A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Empirical Equation for Diesel Attenuation Capacity
2.2. Parameter Estimation and Ratings
2.3. Estimation of Temporal Changes in Soil Moisture and Resulting AC
2.4. Emerging Hot Spot Analysis
3. Results and Discussion
3.1. Soil Water Content Simulation and Saturation Degree Estimation
3.2. SD and AC Distribution under the Stationary Conditions
3.3. SD and AC Variation under Transient Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, S.; Kim, K.; Woo, H.; Yun, S.T.; Chung, J.; Lee, S. Coupled Effect of Porous Network and Water Content on the Natural Attenuation of Diesel in Unsaturated Soils. Chemosphere 2022, 302, 134804. [Google Scholar] [CrossRef]
- Bento, F.M.; Camargo, F.A.O.; Okeke, B.C.; Frankenberger, W.T. Comparative Bioremediation of Soils Contaminated with Diesel Oil by Natural Attenuation, Biostimulation and Bioaugmentation. Bioresour. Technol. 2005, 96, 1049–1055. [Google Scholar] [CrossRef]
- Regadío, M.; Ruiz, A.I.; Rodríguez-Rastrero, M.; Cuevas, J. Containment and Attenuating Layers: An Affordable Strategy That Preserves Soil and Water from Landfill Pollution. Waste Manag. 2015, 46, 408–419. [Google Scholar] [CrossRef]
- Šimůnek, J.; Šejna, M.A.; Saito, H.; Sakai, M.; Van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media; Version 4.17; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA.
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; U.S. Environmental Protection Agency: Washington, DC, USA, 1987; p. 455.
- Busico, G.; Alessandrino, L.; Mastrocicco, M. Denitrification in Intrinsic and Specific Groundwater Vulnerability Assessment: A Review. Appl. Sci. 2021, 11, 657. [Google Scholar] [CrossRef]
- Douglas, S.H.; Dixon, B.; Griffin, D. Assessing the Abilities of Intrinsic and Specific Vulnerability Models to Indicate Groundwater Vulnerability to Groups of Similar Pesticides: A Comparative Study. Phys. Geogr. 2018, 39, 487–505. [Google Scholar] [CrossRef]
- Andersen, L.J.; Gosk, E. Applicability of Vulnerability Maps. Environ. Geol. Water Sci. 1989, 13, 39–43. [Google Scholar] [CrossRef]
- Woo, H.; An, S.; Kim, K.; Park, S.; Oh, S.; Kim, S.H.; Chung, J.; Lee, S. A New Evaluation Model for Natural Attenuation Capacity of Vadose Zone against Petroleum Contaminants. J. Soil Groundw. Environ. 2022, 27, 92–98. [Google Scholar] [CrossRef]
- Chai, R.; Mao, J.; Chen, H.; Wang, Y.; Shi, X.; Jin, M.; Zhao, T.; Hoffman, F.M.; Ricciuto, D.M.; Wullschleger, S.D. Human-Caused Long-Term Changes in Global Aridity. npj Clim. Atmos. Sci. 2021, 4, 65. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Grego, J.M. Uncertainty and Hotspots in 21st Century Projections of Agricultural Drought from CMIP5 Models. Sci. Rep. 2019, 9, 4922. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mao, J.; Hoffman, F.M.; Bonfils, C.J.W.; Douville, H.; Jin, M.; Thornton, P.E.; Ricciuto, D.M.; Shi, X.; Chen, H.; et al. Quantification of Human Contribution to Soil Moisture-Based Terrestrial Aridity. Nat. Commun. 2022, 13, 6848. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Chen, A.; Huntingford, C.; Fu, B.; Li, L.Z.X.; Huang, J.; Sheffield, J.; Berg, A.M.; Keenan, T.F.; et al. Multifaceted Characteristics of Dryland Aridity Changes in a Warming World. Nat. Rev. Earth Environ. 2021, 2, 232–250. [Google Scholar] [CrossRef]
- Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary Forest Cover Loss in Indonesia over 2000–2012. Nat. Clim. Change 2014, 4, 730–735. [Google Scholar] [CrossRef]
- ESRI. How Emerging Hot Spot Analysis Works; Environmental Systems Research Institute: Redlands, CA, USA, 2023; Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm (accessed on 14 November 2022).
