A Composite Approach for Evaluating Operational Cloud Seeding Effect in Stratus Clouds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Zone
2.2. Formulation of the Composite Approach
2.2.1. Transport and Diffusion Regularity of Cloud Seeding Plumes
2.2.2. Determination of Target Area
2.2.3. Selection of Control Areas
- The TA and the CA should be controlled by the same synoptic system. Since the stratus cloud is the prime target of this approach, it is suggested that both the TA and the CA are covered by a spatially homogeneous and temporally continuous cloud deck;
- The size of the CA is the same as that of the TA at any moment or duration after seeding initiation. In addition, the spatial separation between the TA and the CA should be large enough to prevent potential contamination;
- It is recommended to select regions with similar terrain for TA and CA comparison;
- The spatial distribution of variables to be analyzed in the TA and the CA is comparable, such as the number or density of rain gauges distributed as similarly as possible in the TA and the CA.
2.2.4. Description of Multi-Parameter Dynamic Comparison Approach
2.2.5. Applicability and Limitations
3. Results and Discussion
3.1. Application in Estimating Cloud Seeding Effect
3.1.1. Evaluation of Operational Cloud Seeding by Precipitation Data on 4 March 2018
3.1.2. Evaluation of Operational Cloud Seeding by Radar Data on 19 March 2017
3.1.3. Statistical Analysis of Multiple Operational Cloud Seeding Cases
3.2. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerr, R.A. Cloud seeding: One success in 35 years. Science 1982, 217, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.S. Weather modification by cloud seeding. Int. Geophys. Ser. 1980, 24, 195–202. [Google Scholar]
- Hobbs, P.V.; Lyons, J.H.; Locatelli, J.D.; Biswas, K.R.; Radke, L.F.; Weiss, R.R.; Rangno, A.L. Radar Detection of Cloud-Seeding Effects. Science 1981, 213, 1250–1252. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, K.; Ikeda, K.; Tessendorf, S.A.; French, J.R.; Rauber, R.M.; Geerts, B.; Xue, L.; Rasmussen, R.M.; Blestrud, D.R.; Kunkel, M.L. Quantifying snowfall from orographic cloud seeding. Proc. Natl. Acad. Sci. USA 2020, 117, 5190–5195. [Google Scholar] [CrossRef]
- French, J.R.; Friedrich, K.; Tessendorf, S.A.; Rauber, R.M.; Geerts, B.; Rasmussen, R.M.; Xue, L.; Kunkel, M.L.; Blestrud, D.R. Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA 2018, 115, 1168–1173. [Google Scholar] [CrossRef]
- Wang, J.; Yue, Z.; Rosenfeld, D.; Zhang, L.; Zhu, Y.; Dai, J.; Yu, X.; Li, J. The Evolution of an AgI Cloud-Seeding Track in Central China as Seen by a Combination of Radar, Satellite, and Disdrometer Observations. J. Geophys. Res. Atmos. 2021, 126, e2020JD033914. [Google Scholar] [CrossRef]
- Silverman, B.A. A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteorol. Soc. 2001, 82, 903–924. [Google Scholar] [CrossRef]
- Silverman, B.A. A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteorol. Soc. 2003, 84, 1219–1230. [Google Scholar] [CrossRef]
