Understanding Spatio-Temporal Hydrological Dynamics Using SWAT: A Case Study in the Pativilca Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. SWAT Hydrological Modeling
2.4. SWAT Model Set-Up
2.4.1. Model Calibration
2.4.2. Model Validation
2.4.3. Model Performance Evaluation
2.4.4. Sensitivity Analysis Using SWAT-CUP
3. Results
3.1. Regionalization and Analysis of Climatic Variables
3.2. Assessment of Hydrological Parameters
3.3. Calibration and Validation Results
3.4. Hydrologic Cycle and Water Balance Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shemer, H.; Wald, S.; Semiat, R. Challenges and Solutions for Global Water Scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The Sustainable Development Goals Report 2024; United Nations: San Francisco, CA, USA, 2024. [Google Scholar]
- Cullen, K.A. A review of applications of remote sensing for drought studies in the Andes region. J. Hydrol. Reg. Stud. 2023, 49, 101483. [Google Scholar] [CrossRef]
- Fernandez, N.; Camacho, L.A.; Nejadhashemi, A.P. Modeling streamflow in headwater catchments: A data-based mechanistic grounded framework. J. Hydrol. Reg. Stud. 2022, 44, 101243. [Google Scholar] [CrossRef]
- Muñoz, R.; Huggel, C.; Drenkhan, F.; Vis, M.; Viviroli, D. Comparing model complexity for glacio-hydrological simulation in the data-scarce Peruvian Andes. J. Hydrol. Reg. Stud. 2021, 37, 100932. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- Janjić, J.; Tadić, L. Fields of Application of SWAT Hydrological Model—A Review. Earth 2023, 4, 331–344. [Google Scholar] [CrossRef]
- Hlaing, P.T.; Humphries, U.W.; Waqas, M. Hydrological model parameter regionalization: Runoff estimation using machine learning techniques in the Tha Chin River Basin, Thailand. MethodsX 2024, 13, 102792. [Google Scholar] [CrossRef]
- Ha, L.T.; Bastiaanssen, W.G.M.; van Griensven, A.; van Dijk, A.I.J.M.; Senay, G.B. Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin. Water 2018, 10, 212. [Google Scholar] [CrossRef]
- Fernandez-Palomino, C.A.; Hattermann, F.F.; Krysanova, V.; Lobanova, A.; Vega-Jácome, F.; Lavado, W.; Santini, W.; Aybar, C.; Bronstert, A. A Novel High-Resolution Gridded Precipitation Dataset for Peruvian and Ecuadorian Watersheds: Development and Hydrological Evaluation. J. Hydrometeorol. 2022, 23, 309–336. [Google Scholar] [CrossRef]
- Huerta, A.; Aybar, C.; Imfeld, N.; Correa, K.; Felipe-Obando, O.; Rau, P.; Drenkhan, F.; Lavado-Casimiro, W. High-resolution grids of daily air temperature for Peru-the new PISCOt v1.2 dataset. Sci. Data 2023, 10, 847. [Google Scholar] [CrossRef]
- Dayal, D.; Pandey, A.; Gupta, P.K.; Kalura, P. Investigating the utility of satellite-based precipitation products for simulating extreme discharge events: An exhaustive model-driven approach for a tropical river basin in India. Environ. Monit. Assess. 2024, 196, 608. [Google Scholar] [CrossRef] [PubMed]
- Ningthoujam, V.; Romeji, N. SWAT Model Calibration and Validation with Remotely Sensed Evapotranspiration data in Maklang-Tuyungbi-Taret lok Ungauged Basin in Manipur, India. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 1–17. [Google Scholar] [CrossRef]
- Qquenta, J.; Rau, P.; Bourrel, L.; Frappart, F.; Lavado-Casimiro, W. Assessment of Bottom-Up Satellite Precipitation Products on River Streamflow Estimations in the Peruvian Pacific Drainage. Remote. Sens. 2024, 16, 11. [Google Scholar] [CrossRef]
- Shree, S.; Kumar, M. Assessment of the Impact of Land Use and Land Cover Change on Hydrological Components of the Upper Watershed of Subarnarekha River Basin, Jharkhand, India Using SWAT Model. Water Conserv. Sci. Eng. 2023, 8, 50. [Google Scholar] [CrossRef]
