The Role of Water and Weathering Processes in Landslides in Hungarian Loess Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources for Statistical Analysis
2.3. Statistical Analyses
2.3.1. Changepoint Detection
2.3.2. Wavelet Spectrum Analysis
2.3.3. Software Used
2.4. Geochemical Modeling
3. Results
3.1. Changes in the Hydrological Dynamics
3.2. Results of Geochemical Models
4. Discussion
4.1. Relation between the Hydrological Properties and Mass Movements
4.2. Relation between the Geochemical Properties and Water
4.3. Anthropogenic Effect in the Area
5. Conclusions and Outline
- (1)
- Even though the results of earlier studies show that rainfall amount and high-water levels in the river are responsible for the landslides in the paleosol–loess sequences, the present study indicates that the effect of the amount of water in the landslides can only be conclusively demonstrated in two cases. In other cases, it may affect the other studied or unstudied properties;
- (2)
- One of the studied properties is the effect of the weathering. Geochemical modeling results show that weathering processes depend on the weather conditions (dry period, wet period, flood). Albite only weathers in wet periods, and kaolinite precipitation is faster during floods, while calcite is not precipitated during dry periods;
- (3)
- The other studied property is the effect of human activity. The results show that it is a complex factor that can facilitate landslides due to the mass of houses, watering, and to the decreasing biodiversity. However, bluff stabilization and building regula19tions can be one of the keys to decrease the anthropogenic effects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oorthuis, R.; Hürlimann, M.; Vaunat, J.; Moya, J.; Lloret, A. Monitoring the Role of Soil Hydrologic Conditions and Rainfall for the Triggering of Torrential Flows in the Rebaixader Catchment (Central Pyrenees, Spain). Landslides 2022. [Google Scholar] [CrossRef]
- Lehmkuhl, F.; Zens, J.; Krauß, L.; Schulte, P.; Kels, H. Loess-Paleosol Sequences at the Northern European Loess Belt in Germany: Distribution, Geomorphology and Stratigraphy. Quat. Sci. Rev. 2016, 153, 11–30. [Google Scholar] [CrossRef]
- Újvári, G.; Varga, A.; Raucsik, B.; Kovács, J. The Paks Loess-Paleosol Sequence: A Record of Chemical Weathering and Provenance for the Last 800ka in the Mid-Carpathian Basin. Quat. Int. 2014, 319, 22–37. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Xiang, W.; Rohn, J.; Zeng, W.; Schleider, M. Research on Water—Rock (Soil) Interaction by Dynamic Tracing Method for Huangtupo Landslide, Three Gorges Reservoir, PR China. Environ. Earth Sci. 2015, 557–571. [Google Scholar] [CrossRef]
- Kemp, R.A. Pedogenic Modification of Loess: Significance for Palaeoclimatic Reconstructions. Earth Sci. Rev. 2001, 54, 145–156. [Google Scholar] [CrossRef]
- Shi, J.S.; Wu, L.Z.; Wu, S.R.; Li, B.; Wang, T.; Xin, P. Geomorphology Analysis of the Causes of Large-Scale Loess Landslides in Baoji, China. 2016, 264, 109–117. Geomorphology 2016, 264, 109–117. [Google Scholar] [CrossRef]
- Lutenegger, A.J.; Hallberg, G.R. Stability of Loess. Eng. Geol. 1988, 25, 247–261. [Google Scholar] [CrossRef]
- Juang, C.H.; Dijkstra, T.; Wasowski, J.; Meng, X. Loess Geohazards Research in China: Advances and Challenges for Mega Engineering Projects. Eng. Geol. 2019, 251, 1–10. [Google Scholar] [CrossRef]
