Some Remarks About Forward and Inverse Modelling in Hydrology, Within a General Conceptual Framework
Abstract
1. Introduction
- The introduction of a proper terminology, focused on the use of mathematical models in geophysics and environmental physics;
- The discussion of some properties of the DIP by making use of a paradigmatic example of a non-linear model;
- Some methods of solution to the DIP, which belong to the family of the so-called “direct” methods, are embedded in the abovementioned conceptual framework;
- The Bayesian approach is also embedded in the abovementioned conceptual approach in order to discuss a couple of aspects that can be relevant.
2. A Paradigmatic Problem
3. Forward Modelling
- Comparison of the model outcomes with the results of laboratory and field experiments in order to test the validity of physical theories;
- Interpretation of field data for the determination of physical properties of natural systems (e.g., interpretation of well tests);
- Simulation of the impact of management and exploitation of water resources on the natural systems;
- Simulation of the effects of remediation actions to support risk analysis concerning the pollution of water resources and the environment;
- Simulations of the impacts of land use programs on water resources for strategic environmental assessment and for environmental impact assessment;
- Simulation of the impacts of natural stressors (e.g., climate change) to support risk analysis related to hydro-meteorological intense events;
- Support to the optimal design and setup of monitoring networks or laboratory and field experiments, including sampling frequency, precision of the instruments, and of the measuring procedures and gauges resolution.
3.1. Statement of the Forward Problem
- Two-dimensional or three-dimensional problems;
- Transient conditions, recalling the remark in the line after (4);
- Different methods of numerical solution of the partial differential equations (e.g., finite elements and spectral methods);
- Non-linear processes, for which and depend on .
3.2. Data and Parameters
- The position of the points where potential is measured;
- The measured values of potential;
- Other measurements necessary to estimate the values of the source terms or the BICs.
- Time series of water level or discharge measured at stream gauging stations;
- Time series of rainfall rate monitored at meteorological stations in the drainage basin;
- Topographic data or a digital elevation model of the drainage basin.
3.3. Terminology About Results and Forecast of a Mathematical Model
Climate prediction
A climate prediction or climate forecast is the result of an attempt to produce an estimate of the actual evolution of the climate in the future, for example, at seasonal, interannual, or long-term time scales. Since the future evolution of the climate system may be highly sensitive to initial conditions, such predictions are usually probabilistic in nature. See also Climate projection and climate scenario.
Climate projection
A projection of the response of the climate system to emission or concentration scenarios of greenhouse gases and aerosols, or radiative forcing scenarios, often based upon simulations by climate models. Climate projections are distinguished from climate predictions in order to emphasise that climate projections depend upon the emission/concentration/radiative forcing scenario used, which are based on assumptions concerning, for example, future socioeconomic and technological developments that may or may not be realised and are therefore subject to substantial uncertainty.
4. Discrete Inverse Problems
- ,
- .
4.1. Remarks About the Discrepancy Function
- A threshold that keeps positive the denominator of , even in the particular case when ;
- A weight that controls some characteristics of the objective function:
- If and , then reduces to the root-mean-squared relative difference between and .
- If assumes large values, it dampens the errors for low values of , namely, if ; therefore, the relative errors corresponding to large values of will be dominant, so that early-time behaviour, when , , and are small, is less relevant to the model fitting.
- If , then reduces to the standard root-mean-squared error.
4.2. Remarks About the DIP for the Paradigmatic Example
4.3. Insights into the DIP Through the Example of the Curve Number Approach
5. Further Remarks About the DIP
5.1. Some Remarks About Ill-Posedness of DIP
5.2. Solution Methods Based on Comparison Among Model Forecasts
5.3. Bayesian Approach
- is the posterior probability density function (pdf);
- is the likelihood [123], i.e., the conditional pdf of the discrepancy between model forecasts and target values conditioned with respect to the array;
- is the prior pdf of , i.e., the pdf of the values of the parameters to be calibrated, without any information from measured data and model outcomes;
- is the marginal pdf, i.e., the pdf of the discrepancies between and , without any information from measured data and model outcomes.
