Assimilating Soil Moisture Information to Improve the Performance of SWAT Hydrological Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. The SWAT Model
2.3. SWAT Input Data
2.4. Downscaled SMAP SM Retrievals
2.5. Calibration with SWAT-CUP Software
3. Results
3.1. Model Calibration and Validation Using River Flow Measurements
3.1.1. Sensitivity Analysis
3.1.2. Calibration and Validation Results with Flow Measurements
3.2. Model Calibration and Validation Using SMAP Datasets
3.2.1. Sensitivity Analysis
3.2.2. Calibration and Validation Results with SMAP Dataset
3.3. Model Calibration and Validation Using River Flow and SMAP Datasets
3.3.1. Sensitivity Analysis
3.3.2. Calibration and Validation Results with River Flow and SMAP Dataset
3.3.3. Model Evaluation Performance Indicators
3.4. Advantages and Disadvantages of the Proposed Model
3.5. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Musyoka, F.K.; Strauss, P.; Zhao, G.; Srinivasan, R.; Klik, A. Multi-step calibration approach for SWAT model using soil moisture and crop yields in a small agricultural catchment. Water 2021, 13, 2238. [Google Scholar] [CrossRef]
- Mishra, S.K.; Gajbhiye, S.; Pandey, A. Estimation of design runoff curve numbers for Narmada watersheds (India). J. Appl. Water Eng. Res. 2013, 1, 69–79. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Wijayarathne, D.B.; Coulibaly, P. Identification of hydrological models for operational flood forecasting in St. John’s, Newfoundland, Canada. J. Hydrol. Reg. Stud. 2020, 27, 100646. [Google Scholar] [CrossRef]
- Khan, U.; Ajami, H.; Tuteja, N.K.; Sharma, A.; Kim, S. Catchment scale simulations of soil moisture dynamics using an equivalent cross-section based hydrological modelling approach. J. Hydrol. 2018, 564, 944–966. [Google Scholar] [CrossRef]
- Ng, H.Y.F.; Marsalek, J. Simulation of the effects of urbanization on basin streamflow. JAWRA J. Am. Water Resour. Assoc. 1989, 25, 117–124. [Google Scholar] [CrossRef]
- Beven, K. Rainfall-Runoff Modelling; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9780470714591. [Google Scholar]
- Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen,“SHE”, 2: Structure of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 61–77. [Google Scholar] [CrossRef]
- Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [Google Scholar] [CrossRef]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. The HYDRUS2D Software Package for Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturate Media, Version 2.0; U.S. Department of Agriculture: Riverside, CA, USA, 1999.
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 3.0; Department of Environmental Sciences, University of California: Riverside, CA, USA, 2005. [Google Scholar]
- Šimůnek, J.; Van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating the Two- and Three-Dimensions Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media, Version 1.0; PC Progress: Prague, Czech Republic, 2006. [Google Scholar]
- Kollet, S.J.; Maxwell, R.M. Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. Adv. Water Resour. 2006, 29, 945–958. [Google Scholar] [CrossRef]
- Flugel, W.-A. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using prms/mms in the drainage basin of the river brol, germany. Hydrol. Process. 1995, 9, 423–436. [Google Scholar] [CrossRef]
- Refsgaard, J.C.; Knudsen, J. Operational Validation and Intercomparison of Different Types of Hydrological Models. Water Resour. Res. 1996, 32, 2189–2202. [Google Scholar] [CrossRef]