- Naqvi, S.A.A.; Sajjad, M.; Waseem, L.A.; Khalid, S.; Shaikh, S.; Kazmi, S.J.H. Integrating Spatial Modelling and Space–Time Pattern Mining Analytics for Vector Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan. Int. J. Environ. Res. Public Health 2021, 18, 12018. [Google Scholar] [CrossRef] [PubMed]
- Purwanto, P.; Utaya, S.; Handoyo, B.; Bachri, S.; Astuti, I.S.; Sastro, K.; Utomo, B.; Aldianto, Y.E. Spatiotemporal Analysis of COVID-19 Spread with Emerging Hotspot Analysis and Space-Time Cube Models in East Java, Indonesia. ISPRS Int. J. Geo Inf. 2021, 10, 133. [Google Scholar] [CrossRef]
- Kang, Y.; Cho, N.; Son, S. Spatiotemporal Characteristics of Elderly Population’s Traffic Accidents in Seoul Using Space-Time Cube and Space-Time Kernel Density Estimation. PLoS ONE 2018, 13, e0196845. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Q.; Ding, Y.; DE ZHANG, A. Spatiotemporal Pattern Mining of Drought in the Last 40 Years in China Based on the Spei and Space–Time Cube. J. Appl. Meteorol. Climatol. 2021, 60, 1219–1230. [Google Scholar] [CrossRef]
- Lal, P.; Shekhar, A.; Gharun, M.; Das, N.N. Spatiotemporal Evolution of Global Long-Term Patterns of Soil Moisture. Sci. Total Environ. 2023, 867, 161470. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Argany, M.; Ghanbari, A.; Ahmadi, M. Visualized Spatiotemporal Data Mining in Investigation of Urmia Lake Drought Effects on Increasing of PM10 in Tabriz Using Space-Time Cube (2004–2019). Sustain. Cities Soc. 2022, 76, 103399. [Google Scholar] [CrossRef]
- Harris, N.L.; Goldman, E.; Gabris, C.; Nordling, J.; Minnemeyer, S.; Ansari, S.; Lippmann, M.; Bennett, L.; Raad, M.; Hansen, M.; et al. Using Spatial Statistics to Identify Emerging Hot Spots of Forest Loss. Environ. Res. Lett. 2017, 12, 024012. [Google Scholar] [CrossRef]
- Betty, E.L.; Bollard, B.; Murphy, S.; Ogle, M.; Hendriks, H.; Orams, M.B.; Stockin, K.A. Using Emerging Hot Spot Analysis of Stranding Records to Inform Conservation Management of a Data-Poor Cetacean Species. Biodivers. Conserv. 2020, 29, 643–665. [Google Scholar] [CrossRef]
- Cuba, N.; Sauls, L.A.; Bebbington, A.J.; Bebbington, D.H.; Chicchon, A.; Marimón, P.D.; Diaz, O.; Hecht, S.; Kandel, S.; Osborne, T.; et al. Emerging Hot Spot Analysis to Indicate Forest Conservation Priorities and Efficacy on Regional to Continental Scales: A Study of Forest Change in Selva Maya 2000–2020. Environ. Res. Commun. 2022, 4, 071004. [Google Scholar] [CrossRef]
- Yang, M.; Yang, Y.S.; Du, X.; Cao, Y.; Lei, Y. Fate and Transport of Petroleum Hydrocarbons in Vadose Zone: Compound-Specific Natural Attenuation. Water Air Soil Pollut. 2013, 224, 1439. [Google Scholar] [CrossRef]
- Mills, S.A.; Frankenberger, W.T. Evaluation of Phosphorus Sources Promoting Bioremediation of Diesel Fuel in Soil. Bull. Environ. Contam. Toxicol. 1994, 53, 280–284. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Van Bemmelen, J. Über die Bestimmung des Wassers, des Humus, des Schwefels, der in den Colloïdalen Silikaten Gebundenen Kieselsäure, des Mangans usw im Ackerboden. Landwirthschaftlichen Vers. Station. 1890, 37, 279–290. [Google Scholar]
- Pribyl, D.W. A Critical Review of the Conventional SOC to SOM Conversion Factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Hou, E.; Chen, C.; Luo, Y.; Zhou, G.; Kuang, Y.; Zhang, Y.; Heenan, M.; Lu, X.; Wen, D. Effects of Climate on Soil Phosphorus Cycle and Availability in Natural Terrestrial Ecosystems. Glob. Change Biol. 2018, 24, 3344–3356. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Schaap, M.G.; Leij, F.J. Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions. J. Hydrol. 2001, 251, 164–176. [Google Scholar]
- Vereecken, H.; Weynants, M.; Javaux, M.; Pachepsky, Y.; Schaap, M.G.; van Genuchten, M.T. Using Pedotransfer Functions to Estimate the van Genuchten-Mualem Soil Hydraulic Properties: A Review. Vadose Zone J. 2010, 9, 795–820. [Google Scholar] [CrossRef]