- Flossmann, A.I.; Manton, M.J.; Abshaev, A.; Bruintjet, R.; Murakami, M.; Prabhakaran, T.; Yao, Z. Peer Review Report on Global Precipitation Enhancement Activities; WMO: Geneva, Switzerland, 2018; pp. 113–115. [Google Scholar]
- Super, A.B. Silver iodide plume characteristics over the Bridger Mountain Range, Montana. J. Appl. Meteorol. Climatol. 1974, 13, 62–70. [Google Scholar] [CrossRef]
- Holroyd, E.W., III; McPartland, J.T.; Super, A.B. Observations of silver iodide plumes over the Grand Mesa of Colorado. J. Appl. Meteorol. Climatol. 1988, 27, 1125–1144. [Google Scholar] [CrossRef]
- Boe, B.A.; Heimbach, J.A., Jr.; Krauss, T.W.; Xue, L.; Chu, X.; McPartland, J.T. The dispersion of silver iodide particles from ground-based generators over complex terrain. Part I: Observations with acoustic ice nucleus counters. J. Appl. Meteorol. Climatol. 2014, 53, 1325–1341. [Google Scholar] [CrossRef]
- Reid, J.D. Studies of pollutant transport and turbulent dispersion over rugged mountainous terrain near Climax, Colorado. Atmos. Environ. 1979, 13, 23–28. [Google Scholar] [CrossRef]
- Li, Z.; Pitter, R. Numerical comparison of two ice crystal formation mechanisms on snowfall enhancement from ground-based aerosol generators. J. Appl. Meteorol. 1997, 36, 70–85. [Google Scholar] [CrossRef]
- Yu, X.; Dai, J.; Rosenfeld, D.; Lei, H.; Xu, X.; Fan, P.; Chen, Z. Comparison of Model-Predicted Transport and Diffusion of Seeding Material with NOAA Satellite-Observed Seeding Track in Supercooled Layer Clouds. J. Appl. Meteorol. 2005, 44, 749–759. [Google Scholar] [CrossRef]
- Hobbs, P.V. The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part III: Case studies of the effects of seeding. J. Appl. Meteorol. Climatol. 1975, 14, 819–858. [Google Scholar] [CrossRef]
- Fisher, J.M.; Lytle, M.L.; Kunkel, M.L.; Blestrud, D.R.; Dawson, N.W.; Parkinson, S.K.; Edwards, R.; Benner, S.G. Assessment of Ground-Based and Aerial Cloud Seeding Using Trace Chemistry. Adv. Meteorol. 2018, 2018, 7293987. [Google Scholar] [CrossRef]
- Bruintjes, R.T.; Clark, T.L.; Hall, W.D. The dispersion of tracer plumes in mountainous regions in central Arizona: Comparisons between observations and modeling results. J. Appl. Meteorol. Climatol. 1995, 34, 971–988. [Google Scholar] [CrossRef]
- Friedrich, K.; French, J.R.; Tessendorf, S.A.; Hatt, M.; Weeks, C.; Rauber, R.M.; Geerts, B.; Xue, L.; Rasmussen, R.M.; Blestrud, D.R.; et al. Microphysical Characteristics and Evolution of Seeded Orographic Clouds. J. Appl. Meteorol. Climatol. 2021, 60, 909–934. [Google Scholar] [CrossRef]
- Li, D.; Zhao, C.; Li, P.; Liu, C.; Gong, D.; Liu, S.; Yuan, Z.; Chen, Y. Macro-and Micro-physical Characteristics of Different Parts of Mixed Convective-stratiform Clouds and Differences in Their Responses to Seeding. Adv. Atmos. Sci. 2022, 39, 2040–2055. [Google Scholar] [CrossRef]
- Chu, X.; Geerts, B.; Xue, L.; Rasmussen, R. Large-Eddy Simulations of the Impact of Ground-Based Glaciogenic Seeding on Shallow Orographic Convection: A Case Study. J. Appl. Meteorol. Climatol. 2017, 56, 69–84. [Google Scholar] [CrossRef]
