Dominated Catchment Using GIS Integrated RUSLE Model. J. Environ. Manag. 2021, 294, 112987. [Google Scholar] [CrossRef]
- Royaume du Maroc, Ministère de l’Intérieur, Secrétariat Général, Division de l’Urbanisme et de l’Environnement. In Monographie de la Province de Midelt; Administration de la Province de Midelt: Midelt, Morocco, 2020; 45p.
- Zuazo, V.H.D.; Pleguezuelo, C.R.R. Soil-Erosion and Runoff Prevention by Plant Covers. A Review. Agron. Sustain. Dev. 2008, 28, 65–86. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Nemmaoui, A.; Aguilar, M.A.; Chourak, M.; Zarhloule, Y.; García Lorca, A.M. A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco) by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data. Forests 2016, 7, 23. [Google Scholar] [CrossRef]
- Baize, D. Teneurs totales en éléments traces métalliques dans les sols (France): Références et stratégies d’interprétation. Programme ASPITET; INRA: Paris, France, 1997; ISBN 2-7380-0747-3. [Google Scholar]
- Essien, J.P.; Inam, E.D.; Ikpe, D.I.; Udofia, G.E.; Benson, N.U. Ecotoxicological Status and Risk Assessment of Heavy Metals in Municipal Solid Wastes Dumpsite Impacted Soil in Nigeria. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100215. [Google Scholar] [CrossRef]
- Grard, A.; Deliège, J.F. Characterizing Trace Metal Contamination and Partitioning in the Rivers and Sediments of Western Europe Watersheds. Hydrology 2023, 10, 51. [Google Scholar] [CrossRef]
- Zamani-Ahmadmahmoodi, R.; Esmaili-Sari, A.; Mohammadi, J.; Bakhtiari, A.R.; Savabieasfahani, M. Spatial Distribution of Cadmium and Lead in the Sediments of the Western Anzali Wetlands on the Coast of the Caspian Sea (Iran). Mar. Pollut. Bull. 2013, 74, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Parra, A.; Oyarzún, J.; Maturana, H.; Kretschmer, N.; Meza, F.; Oyarzún, R. Natural Factors and Mining Activity Bearings on the Water Quality of the Choapa Basin, North Central Chile: Insights on the Role of Mafic Volcanic Rocks in the Buffering of the Acid Drainage Process. Environ. Monit. Assess. 2011, 181, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel Ben Abid, M. Contamination Métallique Issue Des Déchets de L’ancien Site Minier de Jebel Ressas: Modélisation Des Mécanismes de Transfert et Conception de Cartes d’aléa Post-Mine Dans Un Contexte Carbonaté et Sous Un Climat Semi-Aride. Ph.D. Thesis, Evaluation Du Risque Pour La Sa, Université Paul Sabatier—Toulouse III, Toulouse, France, 2012. Volume 8. [Google Scholar]
- Jiménez-Oyola, S.; Valverde-Armas, P.E.; Romero-Crespo, P.; Capa, D.; Valdivieso, A.; Coronel-León, J.; Guzmán-Martínez, F.; Chavez, E. Heavy Metal(Loid)s Contamination in Water and Sediments in a Mining Area in Ecuador: A Comprehensive Assessment for Drinking Water Quality and Human Health Risk. Environ. Geochem. Health 2023, 45, 4929–4949. [Google Scholar] [CrossRef] [PubMed]