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
BCs | boundary conditions; |
BICs | boundary and initial conditions; |
CMM | comparison Model Method; |
DCM | dual constraint Method; |
DIP | discrete inverse problem; |
FP | forward problem; |
probability density function. |
array of data; | |
array of functions describing the FP; | |
function of denoting the solution to the FP; | |
array including model parameters; | |
array of model parameters whose values must be fitted; | |
array of model parameters whose values are fixed; | |
solution to the DIP; | |
array of the state of the system, i.e.,the solution to the FP; | |
array of calibration target; | |
array of model forecasts; | |
set of the admissible model parameters; | |
set of potential solutions to the DIP; | |
set of state of the system; | |
number of elements of ; | |
number of elements of ; | |
number of model parameters; | |
number of elements of ; | |
number of elements of and ; | |
objective function; | |
discrepancy function; | |
, | elements of ; |
, , | numbers. |
a | phenomenological coefficient (e.g., conductivity, diffusivity, and transmissivity); |
discrete phenomenological coefficient (e.g., internode or interblock conductance); | |
b | phenomenological coefficient (capacity); |
f | source/sink term; |
i | node or cell index; |
N | maximum node index; |
u | potential (e.g., hydraulic head, solute concentration, and temperature); |
potential at a node; | |
sum of the source terms in a cell; | |
spacing between adjacent nodes; | |
coefficient matrix for the paradigmatic example; | |
known-term, including sink/source terms and BICs; | |
Lagrangian derivative; | |
measurement points; | |
measured value of the potential; | |
(int) | superscript to denote interpolated quantities. |
curve number; | |
, , | phenomenological coefficients; |
initial abstraction, i.e., losses before runoff begins; | |
m | index to denote different rainfall events; |
M | number of rainfall events considered; |
P | rainfall; |
Q | runoff; |
S | potential maximum retention after runoff begins. |
I, R, D | numbers of infected, recovered, and deceased persons; |
n | time index; |
, | minimum and maximum values of n; |
threshold-and-weight parameter; | |
(j) | apex used in the DIP; |
(ref) | apex used to denote values obtained from reference data. |
likelihood; | |
marginal pdf; | |
posterior pdf; | |
prior pdf; | |
(D) | apex denoting quantities referred to the FP with Dirichlet BCs for DCM; |
(N) | apex denoting quantities referred to the FP with Neuman BCs for DCM; |
ℓ | iteration index for CMM and DCM. |
References
- Narasimhan, T.N. Fourier’s heat conduction equation: History, influence, and connections. Rev. Geophys. 1999, 37, 151–172. [Google Scholar] [CrossRef]
- Menke, W. Geophysical Data Analysis: Discrete Inverse Theory, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Tarantola, A. Inverse Problem Theory and Methods for Model Parameter Estimation; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2004. [Google Scholar]
- Parker, R. Geophysical Inverse Theory; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Aster, R.; Borchers, B.; Thurber, C. Parameter Estimation and Inverse Problems, 2nd ed.; Academic Press: Boston, MA, USA, 2013. [Google Scholar] [CrossRef]
- Zhdanov, M. Inverse Theory and Applications in Geophysics, 2nd ed.; Elsevier: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Hill, M.C.; Tiedeman, C.R. Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions and Uncertainty; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Sun, N. Inverse Problems in Groundwater Modeling; Theory and Applications of Transport in Porous Media; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Nelson, R.W. In-place measurement of permeability in heterogeneous media: 1. Theory of a proposed method. J. Geophys. Res. 1960, 65, 1753–1758. [Google Scholar] [CrossRef]
- Nelson, R.W. In-place measurement of permeability in heterogeneous media: 2. Experimental and computational considerations. J. Geophys. Res. 1961, 66, 2469–2478. [Google Scholar] [CrossRef]