- Kirchner, J.W. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resour. Res. 2006, 42, 1–5. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment Part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Saleh Al-Khafaji, M.; Saeed, F. Effect of DEM and Land Cover Resolutions on Simulated Runoff of Adhaim Watershed by SWAT Model. Eng. Technol. J. 2018, 36, 439–448. [Google Scholar] [CrossRef]
- Al-Khafaji, M.S.; Al-Mukhtar, M.; Mohena, A. Performance of SWAT Model for Long-Term Runoff Simulation within Al-Adhaim Watershed, Iraq. Int. J. Sci. Eng. Res. 2017, 8, 1510. [Google Scholar]
- Farhan, A.M.; Thamiry, D.H.A. Al Estimation of the Surface Runoff Volume of Al-Mohammedi Valley for Long-Term period using SWAT Model. Iraqi J. Civ. Eng. 2020, 14, 7–12. [Google Scholar] [CrossRef]
- Marek, G.W.; Gowda, P.H.; Evett, S.R.; Baumhardt, R.L.; Brauer, D.K.; Howell, T.A.; Marek, T.H.; Srinivasan, R. Calibration and validation of the SWAT model for predicting daily ET over irrigated crops in the Texas High Plains using lysimetric data. Trans. ASABE 2016, 59, 611–622. [Google Scholar] [CrossRef]
- Fang, B.; Kansara, P.; Dandridge, C.; Lakshmi, V. Drought monitoring using high spatial resolution soil moisture data over Australia in 2015–2019. J. Hydrol. 2021, 594, 125960. [Google Scholar] [CrossRef]
- Sungmin, O.; Hou, X.; Orth, R. Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar]
- Sazib, N.; Bolten, J.D.; Mladenova, I.E. Leveraging NASA Soil Moisture Active Passive for Assessing Fire Susceptibility and Potential Impacts Over Australia and California. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 779–787. [Google Scholar] [CrossRef]
- Kumar, S.V.; Dirmeyer, P.A.; Peters-Lidard, C.D.; Bindlish, R.; Bolten, J. Information theoretic evaluation of satellite soil moisture retrievals. Remote Sens. Environ. 2018, 204, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.H.; Popescu, I.; Jonoski, A.; Solomatine, D.P. Remote Sensed and/or Global Datasets for Distributed Hydrological Modelling: A Review. Remote Sens. 2023, 15, 1642. [Google Scholar] [CrossRef]
- Hashem, A.A.; Engel, B.A.; Marek, G.W.; Moorhead, J.E.; Flanagan, D.C.; Rashad, M.; Radwan, S.; Bralts, V.F.; Gowda, P.H. Evaluation of SWAT Soil Water Estimation Accuracy Using Data from Indiana, Colorado, and Texas. Trans. ASABE 2020, 63, 1827–1843. [Google Scholar] [CrossRef]
- Uniyal, B.; Dietrich, J.; Vasilakos, C.; Tzoraki, O. Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices. Agric. Water Manag. 2017, 193, 55–70. [Google Scholar] [CrossRef]
- Coopersmith, E.J.; Cosh, M.H.; Petersen, W.A.; Prueger, J.; Niemeier, J.J. Soil Moisture Model Calibration and Validation: An ARS Watershed on the South Fork Iowa River. J. Hydrometeorol. 2015, 16, 1087–1101. [Google Scholar] [CrossRef]
- De Andrade, C.W.L.; Montenegro, S.M.G.L.; Montenegro, A.A.A.; Lima, J.R.D.S.; Srinivasan, R.; Jones, C.A. Soil moisture and discharge modeling in a representative watershed in northeastern Brazil using SWAT. Ecohydrol. Hydrobiol. 2019, 19, 238–251. [Google Scholar] [CrossRef]
- Van Der Velde, R.; Colliander, A.; Pezij, M.; Benninga, H.J.F.; Bindlish, R.; Chan, S.K.; Jackson, T.J.; Hendriks, D.M.D.; Augustijn, D.C.M.; Su, Z. Validation of SMAP L2 passive-only soil moisture products using upscaled in situ measurements collected in Twente, the Netherlands. Hydrol. Earth Syst. Sci. 2021, 25, 473–495. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D. A Modified SWAT Model to Simulate Soil Water Content and Soil Temperature in Cold Regions: A Case Study of the South Saskatchewan River Basin in Canada. Sustainability 2022, 14, 10804. [Google Scholar] [CrossRef]