- Elvine Paternie, E.D.; Hakkou, R.; Ekengele Nga, L.; Bitom Oyono, L.D.; Ekoa Bessa, A.Z.; Oubaha, S.; Khalil, A. Geochemistry and Geostatistics for the Assessment of Trace Elements Contamination in Soil and Stream Sediments in Abandoned Artisanal Small-Scale Gold Mining (Bétaré-Oya, Cameroon). Appl. Geochem. 2023, 150, 105592. [Google Scholar] [CrossRef]
- Song, Y.; Ji, J.; Mao, C.; Yang, Z.; Yuan, X.; Ayoko, G.A.; Frost, R.L. Heavy Metal Contamination in Suspended Solids of Changjiang River—Environmental Implications. Geoderma 2010, 159, 286–295. [Google Scholar] [CrossRef]
- Liu, S.; Yu, F.; Lang, T.; Ji, Y.; Fu, Y.; Zhang, J.; Ge, C. Spatial Distribution of Heavy Metal Contaminants: The Effects of Water-Sediment Regulation in the Henan Section of the Yellow River. Sci. Total Environ. 2023, 892, 164568. [Google Scholar] [CrossRef]
- Zerizghi, T.; Yang, Y.; Wang, W.; Zhou, Y.; Zhang, J.; Yi, Y. Ecological Risk Assessment of Heavy Metal Concentrations in Sediment and Fish of a Shallow Lake: A Case Study of Baiyangdian Lake, North China. Environ. Monit. Assess. 2020, 192, 154. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Ahouach, Y.; Baali, A.; Boushaba, A.; Hakam, O.; Azennoud, K.; Lyazidi, A.; Benmessaoud, S.; Assouguem, A.; Kara, M.; Alsaigh, M.A.; et al. Impact of the Controlled Dump of Fez City (Morocco): Evaluation of Metallic Trace Elements Contamination in the Sediments. Water 2023, 15, 1209. [Google Scholar] [CrossRef]
- Madyouni, H.; Almanza, V.; Benabdallah, S.; Joaquim-Justo, C.; Romdhane, M.S.; Habaieb, H.; Deliege, J.F. Assessment of Water Quality Variations and Trophic State of the Joumine Reservoir (Tunisia) by Multivariate Analysis. Water 2023, 15, 3019. [Google Scholar] [CrossRef]
- Sekabira, K.; Origa, H.O.; Basamba, T.A.; Mutumba, G.; Kakudidi, E. Assessment of Heavy Metal Pollution in the Urban Stream Sediments and Its Tributaries. Int. J. Environ. Sci. Technol. 2010, 7, 435–446. [Google Scholar] [CrossRef]
- Jiang, H.H.; Cai, L.M.; Hu, G.C.; Wen, H.H.; Luo, J.; Xu, H.Q.; Chen, L.G. An Integrated Exploration on Health Risk Assessment Quantification of Potentially Hazardous Elements in Soils from the Perspective of Sources. Ecotoxicol. Environ. Saf. 2021, 208, 111489. [Google Scholar] [CrossRef] [PubMed]
- Bouzekri, S.; El Hachimi, M.L.; Touach, N.; El Fadili, H.; El Mahi, M.; Lotfi, E.M. The Study of Metal (As, Cd, Pb, Zn and Cu) Contamination in Superficial Stream Sediments around of Zaida Mine (High Moulouya-Morocco). J. Afr. Earth Sci. 2019, 154, 49–58. [Google Scholar] [CrossRef]
- Dai, Z.H.; Feng, X.; Zhang, C.; Shang, L.; Qiu, G. Assessment of Mercury Erosion by Surface Water in Wanshan Mercury Mining Area. Environ. Res. 2013, 125, 2–11. [Google Scholar] [CrossRef]