- Jing, X.; Geerts, B.; Boe, B. The extra-area effect of orographic cloud seeding: Observational evidence of precipitation enhancement downwind of the target mountain. J. Appl. Meteorol. Climatol. 2016, 55, 1409–1424. [Google Scholar] [CrossRef]
- Pokharel, B.; Geerts, B.; Jing, X. The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A case study of a shallow orographic cloud with large supercooled droplets. J. Geophys. Res. Atmos. 2015, 120, 6056–6079. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Yu, X.; Dai, J. Satellite-Retrieved Microstructure of AgI Seeding Tracks in Supercooled Layer Clouds. J. Appl. Meteorol. 2005, 44, 760–767. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Jiang, Q.; Wang, G.; Jia, S.; Duan, J.; Zhou, Y. Evaluation of hygroscopic cloud seeding in liquid-water clouds: A feasibility study. Atmos. Chem. Phys. 2019, 19, 14967–14977. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, C.; Huang, Z.; Mai, R.; Lv, F.; Xue, X.; Zhang, X.; Hou, S.; Yang, Y.; Yang, Y. Increase of precipitation by cloud seeding observed from a case study in November 2020 over Shijiazhuang, China. Atmos. Res. 2021, 262, 105766. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, C.; Yang, Y.; Wang, Y.; Sun, Y.; Fan, R. Distinct Change of Supercooled Liquid Cloud Properties by Aerosols From an Aircraft-Based Seeding Experiment. Earth Space Sci. 2020, 7, e2020EA001196. [Google Scholar] [CrossRef]
- Woodley, W.L.; Rosenfeld, D. The development and testing of a new method to evaluate the operational cloud-seeding programs in Texas. J. Appl. Meteorol. 2004, 43, 249–263. [Google Scholar] [CrossRef]
- Manton, M.J.; Peace, A.D.; Kemsley, K.; Kenyon, S.; Speirs, J.C.; Warren, L.; Denholm, J. Further analysis of a snowfall enhancement project in the Snowy Mountains of Australia. Atmos. Res. 2017, 193, 192–203. [Google Scholar] [CrossRef]
- Silverman, B.A. An evaluation of eleven operational cloud seeding programs in the watersheds of the Sierra Nevada Mountains. Atmos. Res. 2010, 97, 526–539. [Google Scholar] [CrossRef]
- Xue, L.; Chu, X.; Rasmussen, R.; Breed, D.; Geerts, B. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI Dispers. Seeding Signals Simulated By WRF. J. Appl. Meteorol. Climatol. 2016, 55, 445–464. [Google Scholar]
- Xue, L.; Weeks, C.; Chen, S.; Tessendorf, S.A.; Rasmussen, R.M.; Ikeda, K.; Kosovic, B.; Behringer, D.; French, J.R.; Friedrich, K.; et al. Comparison between Observed and Simulated AgI Seeding Impacts in a Well-Observed Case from the SNOWIE Field Program. J. Appl. Meteorol. Climatol. 2022, 61, 345–367. [Google Scholar] [CrossRef]
- Geresdi, I.; Xue, L.; Sarkadi, N.; Rasmussen, R. Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Three-Dimensional Simulation of Real Cases. J. Appl. Meteorol. Climatol. 2020, 59, 1537–1555. [Google Scholar] [CrossRef]
- Guo, X.; Fu, D.; Li, X.; Hu, Z.; Lei, H.; Xiao, H.; Hong, Y. Advances in cloud physics and weather modification in China. Adv. Atmos. Sci. 2015, 32, 230–249. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, B. Study on Diffusion regularity and operation design of antiaircraft-gun, rocket and plane cloud seeing. Meteorol. Mon. 2014, 40, 965–980. (In Chinese) [Google Scholar]