- Emsellem, Y.; De Marsily, G. An Automatic Solution for the Inverse Problem. Water Resour. Res. 1971, 7, 1264–1283. [Google Scholar] [CrossRef]
- Neuman, S.P. Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty. Water Resour. Res. 1973, 9, 1006–1021. [Google Scholar] [CrossRef]
- Neuman, S.P.; Yakowitz, S. A statistical approach to the inverse problem of aquifer hydrology: 1. Theory. Water Resour. Res. 1979, 15, 845–860. [Google Scholar] [CrossRef]
- Neuman, S.P.; Fogg, G.E.; Jacobson, E.A. A statistical approach to the inverse problem of aquifer hydrology: 2. Case study. Water Resour. Res. 1980, 16, 33–58. [Google Scholar] [CrossRef]
- Yakowitz, S.; Duckstein, L. Instability in aquifer identification: Theory and case studies. Water Resour. Res. 1980, 16, 1045–1064. [Google Scholar] [CrossRef]
- Neuman, S.P. A statistical approach to the inverse problem of aquifer hydrology: 3. Improved solution method and added perspective. Water Resour. Res. 1980, 16, 331–346. [Google Scholar] [CrossRef]
- Carrera, J.; Neuman, S.P. Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information. Water Resour. Res. 1986, 22, 199–210. [Google Scholar] [CrossRef]
- Carrera, J.; Neuman, S.P. Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms. Water Resour. Res. 1986, 22, 211–227. [Google Scholar] [CrossRef]
- Yeh, W.W.G. Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem. Water Resour. Res. 1986, 22, 95–108. [Google Scholar] [CrossRef]
- Carrera, J.R. State of the art of the inverse problem applied to the flow and solute transport equations. In Groundwater Flow and Quality Modelling; Custodio, E., Gurgui, A., Lobo Ferreira, J., Eds.; NATO ASI Series. Series C, Mathematical and Physical Sciences; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1988; pp. 549–583. [Google Scholar]
- Ginn, T.R.; Cushman, J.H. Inverse methods for subsurface flow: A critical review of stochastic techniques. Stoch. Hydrol. Hydraul. 1990, 4, 1–26. [Google Scholar] [CrossRef]
- Sun, N.Z.; Yeh, W.G. Coupled inverse problems in groundwater modeling: 2. Identifiability and experimental design. Water Resour. Res. 1990, 26, 2527–2540. [Google Scholar] [CrossRef]
- Chavent, G. On the theory and practice of non-linear least-squares. Adv. Water Resour. 1991, 14, 55–63. [Google Scholar] [CrossRef]
- Certes, C.; de Marsily, G. Application of the pilot point method to the identification of aquifer transmissivities. Adv. Water Resour. 1991, 14, 284–300. [Google Scholar] [CrossRef]
- Carrera, J.; Glorioso, L. On geostatistical formulations of the groundwater flow inverse problem. Adv. Water Resour. 1991, 14, 273–283. [Google Scholar] [CrossRef]
- Parravicini, G.; Giudici, M.; Morossi, G.; Ponzini, G. Minimal a priori assignment in a direct method for determining phenomenological coefficients uniquely. Inverse Probl. 1995, 11, 611–629. [Google Scholar] [CrossRef]
- Giudici, M.; Morossi, G.; Parravicini, G.; Ponzini, G. A New Method for the Identification of Distributed Transmissivities. Water Resour. Res. 1995, 31, 1969–1988. [Google Scholar] [CrossRef]
- McLaughlin, D.; Townley, L.R. A Reassessment of the Groundwater Inverse Problem. Water Resour. Res. 1996, 32, 1131–1161. [Google Scholar] [CrossRef]
- Ferraresi, M.; Todini, E.; Vignoli, R. A solution to the inverse problem in groundwater hydrology based on Kalman filtering. J. Hydrol. 1996, 175, 567–581. [Google Scholar] [CrossRef]
- Vázquez González, R.; Giudici, M.; Ponzini, G.; Parravicini, G. The Differential System Method for the Identification of Transmissivity and Storativity. Transp. Porous Media 1997, 26, 339–371. [Google Scholar] [CrossRef]
- Yeh, T.C.J.; Liu, S. Hydraulic tomography: Development of a new aquifer test method. Water Resour. Res. 2000, 36, 2095–2105. [Google Scholar] [CrossRef]
- Knowles, I.; Yan, A. On the recovery of transport parameters in groundwater modelling. J. Comput. Appl. Math. 2004, 171, 277–290. [Google Scholar] [CrossRef]
- Kuhlman, K.L.; Hinnell, A.C.; Mishra, P.K.; Yeh, T.C.J. Basin-Scale Transmissivity and Storativity Estimation Using Hydraulic Tomography. Groundwater 2008, 46, 706–715. [Google Scholar] [CrossRef]