Type of Data | Data Variable | Period/Frequency | Resolution | Data Source | Usage in the Study |
---|---|---|---|---|---|
Primary | Trace metal concentrations in sediment | Once in March 2022 | 10 sampling stations | Sampling campaign and laboratory analysis | + Sediment contamination assessment + Calculation of indices + Statistical analysis |
Secondary | Trace metal concentrations in soil | Once in March 2015 | 51 sampling stations | The study by [27] | Estimating the trace metal flux originating from the watershed |
Secondary | Rainfall | Monthly from 1997 to 2019 | 9 meteorological stations | MHBA 1 NMA 2 | Calculating the rainfall erosion factor (R) for RUSLE |
Secondary | ASTER digital elevation model | 2014 | 30 m resolution | USGS 3 | Calculating the topographical factor (LS) for RUSLE |
Secondary | Landsat 8 satellite images | 2019 | 30 m resolution | USGS 3 field surveys | Calculating the cover management factor (C) for RUSLE |
Secondary | Land use map | 2019 | 100 resolution | Copernicus programme | Assessing the land use and calculating the statistics |
Secondary | Soil texture | 2021 | 250 m resolution | ISRIC 4 | Calculating the erodibility factor (K) for RUSLE |
Variables | R | LS | K | C | Soil Erosion |
---|---|---|---|---|---|
R | 1 | 0.10 | −0.07 | −0.14 | 0.12 |
LS | 0.10 | 1 | −0.39 | −0.34 | 0.94 |
K | −0.07 | −0.39 | 1 | 0.36 | −0.25 |
C | −0.14 | −0.34 | 0.36 | 1 | −0.14 |
Soil erosion | 0.12 | 0.94 | −0.25 | −0.14 | 1 |
Variable | Mean | Min | Max | Median | SD | Ordinary Soils a | WHO b |
---|---|---|---|---|---|---|---|
Pb | 89.81 | 0.36 | 830.95 | 17.82 | 162.87 | 9–50 | 85 |
Zn | 47.60 | 0.13 | 206.00 | 49.97 | 45.76 | 10–100 | 50 |
Cu | 14.93 | 0.11 | 77.2 | 8.98 | 20.04 | 2–20 | 30 |
Cd | 0.99 | 0.03 | 3.00 | 0.4 | 1.01 | 0.05–0.45 | 0.8 |
CF Cd | CF Cu | CF Pb | CF Zn | PLI | |
---|---|---|---|---|---|
MS1 | 1.28 | 0.62 | 1.12 | 0.84 | 0.93 |
MS2 | 1.58 | 0.71 | 1.63 | 1.08 | 1.19 |
MS3 | 2.29 | 0.74 | 7.79 | 1.47 | 2.10 |
MS4 | 1.35 | 0.49 | 3.02 | 1.04 | 1.20 |
MS5 | 0.83 | 0.43 | 3.53 | 0.96 | 1.05 |
MS6 | 0.83 | 0.37 | 3.63 | 0.61 | 0.91 |
MS7 | 0.83 | 0.49 | 5.87 | 1.08 | 1.27 |
AS 1 | 1.58 | 0.58 | 0.92 | 0.90 | 0.94 |
AS 2 | 2.11 | 0.78 | 1.14 | 0.96 | 1.16 |
Hakanson classification | CF < 1: low contamination; 1 ≤ CF < 3: moderate contamination; 3 ≤ CF < 6: considerable contamination; CF ≥ 6: very high contamination. |
Variables | pH | CaCO3% | EC | Cd | Cu | Pb | Zn | Fe | Mn | Na | K | Mg | Al | Ca |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | 0.660 | 0.012 | 0.299 | 0.004 | −0.227 | 0.012 | −0.233 | −0.615 | −0.475 | −0.594 | −0.085 | −0.249 | −0.199 |
CaCO3% | 0.660 | 1 | −0.059 | 0.632 | 0.542 | −0.159 | 0.518 | −0.238 | −0.559 | −0.659 | −0.497 | −0.217 | −0.172 | −0.385 |