- Singh, S.K.; Kanga, S.; Gulati, B.; Raič, M.; Sajan, B.; Đurin, B.; Singh, S. Spatial and Temporal Analysis of Hydrological Modelling in the Beas Basin Using SWAT+ Model. Water 2023, 15, 3338. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing Observables in the Lake Chad Basin. Remote. Sens. 2022, 14, 1511. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P. Calibration of a distributed hydrological model based on satellite evapotranspiration. J. Hydrol. 2008, 349, 411–424. [Google Scholar] [CrossRef]
- N’guessan, J.Y.K.; Adahi, B.M.; Konan-Waidhet, A.B.; Kra, J.L.; Koffi, B.; Habel, M.; Brou, D.; Hironobu, S.; Assidjo, E.N. Using the SWAT+ model to assess the conditions of water inflow to a reservoir in an uncontrolled agricultural catchment. Case Study of the Nanan Reservoir in the Lake Taabo catchment (Côte d’Ivoire). Ecohydrol. Hydrobiol. 2024, 24, 568–582. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, H.; Ma, N.; Shang, S.; Wang, Y.; Xu, Q.; Zhu, G. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Sci. Data 2024, 11, 445. [Google Scholar] [CrossRef]
- ANA (Autoridad Nacional del Agua) Evaluación de Recursos Hídricos en la Cuenca del río Pativilca Disponible. Available online: https://hdl.handle.net/20.500.12543/3 (accessed on 22 August 2024).
- Chen, J.; Chen, J. GlobeLand30: Operational global land cover mapping and big-data analysis. Sci. China Earth Sci. 2018, 61, 1533–1534. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef]
- FAO (The Food and Agriculture Organization) FAO Map Catalog Disponible. Available online: https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8 (accessed on 30 August 2024).
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation Soil & Water Assessment Tool; Texax Water Resources Institute: Thrall, TX, USA, 2012; pp. 1–650. [Google Scholar]
- Kausher, R.; Singh, R.; Sinha, A.K. Hydrological modeling and simulation of water balance components using the SWAT model in the coal mining province of the Mahan River catchment, Central India. Environ. Earth Sci. 2024, 83, 185. [Google Scholar] [CrossRef]
- Wang, K.; Yue, D.; Zhang, H. Runoff Simulation of the Upstream Watershed of the Feiling Hydrological Station in the Qinhe River Based on the SWAT Model. Water 2024, 16, 1044. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Li, B.; Feng, Q.; Wang, Y. Historical and future runoff changes and their impacts on stormflow characteristics in the upper Yangtze River basin, China. CATENA 2024, 235, 107684. [Google Scholar] [CrossRef]
- Barresi Armoa, O.L.; Sauvage, S.; Houska, T.; Bieger, K.; Schürz, C.; Sánchez Pérez, J.M. Representation of Hydrological Components under a Changing Climate—A Case Study of the Uruguay River Basin Using the New Version of the Soil and Water Assessment Tool Model (SWAT+). Water 2023, 15, 2604. [Google Scholar] [CrossRef]
- Li, C.; Fang, H. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. CATENA 2021, 201, 105199. [Google Scholar] [CrossRef]
- Izaguirre Liviac, M.F.; Drenkhan, F.; Timaná, M. Actual y futura disponibilidad del agua en un contexto de inseguridad hídrica en la subcuenca de Parón, cuenca del río Santa, Perú. Rev. Kawsaypacha. Soc. y Medio Ambient. 2024, 13. [Google Scholar] [CrossRef]
- Paerregaard, K.; Ullberg, S.B.; Brandshaug, M. Smooth flows? Hydrosocial communities, water governance and infrastructural discord in Peru’s southern highlands. Water Int. 2020, 45, 169–188. [Google Scholar] [CrossRef]
- Defensoría del pueblo del Perú. Reporte de Conflictos Sociales n° 84 Adjuntía para la Prevención de Conflictos Sociales y la Gobernabilidad. 2011. Available online: https://www.defensoria.gob.pe/wp-content/uploads/2018/07/reporte-84.pdf (accessed on 3 October 2024).