- Ginn, T.; Haeri, H.; Massoudieh, A.; Foglia, L. Notes on groundwater age in forward and inverse modeling. Transp. Porous Media 2009, 79, 117–134. [Google Scholar] [CrossRef]
- Mariethoz, G.; Renard, P.; Caers, J. Bayesian inverse problem and optimization with iterative spatial resampling. Water Resour. Res. 2010, 46, W11530. [Google Scholar] [CrossRef]
- Baratelli, F.; Giudici, M.; Vassena, C. Single and dual-domain models to evaluate the effects of preferential flow paths in alluvial sediments. Transp. Porous Media 2011, 87, 465–484. [Google Scholar] [CrossRef]
- Baratelli, F.; Giudici, M.; Parravicini, G. Single- and dual-domain models of solute transport in alluvial sediments: The effects of heterogeneity structure and spatial scale. Transp. Porous Media 2014, 105, 315–348. [Google Scholar] [CrossRef]
- Ackerer, P.; Trottier, N.; Delay, F. Flow in double-porosity aquifers: Parameter estimation using an adaptive multiscale method. Adv. Water Resour. 2014, 73, 108–122. [Google Scholar] [CrossRef]
- Liu, F.; Yeh, T.C.J.; Wang, Y.L.; Hao, Y.; Wen, J.C.; Wang, W. Characterization of basin-scale aquifer heterogeneity using transient hydraulic tomography with aquifer responses induced by groundwater exploitation reduction. J. Hydrol. 2020, 588, 125137. [Google Scholar] [CrossRef]
- Kool, J.; Parker, J.; van Genuchten, M. Parameter estimation for unsaturated flow and transport models—A review. J. Hydrol. 1987, 91, 255–293. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Šimůnek, J.; Romano, N.; Durner, W. 3.6.2. Inverse Methods. In Methods of Soil Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 963–1008. [Google Scholar] [CrossRef]
- Dai, Z.; Samper, J. Inverse problem of multicomponent reactive chemical transport in porous media: Formulation and applications. Water Resour. Res. 2004, 40, W07407. [Google Scholar] [CrossRef]
- Zheng, L.; Samper, J. Formulation of the inverse problem of non-isothermal multiphase flow and reactive transport in porous media. In Computational Methods in Water Resources: Volume 2; Developments in Water Science; Miller, C.T., Pinder, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 55, pp. 1317–1327. [Google Scholar] [CrossRef]
- Condon, L.E.; Kollet, S.; Bierkens, M.F.P.; Fogg, G.E.; Maxwell, R.M.; Hill, M.C.; Fransen, H.J.H.; Verhoef, A.; Van Loon, A.F.; Sulis, M.; et al. Global Groundwater Modeling and Monitoring: Opportunities and Challenges. Water Resour. Res. 2021, 57, e2020WR029500. [Google Scholar] [CrossRef]
- Ibbitt, R.P.; O’Donnell, T. Fitting Methods for Conceptual Catchment Models. ASCE J. Hydraul. Div. 1971, 97, 1331–1342. [Google Scholar] [CrossRef]
- Ibbitt, R.P. Effects of random data errors on the parameter values for a conceptual model. Water Resour. Res. 1972, 8, 70–78. [Google Scholar] [CrossRef]
- Clarke, R. A review of some mathematical models used in hydrology, with observations on their calibration and use. J. Hydrol. 1973, 19, 1–20. [Google Scholar] [CrossRef]
- Natale, L.; Todini, E. A stable estimator for linear models: 1. Theoretical development and Monte Carlo Experiments. Water Resour. Res. 1976, 12, 667–671. [Google Scholar] [CrossRef]
- Natale, L.; Todini, E. A stable estimator for linear models: 2. Real world hydrologic applications. Water Resour. Res. 1976, 12, 672–676. [Google Scholar] [CrossRef]
- Johnston, P.R.; Pilgrim, D.H. Parameter optimization for watershed models. Water Resour. Res. 1976, 12, 477–486. [Google Scholar] [CrossRef]
- Mein, R.G.; Brown, B.M. Sensitivity of optimized parameters in watershed models. Water Resour. Res. 1978, 14, 299–303. [Google Scholar] [CrossRef]
- Sorooshian, S.; Dracup, J.A. Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases. Water Resour. Res. 1980, 16, 430–442. [Google Scholar] [CrossRef]
- Hino, M.; Hasebe, M. Analysis Of Hydrologic Characteristics from Runoff Data—A Hydrologic Inverse Problem. J. Hydrol. 1981, 49, 287–313. [Google Scholar] [CrossRef]
- Kuczera, G. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resour. Res. 1983, 19, 1151–1162. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Boyle, D.; Gupta, H.; Sorooshian, S. Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods. Water Resour. Res. 2000, 36, 3663–3674. [Google Scholar] [CrossRef]