- Pignotti, G.; Crawford, M.; Han, E.; Williams, M.R.; Chaubey, I. SMAP soil moisture data assimilation impacts on water quality and crop yield predictions in watershed modeling. J. Hydrol. 2023, 617, 129122. [Google Scholar] [CrossRef]
- Eini, M.R.; Massari, C.; Piniewski, M. Satellite-based soil moisture enhances the reliability of agro-hydrological modeling in large transboundary river basins. Sci. Total Environ. 2023, 873, 162396. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Marcolini, G.; Disse, M.; Chiogna, G. A multi-objective approach to improve SWAT model calibration in alpine catchments. J. Hydrol. 2018, 559, 347–360. [Google Scholar] [CrossRef]
- Gemitzi, A.; Stefanopoulos, K. Evaluation of the effects of climate and man intervention on ground waters and their dependent ecosystems using time series analysis. J. Hydrol. 2011, 403, 130–140. [Google Scholar] [CrossRef]
- Pisinaras, V.; Wei, Y.; Bärring, L.; Gemitzi, A. Conceptualizing and assessing the effects of installation and operation of photovoltaic power plants on major hydrologic budget constituents. Sci. Total Environ. 2014, 493, 239–250. [Google Scholar] [CrossRef]
- Gemitzi, A.; Ajami, H.; Richnow, H.H. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data—Modeling future groundwater recharge to predict potential climate change impacts. J. Hydrol. 2017, 546, 1–13. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation; Version 2009; Technical Report No. 406; Texas Water Resources Institute: College Station, TX, USA, 2011; pp. 1–647. [Google Scholar] [CrossRef]
- NASA; METI; AIST. Japan Space Systems, and U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003 [Dataset]. NASA EOSDIS Land Processes DAAC. 2019. Available online: https://doi.org/10.5067/ASTER/ASTGTM.003 (accessed on 30 July 2020).
- European Union Copernicus Land Monitoring Service 2018, European Environment Agency (EEA). Corine Land Cover (CLC) 2018, Version 2020_20u1. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 13 January 2023).
- NASA EOSDIS Land Processes DAAC ASTER Global Digital Elevation Model V003. Available online: https://lpdaac.usgs.gov/products/astgtmv003/ (accessed on 13 January 2023).
- FAO; UNESCO. Soil Map of the World—Australasia; United Nations Educational, Scientific and Cultural Organization: Paris, France, 1978; Volume 179, ISBN 9231013599. [Google Scholar]
- Yassoglou, N.; Tsadilas, C.; Kosmas, C. The Soils of Greece; World Soils Book Series; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-53332-2. [Google Scholar]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.-W.; Bindlish, R.; Jackson, T.J. A global 1-km downscaled SMAP soil moisture product based onthermal inertia theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Lakshmi, V.; Fang, B. SMAP-Derived 1-km Downscaled Surface Soil Moisture Product, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. 2023. Available online: https://nsidc.org/data/nsidc-0779/versions/1 (accessed on 15 February 2023).
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R.; Chaubell, J.; Colliander, A. SMAP Enhanced L2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 5. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. 2021. Available online: https://nsidc.org/data/spl2smp_e/versions/5 (accessed on 15 February 2023).