- MINAGRI-ANA Proyecto. Obras de Control y Medición de Agua por Bloques de Riego en el Valle Lurín; MINAGRI-ANA Proyecto, 2008. Lima, Peru. Available online: http://www.ana.gob.pe/sites/default/files/publication/files/informe_principal_moche_0.pdf (accessed on 3 October 2024).
- Cruz Castello, F.S.; Mujica San Martín, M.E.; Alvarez Lam, J.; Leslie, J. Cambio Climático, Agua y Desarrollo Humano. 2013. Available online: https://www.undp.org/es/peru/publicaciones/idhperu2013 (accessed on 3 October 2024).
- MINAM Contribuciones Nacionalmente Determinadas|Dirección General de Cambio Climático y Desertificación Disponible. Available online: https://www.minam.gob.pe/cambioclimatico/ndc/ (accessed on 18 September 2024).
- IPCC Climate Change 2021: The Physical Science Basis|Climate Change 2021: The Physical Science Basis Disponible. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 18 September 2024).
- Sun, X.; Wang, G.; Sun, J.; Song, C.; Hu, Z.; Lin, S. More intense and less elevation-dependent hydrological intensity from 2000 to 2015 in the high mountains. Clim. Dyn. 2024, 1–18. [Google Scholar] [CrossRef]
- Clark, M.P.; Fan, Y.; Lawrence, D.M.; Adam, J.C.; Bolster, D.; Gochis, D.J.; Hooper, R.P.; Kumar, M.; Leung, L.R.; Mackay, D.S.; et al. Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res. 2015, 51, 5929–5956. [Google Scholar] [CrossRef]
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- UNFCCC The Paris Agreemen Disponible. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement (accessed on 18 September 2024).
- Fu, A.; Yu, W.; Bashir, B.; Yao, X.; Zhou, Y.; Sun, J.; Alsalman, A.; Alsafadi, K. Remotely Sensed Changes in Qinghai–Tibet Plateau Wetland Ecosystems and Their Response to Drought. Sustainability 2024, 16, 4738. [Google Scholar] [CrossRef]
- Jin, C.; Wang, B.; Cheng, T.F.; Dai, L.; Wang, T. How much we know about precipitation climatology over Tianshan Mountains––the Central Asian water tower. npj Clim. Atmos. Sci. 2024, 7, 21. [Google Scholar] [CrossRef]
- Buytaert, W.; De Bièvre, B.; Wyseure, G.; Deckers, J. The use of the linear reservoir concept to quantify the impact of changes in land use on the hydrology of catchments in the Andes. Hydrol. Earth Syst. Sci. 2004, 8, 108–114. [Google Scholar] [CrossRef]
- Li, Q.; Gao, X.; Li, J.; Yan, A.; Chang, S.; Song, X.; Lo, K. Nonlinear time effects of vegetation response to climate change: Evidence from Qilian Mountain National Park in China. Sci. Total. Environ. 2024, 933, 173149. [Google Scholar] [CrossRef]
- Ougahi, J.H.; Saeed, S.; Hasan, K. Assessment of Hydro-climatic Variables and Its Impact on River Flow Regime in the Sub-basins of the Upper Indus Basin. Earth Syst. Environ. 2023, 7, 307–320. [Google Scholar] [CrossRef]
- Shrestha, S.; Bhatta, B.; Shrestha, M.; Shrestha, P.K. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Sci. Total. Environ. 2018, 643, 1610–1622. [Google Scholar] [CrossRef] [PubMed]
- Cai, P.; Li, R.; Guo, J.; Xiao, Z.; Fu, H.; Guo, T.; Wang, T.; Zhang, X.; Song, X. Spatiotemporal dynamics of groundwater in Henan Province, Central China and their driving factors. Ecol. Indic. 2024, 166, 112372. [Google Scholar] [CrossRef]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 7447. [Google Scholar] [CrossRef]