- White, L.W.; Vieux, B.; Armand, D. Surface flow model: Inverse problems and predictions. Adv. Water Resour. 2002, 25, 317–324. [Google Scholar] [CrossRef]
- White, L.W.; Vieux, B.; Armand, D.; LeDimet, F.X. Estimation of optimal parameters for a surface hydrology model. Adv. Water Resour. 2003, 26, 337–348. [Google Scholar] [CrossRef]
- Perrin, C.; Michel, C.; Andréassian, V. Improvement of a parsimonious model for streamflow simulation. J. Hydrol. 2003, 279, 275–289. [Google Scholar] [CrossRef]
- Madsen, H. Parameter estimation in distributed hydrologycal catchment modelling using automatic calibration with multiple objectives. Adv. Water Resour. 2003, 26, 205–216. [Google Scholar] [CrossRef]
- Kavetski, D.; Kuczera, G.; Franks, S.W. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour. Res. 2006, 42, W03407. [Google Scholar] [CrossRef]
- Kavetski, D.; Kuczera, G.; Franks, S.W. Bayesian analysis of input uncertainty in hydrological modeling: 2. Application. Water Resour. Res. 2006, 42, W03408. [Google Scholar] [CrossRef]
- Wagener, T.; Wheater, H.S. Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty. J. Hydrol. 2006, 320, 132–154. [Google Scholar] [CrossRef]
- Sitterson, J.; Knightes, C.; Parmar, R.; Wolfe, K.; Avant, B.; Muche, M. An Overview of Rainfall-Runoff Model Types; Technical Report EPA/600/R-17/482; U.S. Environmental Protection Agency: Washington, DC, USA, 2018. [Google Scholar]
- Blasone, R.; Madsen, H.; Rosbjerg, D. Parameter estimation in distributed hydrological modelling: Comparison of global and local optimisation techniques. Nord. Hydrol. 2007, 38, 451–476. [Google Scholar] [CrossRef]
- Abbas, S.A.; Bailey, R.T.; White, J.T.; Arnold, J.G.; White, M.J.; Čerkasova, N.; Gao, J. A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+. Hydrol. Earth Syst. Sci. 2024, 28, 21–48. [Google Scholar] [CrossRef]
- Vozoff, K.; Jupp, D.L.B. Joint Inversion of Geophysical Data. Geophys. J. R. Astron. Soc. 1975, 42, 977–991. [Google Scholar] [CrossRef]
- Giudici, M.; Baratelli, F.; Cattaneo, L.; Comunian, A.; Filippis, G.D.; Durante, C.; Giacobbo, F.; Inzoli, S.; Mele, M.; Vassena, C. A conceptual framework for discrete inverse problems in geophysics. arXiv 2021, arXiv:1901.07937. [Google Scholar] [CrossRef]
- Landau, L.; Lifshitz, E. Fluid Mechanics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1987. [Google Scholar]
- Batchelor, G.K. An Introduction to Fluid Dynamics; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bird, R.; Stewart, W.; Lightfoot, E. Transport Phenomena; Number v. 1 in Transport Phenomena; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Saint-Venant, A.B. Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l’introduction de marées dans leurs lits. C. R. Acad. Sci. 1871, 73, 147–154,237–240. [Google Scholar]
- Yen, B.; Tsai, C.S. On noninertia wave versus diffusion wave in flood routing. J. Hydrol. 2001, 244, 97–104. [Google Scholar] [CrossRef]
- Todini, E. A mass conservative and water storage consistent variable parameter Muskingum-Cunge approach. Hydrol. Earth Syst. Sci. 2007, 11, 1645–1659. [Google Scholar] [CrossRef]
- Yang, Y.; Endreny, T.A. Watershed hydrograph model based on surface flow diffusion. Water Resour. Res. 2013, 49, 507–516. [Google Scholar] [CrossRef]
- Dooge, J.C.I. A general theory of the unit hydrograph. J. Geophys. Res. 1959, 64, 241–256. [Google Scholar] [CrossRef]
- Wang, G.T.; Wu, K. The unit-step function response for several hydrological conceptual models. J. Hydrol. 1983, 62, 119–128. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service Conservation Engineering Division, USDA. Urban Hydrology for Small Watersheds; Technical Report Technical Release 55; United States Department of Agriculture (USDA): Washington, DC, USA, 1986. [Google Scholar]
- Valota, G.; Giudici, M.; Parravicini, G.; Ponzini, G.; Romano, E. Is the Forward Problem of Ground Water Hydrology Always Well Posed? Ground Water 2002, 40, 500–508. [Google Scholar] [CrossRef]
- McIntosh, C. Cambridge Dictionary—English Thesaurus. Available online: https://dictionary.cambridge.org/thesaurus (accessed on 11 December 2023).