- Dijkstra, T.A.; Rogers, C.D.F.; Smalley, I.J.; Derbyshire, E.; Li, Y.J. Meng Xing Min The Loess of North-Central China: Geotechnical Properties and Their Relation to Slope Stability. Eng. Geol. 1994, 36, 153–171. [Google Scholar] [CrossRef]
- Peng, T.; Chen, N.; Hu, G.; Tian, S.; Ni, H.; Huang, L.; Yang, X.; Zhao, A. Failure Mechanism of Dege Landslide in Western China, March, 2021: The Loess Interlayer and Multiple Water Resources. Landslides 2022, 19, 2189–2197. [Google Scholar] [CrossRef]
- Zeng, Q.; Darboux, F.; Man, C.; Zhu, Z.; An, S. Soil Aggregate Stability under Different Rain Conditions for Three Vegetation Types on the Loess Plateau (China). CATENA 2018, 167, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Horváth, Z.; Scheuer, G. A Dunaföldvári Partrogyás Mérnökgeológiai Vizsgálata. Bull. íHungarian Geol. Soc. 1976, 106, 425–440. [Google Scholar]
- Scheuer, G. A Dunai Magaspartok Mérnökgeológiai Vizsgálata. Bull. Hungarian Geol. Soc. 1979, 109, 230–254. [Google Scholar]
- Lawler, D.M.; Thorne, C.R.; Hooke, J.M. Bank Erosion and Instability. In Applied Fluvial Geomorphology for River Engineering and Management; Wiley: Hoboken, NJ, USA, 1977; pp. 137–172. [Google Scholar]
- Újvári, G.; Mentes, G.; Bányai, L.; Kraft, J.; Gyimóthy, A.; Kovács, J. Evolution of a Bank Failure along the River Danube at Dunaszekcső, Hungary. Geomorphology 2009, 109, 197–209. [Google Scholar] [CrossRef]
- Zhuang, J.; Peng, J.; Wang, G.; Iqbal, J.; Wang, Y.; Li, W.; Xu, Q.; Zhu, X. Prediction of Rainfall-Induced Shallow Landslides in the Loess Plateau, Yan’an, China, Using the TRIGRS Model. Earth Surf. Process. Landforms 2017, 42, 915–927. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. A Rudimentary Mechanistic Model for Soil Formation and Landscape Development: II. A Two-Dimensional Model Incorporating Chemical Weathering. Geoderma 2001, 103, 161–179. [Google Scholar] [CrossRef]
- White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E. Differential Rates of Feldspar Weathering in Granitic Regoliths. Geochim. Cosmochim. Acta 2001, 65, 847–869. [Google Scholar] [CrossRef]
- Rónai A Bartha F, K.E. A Kulcsi Löszfeltárás Szelvénye. (Geological Profile of the Loess at Kulcs, in Hungarian); Budapest, Hungary, 1965; Available online: http://epa.oszk.hu/02900/02934/00109/pdf/EPA02934_mafi_evi_jel_1963_167-187.pdf (accessed on 23 January 2023).
- Farkas, J. A Csapadé-. Illetve a Víztartalomnövekedés Szerepe a Felszínmozgások Kialakulásában. Mélyépítéstudományi Szle. 1985, 8, 343–349. [Google Scholar]
- Juhász, Á. A Klimatikus Hatások Szerepe a Magaspartok Fejlődésében. Földtani Kut. 1999, XXXVI, 15–19. [Google Scholar]
- Szabó, J. The Relationship between Landslide Activity and Weather: Examples from Hungary. Nat. Hazard Earth Syst. Sci. 2003, 3, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Udvardi, B.; Kovács, I.J.; Szabó, C.; Falus, G.; Újvári, G.; Besnyi, A.; Bertalan, É.; Budai, F.; Horváth, Z. Origin and Weathering of Landslide Material in a Loess Area: A Geochemical Study of the Kulcs Landslide, Hungary. Environ. Earth Sci. 2016, 75, 1299. [Google Scholar] [CrossRef]
- Farkas, J. Szakértői Vélemény Kulcs Felszínmozgásos Területeinek Vizsgálatáról. (Report about Landslide Prone Areas of Kulcs, in Hungarian); Budapest, Hungary, 2011; Available online: https://docplayer.hu/amp/13783018-Szakertoi-velemeny-farkas-geotechnikai-kft-kulcs-felszinmozgasos-teruleteinek-vizsgalatarol-kulcs-kozseg-onkormanyzata.html (accessed on 23 January 2023).