EC | 0.012 | −0.059 | 1 | −0.089 | −0.327 | 0.731 | 0.403 | −0.047 | −0.106 | 0.377 | 0.220 | 0.406 | −0.021 | −0.112 |
Cd | 0.299 | 0.632 | −0.089 | 1 | 0.901 | 0.025 | 0.601 | −0.712 | −0.771 | −0.801 | −0.828 | −0.718 | −0.690 | −0.834 |
Cu | 0.004 | 0.542 | −0.327 | 0.901 | 1 | −0.121 | 0.558 | −0.465 | −0.460 | −0.776 | −0.603 | −0.697 | −0.482 | −0.652 |
Pb | −0.227 | −0.159 | 0.731 | 0.025 | −0.121 | 1 | 0.622 | −0.133 | −0.243 | 0.449 | 0.201 | 0.177 | −0.072 | −0.052 |
Zn | 0.012 | 0.518 | 0.403 | 0.601 | 0.558 | 0.622 | 1 | −0.296 | −0.497 | −0.281 | −0.192 | −0.205 | −0.334 | −0.462 |
Fe | −0.233 | −0.238 | −0.047 | −0.712 | −0.465 | −0.133 | −0.296 | 1 | 0.813 | 0.413 | 0.780 | 0.583 | 0.851 | 0.900 |
Mn | −0.615 | −0.559 | −0.106 | −0.771 | −0.460 | −0.243 | −0.497 | 0.813 | 1 | 0.550 | 0.859 | 0.562 | 0.758 | 0.734 |
Na | −0.475 | −0.659 | 0.377 | −0.801 | −0.776 | 0.449 | −0.281 | 0.413 | 0.550 | 1 | 0.804 | 0.733 | 0.604 | 0.635 |
K | −0.594 | −0.497 | 0.220 | −0.828 | −0.603 | 0.201 | −0.192 | 0.780 | 0.859 | 0.804 | 1 | 0.767 | 0.804 | 0.775 |
Mg | −0.085 | −0.217 | 0.406 | −0.718 | −0.697 | 0.177 | −0.205 | 0.583 | 0.562 | 0.733 | 0.767 | 1 | 0.718 | 0.644 |
Al | −0.249 | −0.172 | −0.021 | −0.690 | −0.482 | −0.072 | −0.334 | 0.851 | 0.758 | 0.604 | 0.804 | 0.718 | 1 | 0.887 |
Ca | −0.199 | −0.385 | −0.112 | −0.834 | −0.652 | −0.052 | −0.462 | 0.900 | 0.734 | 0.635 | 0.775 | 0.644 | 0.887 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mimouni, Y.; Chafi, A.; Bouabdli, A.; Baghdad, B.; Deliege, J.-F. Assessment of Multiple Trace Metal Fluxes in a Semi-Arid Watershed Containing Mine Tailing, Using a Multiple Tool Approach (Zaida Mine, Upper Moulouya Watershed, Morocco). Hydrology 2024, 11, 105. https://doi.org/10.3390/hydrology11070105
Mimouni Y, Chafi A, Bouabdli A, Baghdad B, Deliege J-F. Assessment of Multiple Trace Metal Fluxes in a Semi-Arid Watershed Containing Mine Tailing, Using a Multiple Tool Approach (Zaida Mine, Upper Moulouya Watershed, Morocco). Hydrology. 2024; 11(7):105. https://doi.org/10.3390/hydrology11070105
Chicago/Turabian StyleMimouni, Yassine, Abdelhafid Chafi, Abdelhak Bouabdli, Bouamar Baghdad, and Jean-François Deliege. 2024. "Assessment of Multiple Trace Metal Fluxes in a Semi-Arid Watershed Containing Mine Tailing, Using a Multiple Tool Approach (Zaida Mine, Upper Moulouya Watershed, Morocco)" Hydrology 11, no. 7: 105. https://doi.org/10.3390/hydrology11070105
APA StyleMimouni, Y., Chafi, A., Bouabdli, A., Baghdad, B., & Deliege, J. -F. (2024). Assessment of Multiple Trace Metal Fluxes in a Semi-Arid Watershed Containing Mine Tailing, Using a Multiple Tool Approach (Zaida Mine, Upper Moulouya Watershed, Morocco). Hydrology, 11(7), 105. https://doi.org/10.3390/hydrology11070105