- CollinsDictionary.com. Collins Thesaurus. Available online: https://www.collinsdictionary.com/dictionary/english-thesaurus (accessed on 11 December 2023).
- Merriam-Webster, Inc. The Merriam-Webster Thesaurus. Available online: https://www.merriam-webster.com/thesaurus (accessed on 11 December 2023).
- Oxford English Dictionary. Historical Thesaurus. Available online: https://www.oed.com/thesaurus/start (accessed on 11 December 2023).
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Kaiser-Weiss, A.K.; Borsche, M.; Niermann, D.; Kaspar, F.; Lussana, C.; Isotta, F.A.; van den Besselaar, E.; van der Schrier, G.; Undén, P. Added value of regional reanalyses for climatological applications. Environ. Res. Commun. 2019, 1, 071004. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; International Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- Bray, D.; von Storch, H. “Prediction” or “Projection”?: The Nomenclature of Climate Science. Sci. Commun. 2009, 30, 534–543. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Schuster, G.T.; Chen, Y.; Feng, S. Review of Physics-Informed Machine Learning Inversion of Geophysical Data. Geophysics 2024, 89, T337–T356. [Google Scholar] [CrossRef]
- Bandai, T.; Ghezzehei, T.A. Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition. Hydrol. Earth Syst. Sci. 2022, 26, 4469–4495. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning, 2nd ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Comunian, A.; Gaburro, R.; Giudici, M. Inversion of a SIR-based model: A critical analysis about the application to COVID-19 epidemic. Phys. D Nonlinear Phenom. 2020, 413, 132674. [Google Scholar] [CrossRef] [PubMed]
- Yapo, P.; Gupta, H.; Sorooshian, S. Multi-objective global optimization for hydrologic models. J. Hydrol. 1998, 204, 83–97. [Google Scholar] [CrossRef]
- Gupta, H.; Sorooshian, S.; Yapo, P. Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour. Res. 1998, 34, 751–763. [Google Scholar] [CrossRef]
- Vrugt, J.; Gupta, H.; Bastidas, L.; Bouten, W.; Sorooshian, S. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resour. Res. 2003, 39, 1214. [Google Scholar] [CrossRef]
- Aitken, A. Assessing systematic errors in rainfall-runoff models. J. Hydrol. 1973, 20, 121–136. [Google Scholar] [CrossRef]
- Doherty, J.; Hunt, R.J. Two statistics for evaluating parameter identifiability and error reduction. J. Hydrol. 2009, 366, 119–127. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.; Guariso, G.; Guillaume, J.H.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Hadamard, J. Sur les problèmes aux dérivées partielles et leur signification physique. Princet. Univ. Bull. 1902, XIII, 49–52. [Google Scholar]
- Beven, K. Changing ideas in hydrology—The case of physically-based models. J. Hydrol. 1989, 105, 157–172. [Google Scholar] [CrossRef]
- Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. GLUE: 20 years on. Hydrol. Process. 2014, 28, 5897–5918. [Google Scholar] [CrossRef]
- Todini, E.; Biondi, D. Chapter 22. Calibration, parameter estimation, uncertainty, data assimilation, sensitivity analysis, and validation. In Handbook of Applied Hydrology, 2nd ed.; Singh, V.P., Ed.; Mc Graw Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Todini, E. Chapter 26. Predictive Uncertainty Assessment and Decision Making. In Handbook of Applied Hydrology, 2nd ed.; Singh, V.P., Ed.; Mc Graw Hill Education: New York, NY, USA, 2016. [Google Scholar]
- Vrugt, J.A. Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation. Environ. Model. Softw. 2016, 75, 273–316. [Google Scholar] [CrossRef]
- Cattaneo, L.; Comunian, A.; de Filippis, G.; Giudici, M.; Vassena, C. Modeling Groundwater Flow in Heterogeneous Porous Media with YAGMod. Computation 2016, 4, 2. [Google Scholar] [CrossRef]