- Abbaspour, K.C. SWAT-CUP 2012: SWAT Calibration and Uncertainty Programs—A User Manual. Sci. Technol. 2015, 106, 16–70. [Google Scholar]
- Zhang, Z.; Montas, H.; Shirmohammadi, A.; Leisnham, P.T.; Negahban-Azar, M. Impacts of Land Cover Change on the Spatial Distribution of Nonpoint Source Pollution Based on SWAT Model. Water 2023, 15, 1174. [Google Scholar] [CrossRef]
- Janjić, J.; Tadić, L. Fields of Application of SWAT Hydrological Model—A Review. Earth 2023, 4, 331–344. [Google Scholar] [CrossRef]
- Chen, M.; Janssen, A.B.G.; de Klein, J.J.M.; Du, X.; Lei, Q.; Li, Y.; Zhang, T.; Pei, W.; Kroeze, C.; Liu, H. Comparing critical source areas for the sediment and nutrients of calibrated and uncalibrated models in a plateau watershed in southwest China. J. Environ. Manag. 2023, 326, 116712. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Waseem, M.; Mani, N.; Andiego, G.; Usman, M. A Review of Criteria of Fit for Hydrological Models. Int. Res. J. Eng. Technol. 2008, 9001, 1765. [Google Scholar]
- Depetris, P.J. The Importance of Monitoring River Water Discharge. Front. Water 2021, 3, 745912. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Paul, M.; Rajib, M.A.; Ahiablame, L. Spatial and Temporal Evaluation of Hydrological Response to Climate and Land Use Change in Three South Dakota Watersheds. J. Am. Water Resour. Assoc. 2017, 53, 69–88. [Google Scholar] [CrossRef]
- Nilawar, A.P.; Calderella, C.P.; Lakhankar, T.Y.; Waikar, M.L.; Munoz, J. Satellite soil moisture validation using hydrological SWAT model: A case study of Puerto Rico, USA. Hydrology 2017, 4, 45. [Google Scholar] [CrossRef]
- Tareen, A.D.K.; Nadeem, M.S.A.; Kearfott, K.J.; Abbas, K.; Khawaja, M.A.; Rafique, M. Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Appl. Radiat. Isot. 2019, 154, 108861. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Xiong, Y.; Ta, Z.; Gan, M.; Yang, M.; Chen, X.; Yu, R.; Disse, M.; Yu, Y. Evaluation of CMIP5 climate models using historical surface air temperatures in central Asia. Atmosphere 2021, 12, 308. [Google Scholar] [CrossRef]
- Lu, J.; Chen, X.; Zhang, L.; Sauvage, S.; Sćnchez-Pérez, J.M. Water balance assessment of an ungauged area in Poyang Lake watershed using a spatially distributed runoff coefficient model. J. Hydroinform. 2018, 20, 1009–1024. [Google Scholar] [CrossRef]
- Ahmed, A.; Yildirim, G.; Haddad, K.; Rahman, A. Regional Flood Frequency Analysis: A Bibliometric Overview. Water 2023, 15, 1658. [Google Scholar] [CrossRef]
- Donmez, C.; Sari, O.; Berberoglu, S.; Cilek, A.; Satir, O.; Volk, M. Improving the applicability of the swat model to simulate flow and nitrate dynamics in a flat data-scarce agricultural region in the mediterranean. Water 2020, 12, 3479. [Google Scholar] [CrossRef]
- Santos, C.A.S.; Almeida, C.; Ramos, T.B.; Rocha, F.A.; Oliveira, R.; Neves, R. Using a hierarchical approach to calibrate SWAT and predict the semi-arid hydrologic regime of northeastern Brazil. Water 2018, 10, 1137. [Google Scholar] [CrossRef]