- Langs, L.E.; Petrone, R.M.; Pomeroy, J.W. Subalpine forest water use behaviour and evapotranspiration during two hydrologically contrasting growing seasons in the Canadian Rockies. Hydrol. Process. 2021, 35, e14158. [Google Scholar] [CrossRef]
- De Costa, D.d.A.; Bayissa, Y.; Villas-Boas, M.D.; Maskey, S.; Lugon Junior, J.; da Silva Neto, A.J.; Srinivasan, R. Water availability and extreme events under climate change scenarios in an experimental watershed of the Brazilian Atlantic Forest. Sci. Total. Environ. 2024, 946, 174417. [Google Scholar] [CrossRef] [PubMed]
- Nigro, M.; Penna, D.; Baneschi, I.; Castelli, G.; Dani, A.; Menichini, M.; Piemontese, L.; Trucchi, P.; Preti, F.; Doveri, M.; et al. The selection of paired watersheds affects the assessment of wildfire hydrological impacts. Sci. Total. Environ. 2024, 941, 173488. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Stanturf, J.A.; Williams, M.D.; Botmann, E.; Madsen, P. Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades. Hydrology 2023, 10, 161. [Google Scholar] [CrossRef]
- Spencer, S.A.; Anderson, A.E.; Silins, U.; Collins, A.L. Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock. Hydrol. Earth Syst. Sci. 2021, 25, 237–255. [Google Scholar] [CrossRef]
- Davids, J.C.; Rutten, M.M.; Shah, R.D.T.; Shah, D.N.; Devkota, N.; Izeboud, P.; Pandey, A.; van de Giesen, N. Quantifying the connections—Linkages between land-use and water in the Kathmandu Valley, Nepal. Environ. Monit. Assess. 2018, 190, 304. [Google Scholar] [CrossRef]
- Wang, L.; Wei, W.; Sun, G.; Fu, B.; Chen, L.; Feng, X.; Ciais, P.; Mitra, B.; Wang, L. Effects of inter-basin transfers on watershed hydrology and vegetation greening in a large inland river basin. J. Hydrol. 2024, 635, 131234. [Google Scholar] [CrossRef]
- Simedo, M.B.L.; Pissarra, T.C.T.; Martins, A.L.M.; Lopes, M.C.; Costa, R.C.A.; Zanata, M.; Pacheco, F.A.L.; Fernandes, L.F.S. The assessment of hydrological availability and the payment for ecosystem services: A pilot study in a brazilian headwater catchment. Water 2020, 12, 2726. [Google Scholar] [CrossRef]
- Uniyal, B.; Kosatica, E.; Koellner, T. Spatial and temporal variability of climate change impacts on ecosystem services in small agricultural catchments using the Soil and Water Assessment Tool (SWAT). Sci. Total. Environ. 2023, 875, 162520. [Google Scholar] [CrossRef]
- Dapin, I.G.; Ella, V.B. Simulating climate variability impacts on streamflow of the layawan river watershed using the swat model. Int. Agric. Eng. J. 2020, 29, 9–23. [Google Scholar]
- He, Y.; Xiong, J.; Guo, S.; Zhong, S.; Yu, C.; Ma, S. Using Multi-Source Data to Assess the Hydrologic Alteration and Extremes under a Changing Environment in the Yalong River Basin. Water 2023, 15, 1357. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Fang, Z.; Liu, G.; Zhang, F.; Zhang, H.; Li, X. Integrating river health into the supply and demand management framework for river basin ecosystem services. Sustain. Prod. Consum. 2022, 33, 189–202. [Google Scholar] [CrossRef]