- Robinson, D.A.; Nemes, A.; Reinsch, S.; Radbourne, A.; Bentley, L.; Keith, A.M. Global Meta-Analysis of Soil Hydraulic Properties on the Same Soils with Differing Land Use. Sci. Total Environ. 2022, 852, 158506. [Google Scholar] [CrossRef] [PubMed]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef]
- Collenteur, R.; Vremec, M.; Brunetti, G. Interfacing FORTAN Code with Python: An Example for the Hydrus-1D Model. In Proceedings of the EGU General Assembly, Online, 3–8 May 2020. [Google Scholar]
- Chen, Y.; Guan, Y.; Shao, G.; Zhang, D. Investigating Trends in Streamflow and Precipitation in Huangfuchuan Basin with Wavelet Analysis and the Mann-Kendall Test. Water 2016, 8, 77. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Baig, M.R.I.; Shahfahad; Naikoo, M.W.; Ansari, A.H.; Ahmad, S.; Rahman, A. Spatio-Temporal Analysis of Precipitation Pattern and Trend Using Standardized Precipitation Index and Mann–Kendall Test in Coastal Andhra Pradesh. Model. Earth Syst. Environ. 2022, 8, 2733–2752. [Google Scholar] [CrossRef]
- Noori, R.; Woolway, R.I.; Saari, M.; Pulkkanen, M.; Kløve, B. Six Decades of Thermal Change in a Pristine Lake Situated North of the Arctic Circle. Water Resour. Res. 2022, 58, e2021WR031543. [Google Scholar] [CrossRef]
- Noori, R.; Maghrebi, M.; Jessen, S.; Bateni, S.M.; Heggy, E.; Javadi, S.; Noury, M.; Pistre, S.; Abolfathi, S.; AghaKouchak, A. Decline in Iran’s Groundwater Recharge. Nat. Commun. 2023, 14, 6674. [Google Scholar] [CrossRef]
Start | End | Rating |
---|---|---|
0.5 | 1.5 | 1 |
1.5 | 2.5 | 2 |
2.5 | 3.5 | 3 |
3.5 | 4.5 | 4 |
4.5 | 5.5 | 5 |
Thematic Layers | Layer Information | Types | Publisher (Source) |
---|---|---|---|
Soil Series Map | South Korea RDA Database (upon request) | Vector | Korea RDA (http://soil.rda.go.kr/ (accessed on 9 June 2022)) |
Organic Matter Content | Estimated from Soil Organic Carbon Content | Tabular | |
Total Phosphorous | Estimated from Soil Organic Carbon Content | Tabular | |
Particle Size Distribution | South Korea RDA Database | Tabular | |
van Genuchten’s n | Estimated from Particle Size Distribution | Tabular | |
Saturation Degree | Simulated using Phydrus | Tabular | - |
Pattern | Saturation Degree | Attenuation Capacity | ||||
---|---|---|---|---|---|---|
10 cm | 50 cm | 100 cm | 10 cm | 50 cm | 100 cm | |
Oscillating CS | 27.94 | 29.42 | 17.74 | 3.90 | ||
Sporadic CS | 7.20 | 4.73 | 12.07 | 2.87 | 3.02 | 4.22 |
Diminishing CS | 7.06 | 0.004 | 5.28 | |||
Persistent CS | 1.81 | 9.62 | 18.25 | 32.09 | 7.13 | |
Intensifying CS | 7.52 | 4.42 | 0.50 | |||
Intensifying HS | 37.55 | 19.17 | 12.10 | |||
Persistent HS | 8.90 | 3.37 | 6.80 | 11.61 | 27.51 | 1.03 |
Diminishing HS | 0.03 | |||||
Sporadic HS | 2.90 | 3.68 | 7.40 | 0.64 | 1.35 | 32.28 |
Oscillating HS | 25.24 | 23.75 | 12.73 | 20.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saputra, L.; Kim, S.H.; Lee, K.-J.; Ki, S.J.; Jo, H.Y.; Lee, S.; Chung, J. A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea. Hydrology 2024, 11, 19. https://doi.org/10.3390/hydrology11020019
Saputra L, Kim SH, Lee K-J, Ki SJ, Jo HY, Lee S, Chung J. A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea. Hydrology. 2024; 11(2):19. https://doi.org/10.3390/hydrology11020019
Chicago/Turabian StyleSaputra, Livinia, Sang Hyun Kim, Kyung-Jin Lee, Seo Jin Ki, Ho Young Jo, Seunghak Lee, and Jaeshik Chung. 2024. "A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea" Hydrology 11, no. 2: 19. https://doi.org/10.3390/hydrology11020019
APA StyleSaputra, L., Kim, S. H., Lee, K. -J., Ki, S. J., Jo, H. Y., Lee, S., & Chung, J. (2024). A Conceptual Framework for Modeling Spatiotemporal Dynamics of Diesel Attenuation Capacity: A Case Study across Namyangju, South Korea. Hydrology, 11(2), 19. https://doi.org/10.3390/hydrology11020019