- Baják, P.; Csondor, K.; Pedretti, D.; Muniruzzaman, M.; Surbeck, H.; Izsák, B.; Vargha, M.; Horváth, Á.; Pándics, T.; Erőss, A. Refining the Conceptual Model for Radionuclide Mobility in Groundwater in the Vicinity of a Hungarian Granitic Complex Using Geochemical Modeling. Appl. Geochem. 2022, 137, 105201. [Google Scholar] [CrossRef]
- Kovács, J.; Fábián, S.Á.; Varga, G.; Újvári, G.; Varga, G.; Dezső, J. Plio-Pleistocene Red Clay Deposits in the Pannonian Basin: A Review. Quat. Int. 2011, 240, 35–43. [Google Scholar] [CrossRef]
- Udvardi, B.; Kovács, I.J.; Kónya, P.; Földvári, M.; Füri, J.; Budai, F.; Falus, G.; Fancsik, T.; Szabó, C.; Szalai, Z.; et al. Application of Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy in the Mineralogical Study of a Landslide Area, Hungary. Sediment. Geol. 2014, 313, 1–14. [Google Scholar] [CrossRef] [Green Version]
- VÁTI Városépítési Kft. Comprehensive Review of Land Use Planning Instruments of the Municipality of Kulcs-Settlement Structure Plan and Local Building Regulations; VÁTI Városépítési Kft.: Budapest, Hungary, 2020. [Google Scholar]
- Udvardi, B. Agyagásvány-Tartalmú Üledékek Komplex Környezettudományi Vizsgálata Kulcs Területén; EÖtvös University: Budapest, Hungary, 2015. [Google Scholar]
- Ruggieri, E. A Bayesian Approach to Detecting Change Points in Climatic Records. Int. J. Climatol. 2013, 33, 520–528. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Topál, D.; Ruggieri, E.; Kern, Z. Concurrent Changepoints in Greenland Ice Core Δ18O Records and the North Atlantic Oscillation over the Past Millennium. Atmosphere 2022, 13, 93. [Google Scholar] [CrossRef]
- Ruggieri, E. A Pruned Recursive Solution to the Multiple Change Point Problem. Comput. Stat. 2018, 33, 1017–1045. [Google Scholar] [CrossRef]
- Ruggieri, E.; Antonellis, M. An Exact Approach to Bayesian Sequential Change Point Detection. Comput. Stat. Data Anal. 2016, 97, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Topál, D.; Matyasovszkyt, I.; Kern, Z.; Hatvani, I.G. Detecting Breakpoints in Artificially Modified- and Real-Life Time Series Using Three State-of-the-Art Methods. Open Geosci. 2016, 8, 78–98. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Kovács, J.; Hatvani, I.G.; Korponai, J.; Kovács, I.S. Morlet Wavelet and Autocorrelation Analysis of Long-Term Data Series of the Kis-Balaton Water Protection System (KBWPS). Ecol. Eng. 2010, 36, 1469–1477. [Google Scholar] [CrossRef]
- Morlet, J.; Arens, G.; Fourgeau, E.; Glard, D. Wave Propagation and Sampling Theory—Part I: Complex Signal and Scattering in Multilayered Media. Geophysics 1982, 47, 203–221. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 23 January 2023).
- Meyers, S.R. Astrochron: An R Package for Astrochronology. Dep. Geosci. Explor. Fundam. Quest. Earth life Environ. 2014. [Google Scholar]
- Rösch, A.; Schmidbauer, H.; Roesch, A.; Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. 2018. Available online: https://cran.r-project.org/web/packages/WaveletComp/WaveletComp.pdf (accessed on 23 January 2023).
- Parkhurst, C.A.J.; Appelo, D.L. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations: U.S. Geological Survey Techniques and Methods, Book 6, Chap. A43; U.S. Department of the Interior U.S. Geological Survey: Reston, VA, USA, 2013.
- Szabó, Z.; Gál, N.E.; Kun, É.; Szőcs, T.; Falus, G. Accessing Effects and Signals of Leakage from a CO2 Reservoir to a Shallow Freshwater Aquifer by Reactive Transport Modelling. Environ. Earth Sci. 2018, 77, 460. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling; United States Department of Energy: Menlo Park, CA, USA, 2004; Volume 17.
- Pham, V.T.H.; Lu, P.; Aagaard, P.; Zhu, C.; Hellevang, H. On the Potential of CO2–Water–Rock Interactions for CO2 Storage Using a Modified Kinetic Model. Int. J. Greenh. Gas Control 2011, 5, 1002–1015. [Google Scholar] [CrossRef] [Green Version]