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Calibration and Validation of SWAT Model by Using Hydrological Remote Sensing Observables in the Lake Chad Basin. Remote Sens. 2022, 14, 1511. [Google Scholar] [CrossRef]
ID | NAME | Daily Precipitation (mm) | Daily Maximum Temperature (°C) | Daily Minimum Temperature (°C) |
---|---|---|---|---|
1 | KOMOTINI WEATHER STATION | Average: 1.81 Maximum: 121.00 Minimum: 0.00 STDEV: 7.15 | Average: 20.39 Maximum: 39.60 Minimum: −5.60 STDEV: 8.81 | Average: 8.58 Maximum: 26.10 Minimum: −12.20 STDEV: 7.75 |
2 | NYMFAIA WEATHER STATION | Average: 2.19 Maximum: 82.60 Minimum: 0.00 STDEV: 7.31 | Average: 18.66 Maximum: 35.70 Minimum: −4.50 STDEV: 8.93 | Average: 7.73 Maximum: 24.85 Minimum: −14.00 STDEV: 7.82 |
3 | KERASEA WEATHER STATION | Average: 2.19 Maximum: 89.60 Minimum: 0.00 STDEV: 6.93 | Average: 19.82 Maximum: 37.00 Minimum: −3.30 STDEV: 8.80 | Average: 7.56 Maximum: 24.50 Minimum: −12.30 STDEV: 7.82 |
4 | KOSMIO WEATHER STATION | Average: 2.14 Maximum: 91.40 Minimum: 0.00 STDEV: 7.57 | Average: 20.85 Maximum: 40.40 Minimum: −3.40 STDEV: 8.69 | Average: 7.92 Maximum: 26.40 Minimum: −13.20 STDEV: 7.87 |
ID | Name | Elevation (m) | Measurement Period | SM Measurement Period |
---|---|---|---|---|
1 | Komotini Weather Station | 33 | 1 January 2014–31 December 2022 | 1 January 2019–31 December 2022 |
2 | Nymfaia Weather Station | 616 | 1 January 2019–31 December 2022 | 1 January 2019–31 December 2022 |
3 | Kerasea Weather Station | 587 | 1 January 2019–31 December 2022 | 1 January 2019–31 December 2022 |
4 | Kosmio Weather StatioN | 60 | 1 January 2019–31 December 2022 | - |
5 | Vrb Outlet River Gauge | 6 | 1 January 2019–31 December 2022 | - |
No | Parameter Name | Parameter Description | Initial Parameter Range |
---|---|---|---|
1 | R__CN2.mgt | Runoff curve number | (−0.25, 0.25) |
2 | V__ALPHA_BF.gw | Alpha baseflow factor | (0.01, 1.00) |
3 | V__GW_DELAY.gw | Groundwater delay time | (0.50, 50.00) |
4 | V__GWQMN.gw | Threshold water depth in the shallow aquifer required for return flow to occur | (0.01, 5000.00) |
5 | V__ESCO.hru | Soil evaporation compensation coefficient | (0.01, 1.00) |
6 | V__EPCO.hru | Plant uptake compensation coefficient | (0.01, 1.00) |
7 | V__REVAPMN.gw | Reevaporation threshold | (0.01, 500.00) |
8 | V__GW_REVAP.gw | Groundwater “revap” coefficient | (0.01, 0.20) |
9 | R__OV_N.hru | Manning’s “n” value for overland flow | (−0.20, 0.20) |
10 | R__SOL_K(..).sol | Saturated hydraulic conductivity | (−0.15, 0.15) |
11 | R__SOL_BD(..).sol | Moist bulk density | (−0.15, 0.15) |
12 | R__SOL_AWC(..).sol | Available water capacity of the soil layer | (−0.15, 0.15) |
13 | V__CH_BED_BD.rte | Bulk density of channel bed sediment | (1.20, 1.70) |
14 | V__CH_BNK_BD.rte | Bulk density of channel bank sediment | (1.20, 1.70) |
15 | V__SURLAG.bsn | Surface runoff lag coefficient | (0.50, 20.00) |
Model Evaluation | R2 | NS |
---|---|---|
CALIBRATION PERIOD (2019–2020) | 0.69 | 0.61 |
VALIDATION PERIOD (2021–2022) | 0.65 | 0.58 |
No | Parameter Name | Parameter Description | Initial Parameter Range |
---|---|---|---|