Datasets | Scale/Resolution | Data Availability/Source |
---|---|---|
SRTM DEM | 30 m | This https://earthexplorer.usgs.gov/ (accessed on 30 September 2024) |
Land Cover | 30 m | The data are openly available at http://www.globallandcover.com/ (accessed on 30 September 2024) and validated by [22,23] (accessed on 30 September 2024) |
Type Soil | 1:5,000,000 | https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8 (accessed on 30 September 2024) [24] |
PISCO SENAMHI | 10 km | The daily precipitation and temperature data were acquired from https://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/index.html?Set-Language=es (accessed on 30 September 2024) |
RAIN4PE | 10 km | The daily precipitation was acquired from https://dataservices.gfz-potsdam.de/pik/showshort.php?id=6f766e20-2d94-11eb-9603-497c92695674 (accessed on 30 September 2024) [10] |
Hydrometric data | daily | The observed flows were obtained from https://snirh.ana.gob.pe/VisorPorCuenca/ (accessed on 30 September 2024) |
Parameters | Description | Type | Low Value | High Value | Fitted Value |
---|---|---|---|---|---|
CN2.mgt | Surface runoff | relative change | −0.5 | 0.5 | −0.355500 |
ALPHA_BF.gw | Base flow factor | Replace | 0 | 1 | 0.855500 |
GW_DELAY.gw | Ground water delay | Replace | 30 | 450 | 81.029999 |
GWQMN.gw | Base flow | Replace | 0 | 2 | 1.455000 |
ESCO.hru | Soil evaporation factor | Replace | 0.01 | 1 | 0.994555 |
GW_REVAP.gw | Ground water delay | Replace | 0.02 | 0.2 | 0.091730 |
REVAPMN.gw | Threshold water depth of shallow aquifer | Replace | 0.01 | 500 | 64.758705 |
N° | Parameters | t-Stat | p-Value |
---|---|---|---|
1 | CN2.mgt | 55.35 | 0.00 |
2 | GWQMN.gw | −1.86 | 0.06 |
3 | GW_DELAY.gw | −1.48 | 0.14 |
4 | GW_REVAP.gw | −0.06 | 0.95 |
5 | ALPHA_BF.gw | 0.24 | 0.81 |
6 | ESCO.hru | 0.28 | 0.78 |
7 | REVAPMN.gw | 0.50 | 0.61 |
Coefficient | Calibration | Validation |
---|---|---|
NSE | 0.69 | 0.72 |
R2 | 0.84 | 0.82 |
PBIAS | −28.01 | −22.51 |
RSR | 0.54 | 0.54 |
KGE | 0.60 | 0.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pachac-Huerta, Y.; Lavado-Casimiro, W.; Zapana, M.; Peña, R. Understanding Spatio-Temporal Hydrological Dynamics Using SWAT: A Case Study in the Pativilca Basin. Hydrology 2024, 11, 165. https://doi.org/10.3390/hydrology11100165
Pachac-Huerta Y, Lavado-Casimiro W, Zapana M, Peña R. Understanding Spatio-Temporal Hydrological Dynamics Using SWAT: A Case Study in the Pativilca Basin. Hydrology. 2024; 11(10):165. https://doi.org/10.3390/hydrology11100165
Chicago/Turabian StylePachac-Huerta, Yenica, Waldo Lavado-Casimiro, Melania Zapana, and Robinson Peña. 2024. "Understanding Spatio-Temporal Hydrological Dynamics Using SWAT: A Case Study in the Pativilca Basin" Hydrology 11, no. 10: 165. https://doi.org/10.3390/hydrology11100165
APA StylePachac-Huerta, Y., Lavado-Casimiro, W., Zapana, M., & Peña, R. (2024). Understanding Spatio-Temporal Hydrological Dynamics Using SWAT: A Case Study in the Pativilca Basin. Hydrology, 11(10), 165. https://doi.org/10.3390/hydrology11100165