- Szabó, Z.; Hellevang, H.; Király, C.; Sendula, E.; Kónya, P.; Falus, G.; Török, S.; Szabó, C. Experimental-Modelling Geochemical Study of Potential CCS Caprocks in Brine and CO 2 -Saturated Brine. Int. J. Greenh. Gas Control 2016, 44, 262–275. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Hatvani, I.G.; Clement, A.; Korponai, J.; Kern, Z.; Kovács, J. Periodic Signals of Climatic Variables and Water Quality in a River—Eutrophic Pond—Wetland Cascade Ecosystem Tracked by Wavelet Coherence Analysis. Ecol. Indic. 2017, 83, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Schmeller, G.; Nagy, G.; Sarkadi, N.; Cséplő, A.; Pirkhoffer, E.; Geresdi, I.; Balogh, R.; Ronczyk, L.; Czigány, S. Trends in Extreme Precipitation Events (SW Hungary) Based on a High-Density Monitoring Network. Hungarian Geogr. Bull. 2022, 71, 231–247. [Google Scholar] [CrossRef]
- Jiang, J.; Xiang, W.; Rohn, J.; Schleier, M.; Pan, J.; Zhang, W. Research on Mechanical Parameters of Coarse-Grained Sliding Soil Based on CT Scanning and Numerical Tests. Landslides 2016, 13, 1261–1272. [Google Scholar] [CrossRef]
- Barta, G. Secondary Carbonates in Loess-Paleosoil Sequences: A General Review. Cent. Eur. J. Geosci. 2011, 3, 129–146. [Google Scholar] [CrossRef]
Name of Parameter in PRHEEQC | Parameter | Danube (mg·L−1) | Spring Water | |
---|---|---|---|---|
Dry Period (mg·L−1) | Wet Period (mg·L−1) | |||
pH | pH | 8.17 | 7.46 | 7.81 |
Temperature | temperature (°C) | 14.7 | 11.40 | 20.9 |
Oxg | Oxygen saturation | 10.57 | 9.92 | 8.03 |
Na | Na+ | 12.17 | 37.9 | 2.85 |
K | K+ | 2.22 | 2.52 | 6.69 |
Ca | Ca2+ | 48.70 | 68.1 | 29.7 |
Mg | Mg2+ | 12.00 | 77.8 | 6.42 |
Fe | Fe2+ | 0.05 | 0.01 | 0.07 |
Amm | NH4 | 0.11 | 0.05 | 0.05 |
Mn | Mn2+ | 0.01 | 0.00 | 0.00 |
Si | H4SiO4 | 7.78 | 26.83 | 12.025 |
Cl | Cl− | 15.07 | 35.6 | 4.6 |
S | SO42− | 24.97 | 89 | 17.40 |
N(+5) | NO3− | 6.94 | 77 | 2.37 |
N(+3) | NO2− | 0.11 | 0.05 | 0.1 |
P | PO43− | 0.16 | 0.13 | 0.73 |
Alkalinity as HCO3 | HCO3− | 180.33 | 445 | 104 |
OH− | OH− | 0.05 | 0.05 | |
Al | Al3+ | 0.04 | 0.01 | 0.04 |
Minerals | ρ (g·cm−3) | M (mol g−1) | Loess | SSA (m2·g−1) | |
---|---|---|---|---|---|
vol% | c (mol·kgW−1) | ||||
Albite | 2.62 | 262 | 3.64 | 0.6835 | 21.6 |
Kaolinite | 2.6 | 258 | 1.28 | 0.2426 | 200 |
Calcite | 2.71 | 100 | 20.57 | 10.4624 | 22 |
Chlorite(14A) | 2.65 | 554 | 8.96 | 0.8042 | 2.9 |
Dolomite | 2.85 | 184 | 7.7 | 2.2371 | 2.8 |
Ca-montmorillonite | 2.35 | 366.27 | 5.65 | 0.6805 | 898 |
Illite | 2.75 | 383.5 | 14.19 | 1.9095 | 200 |
K-feldspar | 2.56 | 278 | 1.5 | 0.2598 | 12 |
Quartz | 2.63 | 60 | 33.37 | 27.4497 | 58 |
SiO2(a) | 2.2 | 60 | 1.28 | 0.8826 | 0.073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Király, C.; Cseresznyés, D.; Magyar, N.; Hatvani, I.G.; Egedy, T.; Szabó-Krausz, Z.; Udvardi, B.; Jakab, G.; Varga, G.; Szalai, Z. The Role of Water and Weathering Processes in Landslides in Hungarian Loess Sediments. Hydrology 2023, 10, 81. https://doi.org/10.3390/hydrology10040081
Király C, Cseresznyés D, Magyar N, Hatvani IG, Egedy T, Szabó-Krausz Z, Udvardi B, Jakab G, Varga G, Szalai Z. The Role of Water and Weathering Processes in Landslides in Hungarian Loess Sediments. Hydrology. 2023; 10(4):81. https://doi.org/10.3390/hydrology10040081
Chicago/Turabian StyleKirály, Csilla, Dóra Cseresznyés, Norbert Magyar, István Gábor Hatvani, Tamás Egedy, Zsuzsanna Szabó-Krausz, Beatrix Udvardi, Gergely Jakab, György Varga, and Zoltán Szalai. 2023. "The Role of Water and Weathering Processes in Landslides in Hungarian Loess Sediments" Hydrology 10, no. 4: 81. https://doi.org/10.3390/hydrology10040081
APA StyleKirály, C., Cseresznyés, D., Magyar, N., Hatvani, I. G., Egedy, T., Szabó-Krausz, Z., Udvardi, B., Jakab, G., Varga, G., & Szalai, Z. (2023). The Role of Water and Weathering Processes in Landslides in Hungarian Loess Sediments. Hydrology, 10(4), 81. https://doi.org/10.3390/hydrology10040081