- De Filippis, G.; Giudici, M.; Margiotta, S.; Negri, S. Conceptualization and characterization of a coastal multi-layered aquifer system in the Taranto Gulf (southern Italy). Environ. Earth Sci. 2016, 75, 686. [Google Scholar] [CrossRef]
- Giudici, M.; Margiotta, S.; Mazzone, F.; Negri, S.; Vassena, C. Modelling hydrostratigraphy and groundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeastern Italy). Environ. Earth Sci. 2012, 67, 1891–1907. [Google Scholar] [CrossRef]
- Ponzini, G.; Crosta, G. The comparison model method: A new arithmetic approach to the discrete inverse problem of groundwater hydrology. Transp. Porous Media 1988, 3, 415–436. [Google Scholar] [CrossRef]
- Ponzini, G.; Lozej, A. Identification of aquifer transmissivities: The comparison model method. Water Resour. Res. 1982, 18, 597–622. [Google Scholar] [CrossRef]
- Vassena, C.; Durante, C.; Giudici, M.; Ponzini, G. The importance of observations on fluxes to constrain ground water model calibration. Phys. Chem. Earth Parts A/B/C 2008, 33, 1105–1110. [Google Scholar] [CrossRef]
- Vassena, C.; Rienzner, M.; Ponzini, G.; Giudici, M.; Gandolfi, C.; Durante, C.; Agostani, D. Modeling water resources of a highly irrigated alluvial plain (Italy): Calibrating soil and groundwater models. Hydrogeol. J. 2012, 20, 449–467. [Google Scholar] [CrossRef]
- Lesnic, D. The comparison model method for determining the flexural rigidity of a beam. J. Inverse-Ill-Posed Probl. 2010, 18, 577–590. [Google Scholar] [CrossRef]
- Pasquier, P.; Marcotte, D. Steady- and transient-state inversion in hydrogeology by successive flux estimation. Adv. Water Resour. 2006, 29, 1934–1952. [Google Scholar] [CrossRef]
- Brouwer, G.; Fokker, P.; Wilschut, F.; Zijl, W. A Direct Inverse Model to Determine Permeability Fields from Pressure and Flow Rate Measurements. Math. Geosci. 2008, 40, 907. [Google Scholar] [CrossRef]
- Zijl, W. A Direct Method for the Identification of the Permeability Field Based on Flux Assimilation by a Discrete Analog of Darcy’s Law. Transp. Porous Media 2004, 56, 87–112. [Google Scholar] [CrossRef]
- Zijl, W.; De Smedt, F.; El-Rawy, M.; Batelaan, O. The Double Constraint Inversion Methodology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Calderón, A.P. On an inverse boundary value problem. In Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro, 1980); Sociedade Brasileira de Matemática: Rio de Janeiro, Brazil, 1980; pp. 65–73. [Google Scholar]
- Heße, F.; Comunian, A.; Attinger, S. What We Talk About When We Talk About Uncertainty. Toward a Unified, Data-Driven Framework for Uncertainty Characterization in Hydrogeology. Front. Earth Sci. 2019, 7, 118. [Google Scholar] [CrossRef]
- Edwards, A. Likelihood; Cambridge University Press: Cambridge, UK, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giudici, M. Some Remarks About Forward and Inverse Modelling in Hydrology, Within a General Conceptual Framework. Hydrology 2024, 11, 189. https://doi.org/10.3390/hydrology11110189
Giudici M. Some Remarks About Forward and Inverse Modelling in Hydrology, Within a General Conceptual Framework. Hydrology. 2024; 11(11):189. https://doi.org/10.3390/hydrology11110189
Chicago/Turabian StyleGiudici, Mauro. 2024. "Some Remarks About Forward and Inverse Modelling in Hydrology, Within a General Conceptual Framework" Hydrology 11, no. 11: 189. https://doi.org/10.3390/hydrology11110189
APA StyleGiudici, M. (2024). Some Remarks About Forward and Inverse Modelling in Hydrology, Within a General Conceptual Framework. Hydrology, 11(11), 189. https://doi.org/10.3390/hydrology11110189