- Yue, Z.; Yu, X.; Liu, G.; Wang, J.; Dai, J.; Li, J. Effect evaluation of an operational precipitation enhancement in cold clouds by aircraft. Acta Meteorol. Sin. 2021, 79, 853–863. [Google Scholar]
- Wang, J.; Rossow, W.B. Determination of cloud vertical structure from upper-air observations. J. Appl. Meteorol. 1995, 34, 2243–2258. [Google Scholar]
Variables | Mean | SDEV | RMSE | MRE | MDB |
---|---|---|---|---|---|
COT | 65.3 | 36.46 | 5.9 | 8.45% | −0.47 |
CTH (km) | 6.89 | 3.2 | 0.64 | 7.41% | 0.1 |
Precipitation (mm) | 0.64 | 0.18 | 0.18 | 23.7% | 0.07 |
Date | Flight Time (UTC) | AgI Dosage (g) | K Value Since Cloud Seeding Initiation | |||||
---|---|---|---|---|---|---|---|---|
0~1 h | 1~2 h | 2~3 h | 3~4 h | 4~5 h | Mean | |||
20160918 | 01:00~04:36 | 2500 | 0.3 | 0.3 | 0.8 | 0.9 | 0.3 | 0.58 |
20161022 | 05:15~07:25 | 2500 | 0.9 | 1 | 0.8 | 1.25 | 1 | 1.01 |
20161023 | 01:06~04:15 | 2500 | 0.5 | 0.7 | 0.4 | 0.5 | 0.2 | 0.45 |
20161027 | 04:57~07:29 | 2500 | 1 | 0.7 | 0.6 | 1 | 0.6 | 0.73 |
20161012 | 02:08~05:10 | 2500 | 0.07 | 1.7 | 1.2 | 0.8 | 0.94 | |
06:23~08:56 | 2500 | 0.5 | 1.1 | 0.8 | 0.14 | 0.11 | 0.54 | |
20170312 | 08:25~10:26 | 2500 | 0.5 | 1.5 | 0.86 | 1.6 | 2.1 | 1.52 |
20170323 | 02:40~06:23 | 2500 | 3.2 | 2.2 | 0.28 | 2.4 | 0.8 | 1.42 |
20170409 | 01:09~04:31 | 2500 | 1.4 | 1.4 | 1.3 | 1 | 1.9 | 1.40 |
20170503 | 01:05~04:30 | 2500 | 1.89 | 1.62 | 1.85 | 2.06 | 2.15 | 1.92 |
20170522 | 05:12~08:09 | 2500 | 2.76 | 2.67 | 1.79 | 1.02 | 1.3 | 1.70 |
20170904 | 01:36~04:23 | 2500 | 0.7 | 0.6 | 0.6 | 0.9 | 0.8 | 0.73 |
20180304 | 02:29~07:31 | 2500 | 1.4 | 1.8 | 1.8 | 1.4 | 0.9 | 1.48 |
20180412 | 05:55~09:17 | 2500 | 3.6 | 5.2 | 3.1 | 3.1 | 3.75 | |
20180506 | 01:41~03:57 | 2500 | 1.3 | 1.1 | 0.6 | 0.5 | 1.2 | 0.85 |
05:12~08:30 | 2500 | 0.9 | 0.8 | 1.3 | 1.1 | 0.8 | 1.00 | |
20180510 | 02:15~05:58 | 2500 | 0.6 | 0.6 | 1.2 | 2 | 2.3 | 1.53 |
07:17~10:55 | 2500 | 1.2 | 0.9 | 1 | 1 | 0.9 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Chen, B.; Yue, Z.; Wang, J.; Li, D.; Lin, D.; Tang, Y.; Luan, T. A Composite Approach for Evaluating Operational Cloud Seeding Effect in Stratus Clouds. Hydrology 2024, 11, 167. https://doi.org/10.3390/hydrology11100167
Wang F, Chen B, Yue Z, Wang J, Li D, Lin D, Tang Y, Luan T. A Composite Approach for Evaluating Operational Cloud Seeding Effect in Stratus Clouds. Hydrology. 2024; 11(10):167. https://doi.org/10.3390/hydrology11100167
Chicago/Turabian StyleWang, Fei, Baojun Chen, Zhiguo Yue, Jin Wang, Dejun Li, Dawei Lin, Yahui Tang, and Tian Luan. 2024. "A Composite Approach for Evaluating Operational Cloud Seeding Effect in Stratus Clouds" Hydrology 11, no. 10: 167. https://doi.org/10.3390/hydrology11100167
APA StyleWang, F., Chen, B., Yue, Z., Wang, J., Li, D., Lin, D., Tang, Y., & Luan, T. (2024). A Composite Approach for Evaluating Operational Cloud Seeding Effect in Stratus Clouds. Hydrology, 11(10), 167. https://doi.org/10.3390/hydrology11100167