1 | R__CN2.mgt | Runoff curve number | (−0.25, 0.25) |
2 | V__ALPHA_BF.gw | Alpha baseflow factor | (0.01, 1.00) |
3 | V__GW_DELAY.gw | Groundwater delay time | (0.50, 50.00) |
4 | V__RCHRG_DP.gw | Recharge to deep aquifer | (0.10, 0.50) |
5 | R__SOL_AWC(..).sol | Available water capacity of the soil layer | (−0.15, 0.15) |
6 | R__SOL_K(..).sol | Saturated hydraulic conductivity | (−0.15, 0.15) |
7 | V__ESCO.hru | Soil evaporation compensation coefficient | (0.01, 1.00) |
8 | V__GW_REVAP.gw | Groundwater “revap” coefficient | (0.01, 0.20) |
Model Evaluation | R2 | NS |
---|---|---|
CALIBRATION PERIOD (2019–2020) | 0.66 | 0.55 |
VALIDATION PERIOD (2021–2022) | 0.58 | 0.53 |
No | Parameter Name | Parameter Description | Initial Parameter Range |
---|---|---|---|
1 | R__CN2.mgt | Runoff curve number | (−0.25, 0.25) |
2 | V__ALPHA_BF.gw | Alpha baseflow factor | (0.01, 1.00) |
3 | V__GW_DELAY.gw | Groundwater delay time | (0.50, 50.00) |
4 | V__GWQMN.gw | Threshold water depth in the shallow aquifer required for return flow to occur | (0.01, 5000.00) |
5 | V__ESCO.hru | Soil evaporation compensation coefficient | (0.01, 1.00) |
6 | V__EPCO.hru | Plant uptake compensation coefficient | (0.01, 1.00) |
7 | V__REVAPMN.gw | Reevaporation threshold | (0.01, 500.00) |
8 | V__GW_REVAP.gw | Groundwater “revap” coefficient | (0.01, 0.20) |
9 | R__OV_N.hru | Manning’s “n” value for overland flow | (−0.20, 0.20) |
10 | R__SOL_K(..).sol | Saturated hydraulic conductivity | (−0.15, 0.15) |
11 | R__SOL_BD(..).sol | Moist bulk density | (−0.15, 0.15) |
12 | R__SOL_AWC(..).sol | Available water capacity of the soil layer | (−0.15, 0.15) |
13 | V__CH_BED_BD.rte | Bulk density of channel bed sediment | (1.20, 1.70) |
14 | V__CH_BNK_BD.rte | Bulk density of channel bank sediment | (1.20, 1.70) |
15 | V__SURLAG.bsn | Surface runoff lag coefficient | (0.50, 20.00) |
16 | V__RCHRG_DP.gw | Recharge to deep aquifer | (0.10, 0.50) |
Model Evaluation | R2 | NS |
---|---|---|
CALIBRATION PERIOD FOR FLOW PARAMETER (2019–2020) | 0.66 | 0.57 |
VALIDATION PERIOD FOR FLOW PARAMETER (2021–2022) | 0.64 | 0.54 |
CALIBRATION PERIOD FOR SM PARAMETER (2019–2020) | 0.91 | 0.85 |
VALIDATION PERIOD FOR SM PARAMETER (2021–2022) | 0.84 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kofidou, M.; Gemitzi, A. Assimilating Soil Moisture Information to Improve the Performance of SWAT Hydrological Model. Hydrology 2023, 10, 176. https://doi.org/10.3390/hydrology10080176
Kofidou M, Gemitzi A. Assimilating Soil Moisture Information to Improve the Performance of SWAT Hydrological Model. Hydrology. 2023; 10(8):176. https://doi.org/10.3390/hydrology10080176
Chicago/Turabian StyleKofidou, Maria, and Alexandra Gemitzi. 2023. "Assimilating Soil Moisture Information to Improve the Performance of SWAT Hydrological Model" Hydrology 10, no. 8: 176. https://doi.org/10.3390/hydrology10080176
APA StyleKofidou, M., & Gemitzi, A. (2023). Assimilating Soil Moisture Information to Improve the Performance of SWAT Hydrological Model. Hydrology, 10(8), 176. https://doi.org/10.3390/hydrology10080176